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What We already Know about This Topic

• Unplanned hospital readmissions are a focus of quality  
improvement, national benchmarking, and payment incentives in 
the United States

• The accuracy of commonly used peer-reviewed readmission  
prediction algorithms at specific hospitals may be limited by hospital- 
specific factors

• The potential value of novel machine learning techniques capable 
of incorporating hundreds of patient, process, and hospital attri-
butes is unclear

What This article Tells Us That Is New

• Hospital-specific 30-day surgical readmission models using 
machine learning techniques provide clinically usable predictions 
when applied to future patients

• A parsimonious approach limiting which data elements are consid-
ered performs as well as more comprehensive models

Unplanned hospital readmissions have been a pressing 
concern with respect to patient burden and high cost.1 

These factors are compounded when a patient is readmitted 
via the emergency department where they may consume 
valuable resources. This is in contrast to postoperative read-
missions that occur via direct admission after clinic visits that 
are often planned or facilitated by a surgeon. Although it is 
not always clear whether a given readmission is preventable, 

it is certain that emergency department–based 30-day read-
missions are sentinel events, poor markers of quality, and are 
typically attributable to conditions present at discharge.2,3

Models created to detect patients at risk for unplanned 
readmission have been developed, but many of them 
have a narrow focus on single disease states and cannot 
be applied to the postoperative population as a whole.4–6 
Furthermore, most of these models were exclusively created 
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Background: Although prediction of hospital readmissions has been stud-
ied in medical patients, it has received relatively little attention in surgical 
patient populations. Published predictors require information only available 
at the moment of discharge. The authors hypothesized that machine learning 
approaches can be leveraged to accurately predict readmissions in postoper-
ative patients from the emergency department. Further, the authors hypoth-
esize that these approaches can accurately predict the risk of readmission 
much sooner than hospital discharge.

Methods: Using a cohort of surgical patients at a tertiary care academic 
medical center, surgical, demographic, lab, medication, care team, and cur-
rent procedural terminology data were extracted from the electronic health 
record. The primary outcome was whether there existed a future hospital 
readmission originating from the emergency department within 30 days of 
surgery. Secondarily, the time interval from surgery to the prediction was ana-
lyzed at 0, 12, 24, 36, 48, and 60 h. Different machine learning models for 
predicting the primary outcome were evaluated with respect to the area under 
the receiver-operator characteristic curve metric using different permutations 
of the available features.

results: Surgical hospital admissions (N = 34,532) from April 2013 to 
December 2016 were included in the analysis. Surgical and demographic fea-
tures led to moderate discrimination for prediction after discharge (area under 
the curve: 0.74 to 0.76), whereas medication, consulting team, and current 
procedural terminology features did not improve the discrimination. Lab fea-
tures improved discrimination, with gradient-boosted trees attaining the best 
performance (area under the curve: 0.866, SD 0.006). This performance was 
sustained during temporal validation with 2017 to 2018 data (area under the 
curve: 0.85 to 0.88). Lastly, the discrimination of the predictions calculated 
36 h after surgery (area under the curve: 0.88 to 0.89) nearly matched those 
from time of discharge.

conclusions: A machine learning approach to predicting postoperative 
readmission can produce hospital-specific models for accurately predicting 
30-day readmissions via the emergency department. Moreover, these predic-
tions can be confidently calculated at 36 h after surgery without consideration 
of discharge-level data.
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for nonsurgical patients, making them difficult to validate 
in different cohorts,7 and many of them require substantial 
data from the moment of hospital discharge.8,9 Waiting until 
hospital discharge inhibits providers from better optimiz-
ing factors associated with readmission in parallel with the 
routine postoperative care.4,10–12 This delay can also lead to 
ineffective transitional care coordination or possible pro-
longation of a hospital stay. Moreover, given that timeliness 
is one of the five rights of clinical decision support, waiting 
until the moment of discharge dramatically decrease the 
clinical efficacy of any model.13

A potential path to developing patient-risk models 
is machine learning with its ability to process extremely 
large numbers of input features and produce accurate pre-
dictive models.14,15 More specifically, tree-based machine 
learning methods are able to model nonlinear relationships 
and interactions, typically outperforming standard logistic 
regression.16 Lastly, machine learning models which are cal-
ibrated using an institution’s individual data demonstrate 
higher accuracy than models engineered for generalized 
patient cohorts that ordinarily overlook unforeseen institu-
tion-specific nuances.17

In this study, we describe the creation and comprehen-
sive validation of a machine learning–based methodology 
for predicting a patient’s risk for 30-day readmission via the 
emergency department in the postoperative period. Our 
primary hypothesis is that machine learning methods are 
capable of producing hospital-specific readmission predic-
tion models with excellent discrimination. Our secondary 
hypothesis is that machine learning can produce models 
that accurately predict postoperative readmission without 
dependence on data from the time of discharge.

Materials and Methods

Data Extraction

Our data extraction methodology qualified for University 
of California Los Angeles (Los Angeles, California) insti-
tutional review board (No. 18-000630) exception status 
(“waiver of consent”) by virtue of having no direct patient 
contact and using a deidentified dataset. All study data 
were acquired via our previously published Department of 
Anesthesiology and Perioperative Medicine at University 
of California Los Angeles’s Perioperative Data Warehouse.18 
The Perioperative Data Warehouse is a structured report-
ing data schema that contains all the relevant clinical data 
entered into the EPIC (EPIC Systems, USA) electronic 
health record system. Data were acquired via Clarity, the 
relational database created by EPIC for data analytics and 
reporting. Although Clarity contains raw clinical data, the 
Perioperative Data Warehouse was designed to organize, 
filter, and improve data so that they can be used reliably 
for creating these types of metrics. Other published articles 
deriving data from the Perioperative Data Warehouse can 
be found in the References section.18–22

Data extraction was restricted to the University of 
California Los Angeles Ronald Reagan Medical Center 
for developing the model in a tertiary center. This was 
followed by a later extract of University of California Los 
Angeles’s Santa Monica Hospital for external validation of 
the methodology.

