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Abstract. Problem definition: We analyze a catalyst-activated batch-production process
with uncertainty in production times, learning about catalyst-productivity characteristics
and decay of catalyst performance across batches. The goal is to determine the quality level
of batches and to decide when to replenish a catalyst so as to minimize average costs,
consisting of inventory-holding, backlogging, and catalyst-switching costs. Academic/
practical relevance: This is an important problem in a variety of process-industry sectors,
such as food processing, pharmaceuticals, and specialty chemicals, but has not been
adequately studied in the academic literature. This paper also contributes to the stochastic
economic lot-sizing literature. Methodology: We formulate this problem as a semi-Markov
decision process (SMDP) and develop a two-level heuristic to solve this problem. The
heuristic consists of a lower-level problem that plans the duration of batches within the
current campaign to maximize the efficiency of the catalyst while ensuring that the target
attribute level for each batch is set to meet a quality specification represented by an average
attribute level across all the batches in a campaign. The higher-level problem determines
when to replace the costly catalyst as its productivity decays. To evaluate our heuristic, we
present a lower bound on the optimal value of the SMDP. This bound accounts for all costs,
as well as the randomness and discreteness in the process. We then extend our methods to
multiple-product settings, which results in an advanced stochastic economic lot-sizing
problem. Results: We test our proposed solution methodology with data from a leading
food-processing company and show that our methods outperform current practice with an
average improvement of around 22% in costs. In addition, compared with the stochastic
lower bounds, our results show that the two-level heuristic attains near-optimal perfor-
mance for the intractable multidimensional SMDP. Managerial implications: Our results
generate three important managerial insights. First, our simulation-based lower bound
provides a close approximation to the optimal cost of the SMDP, and it is nearly attainable
by using a relatively simple two-level heuristic. Second, the reoptimization policy used in
the lower-level problem adequately captures the value of information and Bayesian
learning. Third, in the higher-level problem of choosing when to replace a catalyst, the
intractable multidimensional state of the system is efficiently summarized by a single
statistic: the probability of inventory falling below a specific threshold.

Funding: H. Jahandideh thanks the Easton Center for Technology at the UCLA Anderson School of
Management for funding support.
Supplemental Material: The online appendix is available at https://doi.org/10.1287 /msom.2018.0766.
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1. Introduction

individual reactor is used for a variety of products,

Batch-production processes typically use a reactor
to convert a base product into another, more refined
product across a wide range of process industries
(Korovessi and Linninger 2005). For example, sor-
ghum is refined into sorbitol in a reactor; grain slurry
is distilled into spirits in a still; chemical compounds
are converted into a pharmaceutical drug such as
interferon in an autoclave; and iron ore is processed
into steel in a furnace. In batch manufacturing, as
opposed to discrete production, batch size is de-
termined by the capacity of the reactor. Because an
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each with different characteristics, batch size tends
not to be optimal for any one product. To mitigate the
suboptimality of the reactor size, multiple batches of the
same product are run in sequence (in what is called a
campaign), in essence approximating the optimal batch
size. Running a lengthy campaign of an individual
product has two material effects: one beneficial and the
other costly. The pooling of the batches in a campaign
reduces the variation in the quality specification of
the individual batches, which is beneficial; the longer
the campaign, the lower is the variation. By contrast, the
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running of a lengthy campaign of one product requires
storage of these batches, larger inventories of the other
products (increasing holding costs), or shortages (in-
curring backorder costs).

In several batch-production processes, catalysts are
used to control the characteristics of production. Catalyst-
activated batch-production processes are found in food
processing, specialty chemicals, oil segregation, phar-
maceuticals, and biotech manufacturing processes. Spe-
cificexamples of different types of catalyst-activated batch
processes include (1) purification and segregation, such
as degradation of diclofenac in water (Hofmann et al.
2007), (2) multiphase reactions in fine chemicals and
pharmaceuticals (Mills and Chaudhury 1997), (3) cat-
alytic cracking processes such as in ethylene pro-
duction (Jain and Grossman 1998, Keller et al. 2010),
(4) homogeneous and heterogeneous alkali-catalyzed
batch processes for biodiesel production (Sakai et al.
2009), and (5) reactive batch distillation for fuel com-
ponents such as oxygenates (Korovessi and Linninger
2005). A more technical classification of reaction pro-
cesses based on the type of catalysis and the type of phases
involved is provided by Mills and Chaudhury (1997).