Model Endpoint Definition

We defined a readmission via the emergency department as 
any patient who enters University of California Los Angeles 
through any of the emergency departments within 30 days 
of a surgical case and is then transferred to a subsequent 
non–emergency department location. This definition was 
intended to capture patients who return to the hospital in 
an unplanned fashion and require inpatient or observation 
level of care, compared with those who were sent home 
after an emergency department–based evaluation.

There was a significant effort to mimic the Center for 
Medicare and Medicaid Services definition of postopera-
tive readmission, but to match definitions exactly, we would 
need access to the proprietary algorithms created by the 
various third-party vendors. Our health center currently 
uses one such service to analyze our own data to discern 
which of the 30-day readmissions are exempt based on an 
allowable disease condition or surgical procedure. Despite 
not having access to the aforementioned proprietary algo-
rithms, we did adopt the Center for Medicare and Medicaid 
Services exclusion of cases that were discharged and read-
mitted on the same calendar day.

During the study interval, approximately 40% of the 
Ronald Reagan Medical Center 30-day readmissions 
arrived at the health center via the emergency department, 
another 40% entered though a perioperative location, and 
the remaining 20% of the readmissions were direct to an 
inpatient location. It was decided that the 40% of patients 
arriving via a perioperative location were not consistent 
with our primary outcome because it would be exceed-
ingly difficult to identify which procedures were done as 
corrective revisions (unplanned) and those that occurred 
as part of staged procedure (planned). One such example 
is cataract surgery, because our ophthalmologists seldom 
operate on both eyes during a single case, but instead stag-
ger the cases two weeks by design. As for the 20% that are 
direct admissions, the same dilemma applies because we 
would not definitively be able to distinguish which patients 
were admitted from clinic because of complication versus 
those needing adjuvant medical treatment (i.e., postopera-
tive chemotherapy).

Model Input Features

For each admission, we used a large collection of indepen-
dent variables originating from different sources, which we 
summarize below.
General Data. We considered variables that describe the sur-
gery at admission, such as the volume of blood loss and 
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the duration of surgery. We also considered variables that 
summarize overall health, such as the American Society of 
Anesthesiologists (Schaumburg, Illinois) score, as well as 
variables that describe specific aspects of patient health, such 
as the Acute Kidney Injury Network stage and whether the 
patient had received a consultation from the pain manage-
ment service during a past admission.23 We also considered 
nonmedical, demographic variables such as the patient’s age, 
ethnicity, race, and primary language (Supplemental Digital 
Content table 1, http://links.lww.com/ALN/C173).
Lab Data. We considered a collection of commonly ordered 
lab tests: bilirubin, creatinine, glucose, hematocrit, hemo-
globin, INR, Pco

2
, platelets, Po

2
, potassium, sodium, urea 

nitrogen, and leukocyte count. The process of identify-
ing and grouping the labs was manually done by a phy-
sician informaticist on our research team with expertise 
in programming. The grouped labs are summarized in 
Supplemental Digital Content table 2 (http://links.lww.
com/ALN/C174). For each type of lab, the Perioperative 
Data Warehouse records different subtypes of labs. These 
subtypes arise out of how the lab is ordered (for example, 
bilirubin may be measured as part of complete metabolic 
panel, or simply as a stand-alone lab result). For each lab 
subtype, we created two variables: one variable that mea-
sures the maximum deviation (delta) from the normal range 
observed in that lab subtype over the whole admission and 
one 0/1 variable to indicate whether this lab subtype was 
ever ordered. In addition, we created one variable to count 
the total number of unique lab subtypes ordered over the 
entire admission, and one 0/1 variable to indicate whether 
no labs were ever ordered during the admission. At the 
time of data collection and algorithm development, Logical 
Observation Identifiers Names and Codes codes were not 
available within our electronic medical record implemen-
tation. This has since changed and Logical Observation 
Identifiers Names and Codes are currently being imple-
mented. Once complete, we will be able to test the substi-
tution of Logical Observation Identifiers Names and Codes 
for component identifiers.
Medication Data. During each admission, patients are typ-
ically administered or prescribed many different classes 
of medications. For each medication, we had access to 
the pharmaceutical class (total of 99) and subclass (total 
of 537) as defined by our institution’s pharmacy ser-
vice. For each pharmaceutical class, we created one 0/1 
indicator variable to indicate whether any medications 
of that class were ever prescribed during admission, one 
0/1 variable to indicate whether any medications of that 
class were ever taken during the admission, and one 0/1 
variable to indicate whether any discharge medications 
of that class were prescribed during the admission. We 
also created variables to count the number of unique 
classes prescribed, the number of unique classes taken by 
the patient, and the number of unique classes among the 
patient’s discharge medications.

Team Data. For each admission, we knew which of the 170 
surgical, medical, or consulting teams at the Ronald Reagan 
Medical Center was assigned to the patient during a given 
admission. For each team, we created a 0/1 indicator vari-
able of whether that team was assigned to the admission. We 
also define a variable to count the total number of teams 
assigned to each admission.
Current Procedural Terminology Data. For each surgical case, 
we generated a list of all the current procedural terminol-
ogy codes that were billed for by the surgeons. Because of 
computational considerations, we focused only on current 
procedural terminology codes that appear in at least 100 
surgical admissions in the data set, resulting in 215 current 
procedural terminology codes. For each such code, we cre-
ated a 0/1 variable to indicate whether that code is assigned 
to each principal surgical admission. We also created a vari-
able to count the total number of current procedural termi-
nology codes assigned to each admission.

Data Preprocessing

For a minority of admissions, the values of some variables 
were missing or null. For categorical variables, we added 
another category indicating that the value was missing. For 
some numeric variables, we were able to infer that a missing 
value indicates that the variable value is zero. When this was 
not possible, we created a new 0/1 indicator of whether the 
variable value is missing for each admission, and we set the 
original missing values to zero.

We divided the data randomly into a training set and 
testing set according to a 70-30 split.15 We used the training 
set (70%) to estimate and the test set (30%) to evaluate each 
model. Each split was done to preserve the proportion of 
readmitted/not readmitted cases found in the whole data 
set. We repeated this random splitting ten times.

Model Development

We considered three different types of models: regularized 
logistic regression, random forest, and gradient boosted 
trees; the latter two are classified as tree ensemble mod-
els.14,24,25 We provide additional technical information on 
the methods and parameter settings in the Supplemental 
Digital Content (http://links.lww.com/ALN/C175). 
These models differ from classical logistic regression in their 
ability to scale to large numbers of features without overfit-
ting. Although the models accomplish this in different ways, 
the essential idea is that each model’s estimation procedure 
has some mechanism for controlling the model complexity 
and how sensitive the model is to the data.14

Regularized Logistic Regression. Logistic regression mod-
els the probability of a readmission as a logistic function 
applied to a linear function of the independent variables. 
Ordinary logistic regression models are estimated by min-
imizing the negative log-likelihood. In this work, we did 
not use ordinary logistic regression, because it can overfit 
when the number of features is large relative to the training 
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set size and perform poorly out of sample. We instead used 
regularized logistic regression, which differs from ordinary 
logistic regression in that the estimation minimizes the neg-
ative log-likelihood plus an additional term (the regulariza-
tion term). We used L1 regularization, which uses the L1 
norm of the coefficient vector as the regularization term.26 
L1 regularization has two special properties: It induces 
shrinkage (it reduces the magnitude of the coefficients) and 
sparsity (it returns models where many coefficients are set 
to zero).15 Both of these properties lead to good predictive 
performance when the number of independent variables is 
very large relative to the number of observations. This form 
of regression is also known as Least Absolute Shrinkage and 
Selection Operator logistic regression. Alternatives include 
L2 regularized logistic regression (also known as ridge 
regression), wherein the regularization term is the sum 
of the squares of the coefficients, and elastic net logistic 
regression, wherein the regularization term is a weighted 
combination of the Least Absolute Shrinkage and Selection 
Operator and ridge regularization terms.
Random Forest. The random forest algorithm works by 
estimating an ensemble of randomized classification trees. 
A classification tree is a predictive model where one fol-
lows a sequence of true/false queries along a tree to make a 
prediction.27 Given an observation, each tree in the forest is 
used to make a prediction (readmission or no readmission) 
and the fraction of trees in the forest predicting readmis-
sion is then the predicted readmission probability. A stylized 
example of a random forest model being used for prediction 
is given in Supplemental Digital Content figure 1 (http://
links.lww.com/ALN/C176).

The random forest model is attractive over ordinary 
logistic regression for two reasons. First, random forests are 
able to automatically learn potentially nonlinear relation-
ships between each feature and the readmission probabil-
ity, as well as interactions between the features.14,28 Second, 
random forests yield good performance when the num-
ber of features is large relative to the number of observa-
tions, possibly being as large or larger than the number of 
observations.24,28,29

Gradient Boosted Trees. The gradient boosted tree model is 
another type of tree ensemble model and also works by 
growing multiple classification trees. However, rather than 
growing each tree randomly, the trees are grown sequen-
tially, where each new tree is selected to most reduce the 
error of the current ensemble. The ensemble outputs a 
probability between 0 and 1 of a readmission occurring, 
and the ensemble is trained to minimize logistic loss. Like 
random forests, gradient boosted trees are well suited to 
prediction problems with large numbers of features, and 
can automatically handle nonlinearities and interactions.14

Predischarge versus Postdischarge Prediction

We performed an additional set of experiments to eval-
uate our models’ performance using only predischarge 

information. We focused on the general data and the lab 
data. For the general data, we excluded any features that 
would only be available at discharge. For the lab data, 
we computed the features in the same way as before, but 
ignored any labs drawn later than T hours after the com-
pletion of surgery, where T is a parameter that we vary. We 
restricted T to the range {0, 12, 24, 36, 48, 60}. (For exam-
ple, a value of T = 24 corresponds to using all data from the 
time of admission, to 24 h after the completion of surgery.) 
In the case that a patient is discharged before the cutoff 
point of T h after surgery completion, we did not use any 
additional information that may become available at or after 
discharge (such as length of stay). Note that the medication, 
team, and current procedural terminology data were not 
used in these additional experiments.

Model Performance

To evaluate our models, we considered two predictive met-
rics: area under the receiver-operator characteristic curve 
(also known as the c statistic or simply area under the curve) 
and Brier score. The area under the curve is the probabil-
ity of correctly distinguishing between a randomly chosen 
admission from the test set that results in a readmission, and 
a randomly chosen admission from the test set that does not. 
The area under the curve is bounded between 0.5 and 1.0, 
with higher values being better. The Brier score is the mean 
squared difference between the predicted probability of read-
mission and the actual outcome (0 or 1 where 1 indicates a 
readmission). The Brier score is bounded between 0 and 1, 
with lower values being better. Both the area under the curve 
and Brier score metrics were calculated using the test data set 
and averaged over the ten random splits of the data. We addi-
tionally compared the models by plotting their receiver-op-
erator characteristic curves and their precision-recall curves.