Across all these industrial applications of catalyst-
activated processes, the primary role of the catalyst is
to help the reactor modify the product and achieve a
target attribute level in a given batch. This target
attribute level could represent the concentration of a
chemical formed as a by-product during the reaction
(Molnar-Peril et al. 1990) or physical characteristics
such as density or viscosity. Because of the decay of
the catalyst, the producer has to switch to a new cata-
lyst at some point and incur the associated switchover
costs. These include the costs of cleaning the reactor and
replacing the costly catalyst and other reagents that
regulate the reaction. Typically, because of small dif-
ferences in the composition of the catalyst, the initial
productivity of a new catalyst is not known but is a
random value drawn from a known distribution esti-
mated from historical data. One needs to observe the
time it takes to achieve a target attribute level in a given
batch to estimate the productivity of the catalyst. Such
observations are noisy because they can be affected
by even small unpredictable deviations (or random
shocks) in the initial conditions of the reaction such
as temperature, pressure, quantity, and quality of the
batch. These noisy observations can be used to update
the estimate of the catalyst productivity through
Bayesian updating. Although the type of reactor, nature
of the catalyst, and composition of the batch will vary
by industry, the decisions from a planning perspective
in catalyst-activated batch processing are the same.
They consist of determining the duration of the
batches and deciding when to replenish a catalyst so
as to minimize the expected average costs (consisting
of inventory-holding, backlogging, and catalyst-

switching costs). This is done while making sure that
the target attribute level for each batch is set to meet a
quality specification represented by an average attri-
bute level across all the batches in a campaign.

Our work was motivated by the batch-production
processes at a multinational food-processing corpo-
ration and, in particular, the company’s production of
sorbitol and modified starches. These products, once
produced, become raw material inputs into other
downstream production processes. These products
are commodities—their price and quality specifica-
tions are set by the market. The reactor needs to be
operated precisely to attain the required quality spec-
ification, and production planning needs to be managed
carefully to reduce costs. As noted earlier, managing
the costs usually entails running a sequence of batches
of a single product in a campaign. Although lengthy
campaigns increase holding costs and the likelihood of
backorder costs, they reduce the switchover costs in-
curred between campaigns. Because prices are set by
the market, profitability results from minimizing the
sum of these costs.

The mathematical models presented in this paper
are drawn from two examples of catalyst-activated
batch-production processes at the company men-
tioned previously. We chose these examples because
these processes were fairly prevalent across this in-
dustry, and the products manufactured at these pro-
cesses contributed to a large fraction of the firm’s
profits. In the first example, we consider the pro-
duction of sorbitol manufactured to a specific attri-
bute level in a catalyst-activated reactor. The sorbitol
is then used as the raw material in a capital-intensive
downstream refining process that purifies the sorbitol
to meet the quality specifications of customers from
cosmetics and pharmaceutical industries. Because the
downstream refinery is operated at a known pro-
duction rate, the demand for the upstream sorbitol
process (which is our focus) can be taken to be equal to
this known downstream production rate. Addition-
ally, the backlogging cost for the sorbitol process is
specified by the refinery to reflect the cost of not
adequately meeting their customer demand. How-
ever, these backlogging costs need not capture the
very expensive costs of refinery shutdowns. This is
because the refinery is designed to “idle” with the
work in process if there are temporary shortages
in inputs. The single-product version of the model is
based on the sorbitol production process. The second
example considers the manufacturing of modified
starches. Here different types of modified starches are
produced one at a time in a single reactor to meet the
quality specifications by customers from other food-
processing industries, who use these starches s inputs
in their manufacturing processes. Here, again, de-
mand for the modified-starch production process is
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known by detailed downstream customer contracts,
which also specify the per-unit penalty or backlogging
costs of unmet demand. The multiproduct version of
the model is motivated by the modified-starches pro-
duction process.