We compared our area under the curve values against 
the HOSPITAL (low hemoglobin at discharge, discharge 
from an oncology service, low sodium at discharge, 
[International Classification of Disease, ninth revision, clin-
ical modification coded] procedure during hospital stay 
or not, index admission type is elective or not, number 
of admissions in previous year, and length of stay) score, a 
recent model for readmission risk prediction developed in a 
general, nonsurgical patient population.30 We acknowledge 
that the HOSPITAL score was not originally formulated 
for surgical readmission prediction; our interest in evalu-
ating HOSPITAL is simply to obtain a reasonable bench-
mark. We also compared our area under the curve values 
against the LACE (length of stay, acuity, comorbidity, emer-
gency department use) score. The LACE score and the later 
LACE+ score (which additionally uses patient age and sex, 
hospital teaching status, acute diagnoses and procedures 
during admission, number of days on alternative level of 
care, and number of admissions to the hospital in the pre-
vious year) have been applied to populations consisting of 
both medical and surgical patients.9,31
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External Validation

As an additional exercise in validating the overall meth-
odologic approach, we also applied it to the University of 
California Los Angeles Santa Monica Hospital. The Santa 
Monica Hospital differs greatly from the Ronald Reagan 
Medical Center as it functions much more like a commu-
nity hospital with primarily orthopedic cases and lower 
patient acuity. Typically, patients with significant comorbid-
ities or those requiring extensive surgeries are transferred by 
ambulance from the Santa Monica Hospital to the Ronald 
Reagan Medical Center. The Santa Monica Hospital has a 
fraction of the intensive care capabilities and a fraction of 
the subspecialty resources.

To validate the overall methodologic approach, we 
extracted identical features using identical inclusion/exclu-
sion criteria from the Perioperative Data Warehouse for the 
Santa Monica Hospital. After splitting the data in the same 
way as for the Ronald Reagan Medical Center, we retrained 
our models using the Santa Monica Hospital training sets 
and tested their performance on the Santa Monica Hospital 
test sets.

We remark here that this is different from how external 
validation is commonly done. Ordinarily, external valida-
tion entails taking a model trained on one data set (in this 
case, the Ronald Reagan Medical Center data) and eval-
uating its performance on a different data set (in this case, 
the Santa Monica Hospital data). We emphasize that our 

goal is to validate our overall methodology—the process 
that transforms a data source, such as the Perioperative Data 
Warehouse, into a data set that can then be turned into a 
predictive model—and not to validate the specific models 
that arise from the Ronald Reagan Medical Center data 
set. Given the hospital-specific nature of readmissions, it is 
unreasonable to expect the existence of a single universal 
model that will achieve good predictive performance across 
a wide range of institutions. Furthermore, even if such a 
model were to exist, an institution may still wish to lever-
age its own data to construct a model tailored to its own 
patient population and surgical practices, to achieve even 
better performance. By validating our methodology on the 
Santa Monica Hospital, a hospital with a different patient 
population and surgical specialties from the Ronald Reagan 
Medical Center, we intended to verify whether our meth-
odology is applicable to institutions outside of the Ronald 
Reagan Medical Center.

Temporal Validation

In addition to external validation, we also carried out a tem-
poral validation of our methodology. We extracted admis-
sions occurring at the Ronald Reagan Medical Center in 
2017 and 2018, after the period spanned by our base dataset 
(2013–2016), and derived the endpoint and the features in 
exactly the same way as described for the base dataset. We 
then used the models we developed using the ten random 

Fig. 1. Inclusion and exclusion criteria for overall data set and emergency department readmissions at the University of California Los 
angeles (UCLa) Ronald Reagan Medical Center (RRMC). ER, emergency room.
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splits of the 2013 through 2016 Ronald Reagan Medical 
Center data to make predictions on these admissions. The 
predictions were evaluated using the area under the curve 
as well as the positive predictive value and negative predic-
tive value. The positive predictive value is calculated as the 
number of true positives divided by the total number of 
positives, whereas the negative predictive value is calculated 
as the number of true negatives by the total number of 
negatives. The cutoff used for the positive predictive value 
and the negative predictive value was 0.20 (i.e., a positive is 
defined as an admission with a predicted readmission prob-
ability of at least 0.20, whereas a negative is an admission 
with a predicted probability of less than 0.20). The purpose 
of this temporal validation was to evaluate the performance 
of the models when they are used prospectively (i.e., to pre-
dict on observations arising from the same institution in 
the future), thereby mimicking how these models would be 
used in practice.

results

Data Extraction

Patients aged 18 or older (n = 28,728) were extracted 
from the Perioperative Data Warehouse from April 2013 
to December 2016. This resulted in 34,553 admissions. Of 
these, 21 were removed for being organ donors (American 
Society of Anesthesiologists score of VI). The resulting 
34,532 admissions constituted our complete data set.

To define our endpoint, we considered the 3,407 admis-
sions that led to a 30-day emergency department visit; 1,439 
were excluded for not resulting in a readmission that led to 
a transfer to a unit beyond the initial emergency depart-
ment encounter. Lastly, 26 were excluded because of the 
emergency department visit occurring on the same calen-
dar day as discharge. This resulted in 1,942 admissions with 
a readmission via the emergency department; thus, 5.6% of 
the admissions in the complete data set of 34,532 admis-
sions met the endpoint definition. Figure 2 summarizes the 
inclusion/exclusion criteria.

admission Characteristics

Table  1 summarizes the general admission characteristics, 
and table 2 summarizes the lab data. The total number of 
lab subtypes is 119; therefore, there are 119 maximum lab 
deviation variables, 119 lab presence indicator variables, one 
variable counting the total number of lab subtypes, and one 
variable indicating no labs drawn, for a total of 240 lab-re-
lated variables. Of the 34,532 admissions, 27,071 admissions 
(78.4%) had at least one lab drawn. Patients were admin-
istered 92 different pharmaceutical classes; following our 
feature creation procedure, this resulted in a total of 279 
variables. The average number of unique classes prescribed 
per admission was 19.7, with a minimum of 0 and a max-
imum of 59; an average of 16.8 classes were taken by each 
admission, and an average of 4.3 classes were prescribed at 

discharge. Our data set spanned 158 surgical teams; follow-
ing our feature creation procedure, this resulted in a total of 
159 team-related variables. For each admission, the number 
of teams ranged from 1 to 36, with a mean of 1.9 and a 
median of 1.

Model Performance

Predictive Metrics. Table 3 displays the area under the curve 
and Brier score metrics for the different predictive models 
and using different sets of variables. Using only the general 
data resulted in area under the curve values on the order of 
0.73 to 0.76. Adding the lab data appreciably increased area 
under the curve values to the 0.85 to 0.87 range. The med-
ication, team, and current procedural terminology data did 
not lead to significant improvements in the area under the 
curve. The HOSPITAL score achieved an area under the 
curve of 0.73, which is lower than the area under the curve 
values of our models. This value is comparable with that in 
the original HOSPITAL paper, where it was tested with a 
general medical population.30 The area under the curve for 
LACE was also 0.73, which is slightly higher than in the 
original LACE paper.9 The same qualitative behavior is also 
observed for the Brier score.

To further compare the models, figure 2 plots the receiv-
er-operator characteristic curves for our models using the 
general data and the lab data, as well as the HOSPITAL and 
LACE scores, for one random split of the data. Figure  3 
similarly plots the precision-recall curves for our models 
using the general and lab data, as well as HOSPITAL and 
LACE, for the same random split of the data. Our three 
models gave similar performance, while outperforming 
both HOSPITAL and LACE. Lastly, Supplemental Digital 
Content figure 2 (http://links.lww.com/ALN/C176) plots 
calibration curves for our models using the general and the 
lab data, for the same random split of the data. Our mod-
els generally produced probability predictions that closely 
match the actual readmission probabilities. The random for-
est model appears to have overestimated the readmission 
risk when it is in the 0.05 to 0.30 range, whereas both L1 
regularized logistic regression and the gradient boosted tree 
model appear to have slightly underestimated the readmis-
sion risk in the same range. Calibration results in table form 
for the same random split are provided as Supplemental 
Digital Content table 3 (http://links.lww.com/ALN/
C177).
Feature Importance. Supplemental Digital Content figure 3 
(http://links.lww.com/ALN/C176) shows the top 30 most 
important variables of the random forest model for a sin-
gle random split of the data. The majority of the top 30 
variables were maximum delta and indicator variables asso-
ciated with a variety of lab subtypes. In addition to the lab-
based features, the top 30 for the random forest model also 
included length of stay, the relative time to surgery, and the 
duration of surgery. Supplemental Digital Content figures 4 
and 5 (http://links.lww.com/ALN/C176) similarly shows 
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the top 30 variables of the gradient boosted tree model and 
the regularized logistic regression model, respectively.
Predischarge versus Postdischarge Prediction. Supplemental 
Digital Content figure 6 (http://links.lww.com/ALN/
C176) shows how the area under the curve varies as the 
parameter T, which determines when the prediction is to 
be made beyond the start of surgery, varies. As T increased, 
all three models improved and plateaued after T = 1.5 days. 
After T =1.5 days (i.e., 36 h after the start of surgery), the 
area under the curve values were comparable with those 
achieved when making the prediction after discharge.
External Validation Using the Santa Monica Hospital Data. We 
applied the same methodology as the Ronald Reagan 
Medical Center to the Santa Monica Hospital. We extracted 
data from 19,650 surgical admissions at the Santa Monica 
Hospital from the same time span. After removing organ 

donors (18 admissions), the resulting 19,632 admissions 
constituted our complete Santa Monica Hospital data set. 
Of these, 820 (4.2%) admissions had an emergency depart-
ment readmission and met our endpoint definition.

We divided the data into a training and testing set 
according to a 70-30 split. After training on 70% of the 
data, the test set contained 5,890 admissions resulting in 246 
readmissions via the emergency department (see the Santa 
Monica Hospital Consolidated Standards of Reporting 
Trials diagram in Supplemental Digital Content figure 7, 
http://links.lww.com/ALN/C176). We trained the same 
three machine learning models using only the general data, 
and using both the general and lab data. The model results 
with the general and lab data were nearly identical to those 
for the Ronald Reagan Medical Center, with area under the 
curve values in the 0.86 to 0.88 range (table 4). In addition, 
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we also used the data to train and evaluate models for pre-
discharge prediction, analogously with the Ronald Reagan 
Medical Center. The area under the curve as a function of 
the cutoff parameter T is shown in Supplemental Digital 
Content figure 8 (http://links.lww.com/ALN/C176). This 
figure is consistent with Supplemental Digital Content fig-
ure 6 (http://links.lww.com/ALN/C176) for the Ronald 
Reagan Medical Center, showing that high area under the 
curve values can be obtained as soon as 36 h after surgery.
Temporal Validation at the Ronald Reagan Medical Center Using 
2017 to 2018 Data. We extracted 19,343 admissions from 
the Ronald Reagan Medical Center in the period 2017 to 
2018. Of these, 12 were removed because of organ donor 
status, leaving 19,331 admissions eligible for analysis. Within 
this set of admissions, 969 (5.0%) met our endpoint defi-
nition of an emergency department readmission. We con-
sidered all of our machine learning models built using the 