Although sorbitol and modified starch are different
products manufactured in two dissimilar catalyst-
activated batch-production processes, the goal of
the planning model at each process is to determine the
duration of the batches and decide when to replen-
ish a catalyst so as to minimize expected costs and
meet the quality specification. As we learn about
the decay of the productivity of the catalyst and use
this in planning, we effectively consider a produc-
tion campaign planning model under learning and
decay. Furthermore, in both these settings, because
the downstream processes often have stages with
biological or chemical reactions, there is variability in
the production rate of these processes (Rajaram et al.
1999). To manage such variability, buffers are in-
stalled between the upstream and downstream pro-
cesses (Rajaram and Tian 2009). When demand in the
upstream process is set assuming a constant down-
stream production rate and when in reality there is
variability in this production rate, buffers store the
inventory that would exist between the processes in
the interim. Thus, in effect, the buffers decouple the
impact of production variability in the downstream
process from the output of the upstream processes.
In light of this, and because demand is known in
both the sorbitol and modified-starch processes, we
will assume that demand is deterministic in the
corresponding models. This assumption could also be
reasonable in other process-industry settings, where the
outputs of these catalyst-activated batch processes are
intermediary products used as inputs to downstream
processes, and there are buffers decoupling these
processes.

We formulate the single-product batch-production
planning problem with learning and decay as a semi-
Markov average-cost model. To make this tractable,
wedevelop a two-level heuristic that decomposes and
solves this problem in two levels. The lower-level
problem plans the duration of batches within the
current campaign to maximize the efficiency of the
catalyst while satisfying the target attribute level for
each batch. The higher-level problem is a binary
decision after each batch: whether to end this cam-
paign and switch to a new catalyst. The lower level is
formulated as a stochastic dynamic programming
problem, similar to the Bayesian decision model by
Mazzola and McCardle (1996), which had a pro-
duction learning curve (as opposed to our decay
curve). Despite the similarities of the models, our
problem has an additional constraint (the average
attribute-level constraint), which adds one more

dimension to the state space. Therefore, we adopt a
reoptimization policy that relies on learning to take
care of itself and show that it has near-optimal per-
formance. The higher-level problem is to design a
control policy mapping the state space to a binary
control variable—changing the catalyst or continu-
ing. The objective is to minimize the average costs
(switchover, backlogging, and inventory). The state
space consists of the current inventory level, current
consumption of the catalyst (measured by the total
time the current catalyst has actively been used to
produce batches), and the current belief regarding the
catalyst productivity parameter. Solving for an op-
timal mapping from the state space to the decision
variable is intractable. We propose a policy to ap-
proximately solve this problem. To evaluate the
performance of the two-level heuristic, we obtain a
lower bound on the optimal performance of the
original integrated decision process. This bound si-
multaneously accounts for costs, randomness, and
the discrete nature of the process. We also compare
the performance of our heuristic with the fixed-cycle
policy that is currently practiced by this company.

We then extend our model to consider the multi-
product case with uncertainty in production times.
This can be regarded as a stochastic economic lot
scheduling problem (SELSP) with fixed batch sizes,
learning, and decay. Because of the complexity of this
problem, we solve this using a dynamic two-level
heuristic. Vaughan (2007) compares dynamic versus
cyclic policies for SELSP problems and shows that, in
many cases, cyclic policies perform better than dy-
namic policies. However, in our context, cyclic poli-
cies suffer from delayed reaction toward backlogged
demand. Therefore, a dynamic policy is needed to
recognize and attend to the critical product that would
otherwise cause large backlogging costs. The multi-
product version of the two-level heuristic is bench-
marked with a practitioner’s heuristic used by this
company. We also develop a lower bound on this prob-
lem to evaluate the performance of these heuristics.

The remainder of this paper is organized as follows.
In the next section, we review the relevant literature
and state our contributions. We then formulate the
single-product problem as a semi-Markov decision
process (SMDP) in Section 3, followed by lower
bounds on the optimal cost of the SMDP in Section 4.
In Section 5, we present our solution methodology
based on a two-level heuristic that involves decom-
posing the problem into two levels of decision
making. To benchmark the two-level heuristic, we
also provide a practitioner’s heuristic that is currently
employed at this company. We extend our method-
ology to the multiple-product case in Section 6. In
Section 7, we compare the performance of the heu-
ristics and lower bound on real factory data and
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present managerial insights. Conclusions and future
research directions are provided in Section 8.