general and lab-based features, as this combination of fea-
tures led to the best predictive performance when tested on 
2013 to 2016 data. We evaluated the area under the curve 
of each such model when used to predict on admissions 
in 2017 to 2018. We also evaluated the positive predictive 
value and negative predictive value for a probability cutoff 
of 0.20. The results are shown in tables 5 and 6. These results 
were consistent with our earlier evaluation using 2013 to 
2016 data (table 3), with all of our models achieving area 
under the curve values in the 0.85 to 0.88 range. In general, 
one would expect a model to perform worse in temporal 
validation, because observations in the future may behave 
differently from those in the training and testing data (for 
example, due to changes in operations or patient mix 
enacted since 2016). The consistency between our tempo-
ral validation results and our earlier results for 2013 to 2016 
suggests that admissions in 2017 to 2018 behave similarly to 
those in 2013 to 2016. All three models achieved positive 
predictive values in the range of 0.20 to 0.40, with negative 
predictive values greater than 0.96. We note that the low 
positive predictive values are to be expected, due to the 
low emergency department readmission rate in the data. L1 
logistic regression and gradient boosted trees achieve higher 
positive predictive values than random forest, at the cost of a 
slightly reduced negative predictive value. This is consistent 
with our calibration results (Supplemental Digital Content 
figure 2, http://links.lww.com/ALN/C176), which sug-
gest that random forest often overestimates the readmission 
probability. As in our previous results, gradient boosted trees 
and random forest did not exhibit an edge over L1 logis-
tic regression, despite their ability to automatically model 
interactions and nonlinearities.

discussion
Our analysis of this data furnishes us with two key insights 
about prediction of emergency department readmission 
in postoperative patients. First, all of the machine learning 
models achieve high discrimination. Irrespective of which 
specific model is chosen, all of the models achieved out-of-
sample area under the curve values in the 0.85 to 0.87 range 
using general demographic data, surgical data, and basic lab 
data. Most prior work in predicting readmissions in general 
medical patients achieved area under the curve values in the 
0.6 to 0.7 range,4 with HOSPITAL and LACE achieving 
area under the curve values of 0.72 and 0.68 in previous 
work, respectively.9,30 Second, we find that there is virtually 
no loss in performance if our models are restricted to using 
data available within 36 h after the completion of surgery. 
This suggests that our models could be used to identify 
patients that are at high risk of readmission while still in the 
hospital and soon after the surgical procedure.

It is important to emphasize the difference in the defini-
tion of unplanned readmission between this article and the 
Center for Medicare and Medicaid Services. Our predic-
tion models are able to identify patients that are readmitted 

table 1. Summary of admission Characteristics in Complete 
University of California Los angeles Ronald Reagan Medical 
Center Data Set

admissions 34,532
Emergency department readmissions 1,942 (5.6%)
admissions with more than one emergency department 

readmission
20 (0.0%)

Maximum number of emergency department readmissions 
per admission

2

age 55 ± 17
american Society of anesthesiologists score  
 I 2,328 (6.7%)
 II 11,668 (33.8%)
 III 16,964 (49.1%)
 IV 3,395 (9.8%)
 V 171 (0.5%)
 Na 6 (0.0%)
admissions with primary diagnosis-related group code 25,730 (74.5%)
Number of surgery common procedural terminology codes 3 ± 2
Number of diagnosis-related group codes 4 ± 3
Number of admissions in previous year 1 ± 1
Surgical information*  
 Total blood loss, ml 252 ± 1007
 Total fluids transfused, ml 1,565 ± 1445
 Total colloid transfused, ml 920 ± 1102
 Total blood transfused, ml 137 ± 1012
 Duration of anesthesia, min 251 ± 168
Hemodialysis, n admissions 600 (1.7%)
Tracheostomy  
 yes 615 (2.4%)
 No 3,910 (15.24%)
 Na 29,976 (86.8%)
Mechanical ventilation, n admissions 4,523 (17.6%)
Duration of mechanical ventilation,* min 6,388 ± 16099
 Length of stay, h 150 ± 324
Disposition  
 Home or self care 25,789 (74.7%)
 Home health service 5,773 (16.7%)
 Skilled nursing facility 1,566 (4.5%)
 Other 1,404 (4.1%)

Values are reported as either number of admissions (% of total data set) or as mean 
± SD. For variables or groups of variables marked with *, the mean and SD are taken 
over observations with nonmissing values for those variables.
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into the hospital via the emergency department irrespec-
tive of the cause. We believe that focusing on emergency 
department readmissions is more appropriate because such 
readmissions are unplanned in nature and costly. This is in 
contrast to the definition of unplanned readmission by the 

Center for Medicare and Medicaid Services and Horwitz 
et al.32 Their definition of unplanned readmission excludes 
special cases such as transplanted patients and those under-
going chemotherapy. This highlights the clinical orienta-
tion of this article rather than compliance to administrative 
workflows.

Choosing a Model

Interestingly, we do not find a significant difference 
between the three machine learning models. In particular, 
L1 regularized logistic regression obtained comparable per-
formance to both random forest and gradient boosted trees. 
As compared with logistic regression, tree ensemble models 
have the advantage of being able to model nonlinear rela-
tionships and automatically incorporate interactions among 
a large number of features to extract accurate predictive 
models. Our results suggest that this level of flexibility is not 
necessary for modeling emergency department readmission 
risk.

We emphasize here that L1 regularized logistic regres-
sion is different from ordinary logistic regression, as we 
discussed in the Materials and Methods section. We found 
that in ordinary logistic regression, the estimation proce-
dure would over fit on the training set and would produce 
grossly inaccurate test set predictions (for example, the aver-
age test set area under the curve with the general and labs 
data was 0.77, with a standard error of 0.04).