2. Literature Review

The literature related to our work can be classified
by problem type: single product and multiproduct.
The single-product problem is related to the single-
item SELSP. The literature considers uncertainty
in this problem owing to demand (Federgruen and
Katalan 1996), yield (Grasman et al. 2008), and quality
(Papachristos and Konstantaras 2006). Levi and Shi
(2013) review a wide selection of the single-item
SELSP literature, many of which show that (s,S)
policies are optimal under specific problem config-
urations. In our problem, (s, S) policies are not feasible
because, depending on the current catalyst produc-
tivity and the decaying nature of the catalyst, it may
not be possible to produce up to S. Another important
feature of our problem is that we learn about the
current productivity of the catalyst by observing the
performance in previous batches. This learning is used
to predict catalyst performance and production times
of future batches.

The relevant literature for multiproduct models
includes work on the SELSP (Winands et al. 2011) and
economic lot-sizing models under production decay
in the chemical engineering literature (Casas-Liza
et al. 2005, Liu et al. 2014, Vieira et al. 2017). An im-
portant dimension in this paper is that it incorpo-
rates production decay into the SELSP in both the
single and multiproduct problems, an aspect not
considered in the operations management literature.
In addition, this literature has not considered pro-
duction decay, even in the deterministic economic lot-
sizing problem (ELSP). Although the chemical engi-
neering literature has considered the deterministic
ELSP with production decay, this stream does not
consider uncertainty in the decay process and Bayesian
learning to use this aspect in production campaign
planning. Furthermore, this work does not address the
structural properties of this problem, and the attempted
problems are tractable enough to be solved with off-
the-shelf mixed-integer programming methods. To
the best of our knowledge, ours is the first paper
to consider all of this together in a SELSP with un-
certain production decay.

In terms of solution methods for the SELSP, dynamic
approaches to solve the SELSP include Rajaram and
Karmarkar (2002), Dusonchet and Hongler (2003),
and Wang et al. (2012). In terms of application,
Rajararam and Karmarkar (2004) also consider a
campaign-planning problem applied to the food-
processing industry. None of the methods used in these
papers can be used to solve the problem considered in
this paper because of batching, learning across batches,
and decay in performance of the catalyst.

In this context, our paper makes the following
contributions. First, to the best of our knowledge, this
is the first paper to consider the campaign-planning
problem under production time uncertainty, learn-
ing, and decay. As discussed previously, this is an
important problem that has not been adequately
studied in the academic literature. Second, we for-
mulate this problem as a semi-Markov decision
process, incorporating key aspects of this problem
that include uncertainty in production time, learning
about productivity characteristics, and decay in cat-
alyst performance. Third, we develop efficient, near-
optimal solution methods to solve this problem. In
addition, our approach to find lower bounds by as-
sociating a continuous-state-space dynamic pro-
gramming problem with a similar but regenerative
process can be applied to other stochastic dynamic
programming problems. Fourth, we validate our
model and solution methods with real data from the
process industry. Fifth, we provide several insights
that could be useful for practitioners in other indus-
tries with a similar production setting.

3. Model Formulation
Consider a batch-production process in which the
present state of the production system is defined by the
current inventory level and the state of the catalyst
currently in use (to be explained in further detail). Based
on this information, the firm must decide whether to
replace the current catalyst and start a new campaign or
to produce another batch with the current catalyst and
determine the attribute level of the next batch. We
denote the current inventory level as [ and treat it as a
continuous variable. For ease of exposition and without
loss of generality, we measure inventory as batches and
assume that the batch size is equal to 1. That is, in-
ventory replenishes by discrete counts but depletes
continuously with a constant per-unit-time demand.
We define the following parameters and variables:

Parameters:

d: constant demand rate (batches/unit time).

Cp: backlogging cost ($/batch/unit time).

Cr: finished product inventory holding cost
($/batch/unit time).

Cs: cost of changing a catalyst ($).

Co: cost of ending a campaign prematurely ($).

ts: switchover time required to change a catalyst
(unit time).

q%: initial attribute level of batch i (normalized,
dimensionless stochastic parameter).

q": vector of initial attribute levels of all batches
produced by a catalyst.

Stochastic variables:

b: inverse productivity parameter of a catalyst.

z;: random shock observed by the catalyst while
producing batch i.
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z = [z1,2y, . ..,2N]: combining the z; values of a cam-
paign into one vector.

Decision variables:

N:number of batches produced by a catalyst—that
is, the length of a campaign.

gi: the target attribute level of the ith batch in a
campaign (normalized, dimensionless).