The main characteristic of the models that is crucial to 
the success of our approach is their ability to avoid overfit-
ting in the presence of large numbers of features. Because 
of limitations of classical logistic regression, traditional 
approaches to developing risk models require significant 
manual input and expertise to filter out unnecessary fea-
tures, and advocate for soft limits on the number of features, 

table 2. Summary of Lab Data for Complete University of California Los angeles Ronald Reagan Medical Center Data Set

Lab type number of Subtypes number of admissions abnormal definition average delta Maximum delta

Bilirubin, mg/dl 7 2,819 > 1.2 7.2 104.1
Creatinine, mg/dl 5 7,128 > 1.3 1.8 25.1
Glucose, mM 19 24,613 < 65 or > 100 55 1,172
Hematocrit, % 5 18,228 < 35 7.6 34.5
Hemoglobin, g/dl 14 16,199 < 11 2.2 9.6
INR 9 4,718 > 1.3 0.9 148.7
Pco

2, mm Hg 12 6,788 > 42 9 2,686
Platelet count, 103/μl 4 8,222 < 143 59 142
Po2, mm Hg 12 7,632 < 98 36 88
Potassium, mM 10 11,837 < 3.6 or > 5.3 0.4 401.7
Sodium, mM 10 11,953 < 135 or > 145 3.7 131.2
Urea nitrogen, mg/dl 9 9,612 > 22 21 186
White blood cells, 103/μl 3 19,037 < 4 or > 10 4.3 242.1

The second column indicates the number of subtypes of each lab. The third column indicates the number of admissions in the overall data set for which a lab of the given type was 
drawn. The last three columns indicate how abnormal values of the lab are defined, what the average deviation from normal is, and what the maximum deviation from the normal 
range is. The average and maximum of the deviations are taken only over abnormal lab values. The subtype refers to a unique identifier assigned to labs that changes based on 
ordering methodology (i.e., order as a standalone element or as part of a panel) and laboratory location. Clinicians using the EPIC medical record system are blinded to the subtype 
being ordered/reviewed.

table 3. Test Set area under the Curve and Brier Score for 
Postdischarge Prediction at the University of California Los 
angeles Ronald Reagan Medical Center

data Method
area under  
the curve

Brier  
Score

all HOSPITaL 0.735 ± 0.009 0.051 ± 0.000
 LaCE 0.732 ± 0.003 0.051 ± 0.000
general L1 Logistic Regression 0.759 ± 0.007 0.050 ± 0.000
 Random Forest 0.744 ± 0.009 0.051 ± 0.000
 Gradient Boosted Trees 0.760 ± 0.006 0.050 ± 0.000
general + labs L1 Logistic Regression 0.865 ± 0.005 0.045 ± 0.000
 Random Forest 0.864 ± 0.006 0.045 ± 0.000
 Gradient Boosted Trees 0.866 ± 0.006 0.045 ± 0.000
general + meds L1 Logistic Regression 0.765 ± 0.007 0.050 ± 0.000
 Random Forest 0.746 ±0.008 0.050 ± 0.000
 Gradient Boosted Trees 0.764 ± 0.005 0.050 ± 0.000
general + teams L1 Logistic Regression 0.758 ± 0.007 0.050 ± 0.000
 Random Forest 0.748 ± 0.009 0.050 ± 0.000
 Gradient Boosted Trees 0.759 ± 0.006 0.050 ± 0.000
general + cpt L1 Logistic Regression 0.764 ± 0.006 0.050 ± 0.000
 Random Forest 0.748 ± 0.010 0.050 ± 0.000
 Gradient Boosted Trees 0.762 ± 0.007 0.050 ± 0.000
general + labs L1 Logistic Regression 0.866 ± 0.006 0.045 ± 0.000
 + meds + teams Random Forest 0.860 ± 0.007 0.046 ± 0.000
 + cpt Gradient Boosted Trees 0.867 ± 0.007 0.045 ± 0.000

The area under the curve and Brier score values reported are averaged over the ten 
random splits of the data; mean ± SD. Under Data, general corresponds with the 
general surgical/health and demographic features; labs corresponds with the lab-
based features; meds corresponds with the medication features; teams corresponds 
with the consulting team features; and cpt corresponds with the common procedural 
terminology features.
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such as the one-in-ten rule of not using more than one fea-
ture per ten events in the data, so as to avoid overfitting.33–35 
Machine learning methods, in contrast, are able to automat-
ically handle large number of features and extract accurate 
predictive models without overfitting, thereby letting the 
data speak. Fortunately, there are many available resources 
for physicians to learn more about different machine learn-
ing fundamentals and techniques.36–38

Study Limitations

In this study, there were a few limitations that are inherent 
in these types of retrospective, machine learning projects. 
First, we have little insight into the reason for hospital read-
mission. Although we have created a model to predict that a 
patient will come back to the emergency room in 30 days, 
there is no information about how to possibly prevent the 

table 4. Test Set area under the Curve and Brier Score for 
Postdischarge Prediction at the University of California Los 
angeles Santa Monica Hospital

data Method
area under  
the curve

Brier  
Score

general L1 Logistic Regression 0.777 ± 0.013 0.038 ± 0.000
 Random Forest 0.762 ± 0.010 0.038 ± 0.000
 Gradient Boosted Trees 0.773 ± 0.014 0.038 ± 0.000
general + labs L1 Logistic Regression 0.865 ± 0.009 0.037 ± 0.001
 Random Forest 0.875 ± 0.009 0.036 ± 0.000
 Gradient Boosted Trees 0.877 ± 0.007 0.036 ± 0.000

The area under the curve and Brier score values reported are averaged over the 
ten random splits of the data; mean ± SD. Under Data, general corresponds with 
the general surgical/health and demographic features and labs corresponds with 
the lab-based features.
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Fig. 3. L1 regularized logistic regression, random forest, and gradient boosted tree model were trained using general and labs features, for 
a single random split of the data. The precision and recall are computed from the test set. For comparison, the curves for the HOSPITaL (low 
hemoglobin at discharge, discharge from an oncology service, low sodium at discharge, [International Classification of Disease, ninth revision, 
clinical modification coded] procedure during hospital stay or not, index admission type is elective or not, number of admissions in previous 
year, and length of stay) and LaCE (length of stay, acuity, comorbidity, emergency department use) scores are also shown.
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admission. Although there is a significant body of research 
that tries to address common risk factors associated with 
unplanned readmission, our models are unable to offer any 
insight into its decision making rationale. This is further 
complicated by the use of a deidentified research dataset. 
With future integrations with clinical workflows, better 
identifying patient characteristics (i.e., ZIP code as a sur-
rogate for socioeconomic status) can be used to identify 
factors that are easier for clinicians to identify in practice.39

Second, our electronic health record system only cap-
tures readmission to the University of California Los 
Angeles Health System. Any outside readmission would not 
be entered into our institution’s electronic health record 
system and thus be invisible to the model. EPIC does have 
CareEverywhere, a cross-institution platform, and there are 
local Accountable Care organization payor databases, but 
these options were beyond the scope of this study.

Third, as discussed in the Material and Methods sec-
tion, our definition of an unplanned emergency depart-
ment–based postoperative readmission strays from the 
actual definition used by the Center for Medicare and 

Medicaid Services. The need for the deviation stems from 
our inability to replicate the work done by the third-party 
vendors that our institution uses to calculate the reported 
readmission rate. One would need proprietary algorithms 
to further evaluate whether a given patient has an illness 
or underwent a surgical procedure that exempts them from 
being an infraction. Despite this limitation, we aligned with 
this standard readmission definition to the extent of our 
ability.

Finally, our models are scalable to other institutions that 
have the capability to replicate the necessary general and 
lab data sets with computer scientists able to implement 
machine learning techniques. However, this would not be a 
simple out-of-the box type of implementation; there would 
be a necessary retraining/recalibration process for each 
individual site that requires some level of machine learn-
ing proficiency. Although this process is not as intensive as 
the process of gathering the perfect dataset, it demonstrates 
the hospital-specific nature of hospital readmissions. When 
implementing the models using the Santa Monica Hospital 
data for validation, we consumed 70% of the available data 

table 5. Temporal Validation Results for Postdischarge Prediction at the University of California Los angeles Ronald Reagan Medical 
Center Data

Period Method area under the curve Positive Predictive value negative Predictive value

2017–2018 L1 Logistic Regression 0.859 ± 0.003 0.354 ± 0.016 0.964 ± 0.002
2017–2018 Random Forest 0.856 ± 0.002 0.225 ± 0.008 0.975 ± 0.001
2017–2018 Gradient Boosted Trees 0.866 ± 0.003 0.311 ± 0.013 0.968 ± 0.001
2017 L1 Logistic Regression 0.858 ± 0.002 0.328 ± 0.015 0.966 ± 0.002
2017 Random Forest 0.851 ± 0.002 0.212 ± 0.006 0.976 ± 0.001
2017 Gradient Boosted Trees 0.862 ± 0.003 0.290 ± 0.015 0.970 ± 0.001
2018 L1 Logistic Regression 0.862 ± 0.004 0.387 ± 0.021 0.961 ± 0.001
2018 Random Forest 0.862 ± 0.002 0.239 ± 0.009 0.973 ± 0.001
2018 Gradient Boosted Trees 0.871 ± 0.004 0.336 ± 0.013 0.967 ± 0.001

The models used correspond to the general and labs features. The column labeled Period indicates which years of data are used in the temporal validation (2017 only, 2018 only, 
or both 2017 and 2018). all metrics reported are averaged over the ten models corresponding to the ten random splits of the 2013–2016 data (i.e., no model recalibration was 
performed), mean ± SD.

table 6. Temporal Validation Results for Predischarge Prediction at 36 h after Surgery Completion at the University of California Los 
angeles Ronald Reagan Medical Center

Period Method area under the curve Positive Predictive value negative Predictive value

2017–2018 L1 Logistic Regression 0.877 ± 0.005 0.309 ± 0.016 0.972 ± 0.002
2017–2018 Random Forest 0.877 ± 0.002 0.230 ± 0.009 0.980 ± 0.001
2017–2018 Gradient Boosted Trees 0.878 ± 0.004 0.283 ± 0.014 0.975 ± 0.001
2017 L1 Logistic Regression 0.873 ± 0.004 0.288 ± 0.017 0.973 ± 0.002
2017 Random Forest 0.875 ± 0.002 0.220 ± 0.010 0.981 ± 0.001
2017 Gradient Boosted Trees 0.875 ± 0.005 0.265 ± 0.017 0.976 ± 0.001
2018 L1 Logistic Regression 0.882 ± 0.006 0.332 ± 0.016 0.971 ± 0.002
2018 Random Forest 0.880 ± 0.002 0.241 ± 0.009 0.979 ± 0.002
2018 Gradient Boosted Trees 0.882 ± 0.004 0.304 ± 0.013 0.974 ± 0.001

The models used correspond to the general and labs features. The column labeled Period indicates which years of data are used in the temporal validation (either 2017 only, 2018 
only, or both 2017 and 2018). The metrics reported are averaged over the ten models corresponding to the ten random splits of the 2013–2016 data (i.e., no model recalibration was 
performed), mean ± SD.
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for training. This would imply that any future institutions 
would need a few thousand patients already extracted to 
fine-tune the chosen model. After that initial process, there 
would be optional recalibration to improve performance, 
but that would not be a mandate.

In summary, this work demonstrates the ability of 
machine learning techniques to produce clinically use-
ful models for predicting readmissions via the emergency 
department in surgical patients from electronic health 
record data. We have shown that predictions with high dis-
crimination can occur as soon as 36 h after the comple-
tion of surgery, giving time for intervention teams to apply 
readmission reduction strategies.1 Although this process has 
only been implemented using retrospective data, a natural 
next step for future research is to implement this process in 
real time, and quantify the benefits of guiding interventions 
using machine learning.
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