The decision variables imply the following inter-
mediary variables:

q=1[91,92,...,q9n]: vector of target attribute levels
of all batches produced by a catalyst.

Qi = XiZ1 g5+ sum of all target attribute levels up to
the beginning of batch i.

t;: time spent by batch 7 in the reactor (unit time/
batch).

T; = 21 t;: total consumption of the catalyst up to
batch i (unit time).

We define the following functions:

y(b): a density function representing the current
belief distribution over possible values of the pa-
rameter b. The initial prior belief is yo(b).

1(q,q°% b,z): time spent on a catalyst with pro-
duction schedule q, initial attribute levels q°, and
inverse productivity b. Takes random values based on
the realizations of the random shocks z; (unit time).

T*(N): expected optimal time it would take to pro-
duce N batches in a campaign, given full informa-
tion on b and z (unit time).

g(I,7): total inventory-holding and backlogging
cost during time length t, where the inventory level
starts at [ and ends at I — td (unit cost).

In catalyst-activated batch processes, t;, the pro-
cessing time for batch 7, is determined by the con-
sumption of the catalyst, the productivity of the
catalyst, and the target attribute level (Steinfeld et al.
1989). To find the exact form of ¢;, one needs to solve
the differential equation defining the chemical re-
action. Employing the formulation by Steinfeld et al.
(1989), we get

ti = k(T;)(b + z)f (q:)- (1)

Here k(T;) is a monotone increasing function of the
total consumption of the catalyst T;. The inverse
productivity b + z; consists of two components: The
first component b is the catalyst-specific inverse pro-
ductivity, which, for each catalyst, is drawn from a
known distribution with mean y;, and variance o7; it
only takes positive values. The second component z; is
the batch-specific random shock, representing the
randomness in the initial conditions of the reaction;
these are independent and identically distributed
variables with mean zero and a known distribution.
We assume that b + z; is always positive. Finally, f(g;)
is a convex decreasing function capturing the struc-
ture of the chemical reaction. Givenf(:), we can use (1)

to express the target attribute level of a batch i as a
function of the time t; it spends in the reactor as

- ti
=1 ) @

For example, if k(T;) = T;+1 and f(q;) = —In(q:/q?)
(Weekman 1968), the relation between g and t would
take the form

ti
gi = q?exp(— (T,+1)(b+z,)) 3)

The decision to be made prior to placing the next
batch inside the reactor is to either choose a target
attribute level g,4+1 for the next batch or to end the
current campaign and replace the catalyst. We do not
allow the option of removing a batch before meeting
the target attribute level.

The belief distribution y(b) is updated by observing
the pair (t;, q;)|T; after each batch. At the end of the
campaign and after replacing the catalyst, the new
inventory level will be

I'=1-(t(q,q°b,2) +t)d+N. )

Because of the randomness of b and z;, the new state
(I') will be a random function of the old state (I) and
the vector of actions g; summarized in q. The cam-
paign time t(q, q°, b, z) is also a random function of q.
The cost of this transition is the inventory and
backlogging costs during the time t(q,q’,b,z) +t;
plus the cost of changing the catalyst. We assume that
backlogging costs occur if the total demand during
the catalyst lifespan (i.e., (1(q, q°, b, z) + t;)d) exceeds
the initial inventory level I. Furthermore, in these
processes, the convention is to assume that the work-
in-process inventory holding costs are constant across
all process stages, and they are regarded as sunk
costs. However, once the batches are pooled and
converted to finished products, the holding costs for
the product increases, and this is assessed on a per-
batch basis. We adopt this convention and define C;
as the holding costs per batch of finished goods in-
ventory. That is, we only consider the inventory
holding cost for the pooled batches constituting the
finished goods inventory.

Let the function g(I, T) represent the total inventory
and backlogging costs during a time span of T when
the starting inventory is I and no batches are added to
the inventory during t. To derive g(I, t), we need to
consider three cases. First, if we do not run out of
inventory during time T, we incur only inventory-
holding costs, which are proportional to the average
inventory (I — td/2) multiplied by the duration of the
time horizon (1). Second, if we start from a positive
inventory level but run out during time t, we incur
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both inventory and backlogging costs. The length of
time with positive inventory is I/d, and the average
inventory level during this time is I/2. The final in-
ventory is I — td; hence, the length of time with back-
logging is (I — td)/d, and average backlogging during
this time is (I — td)/2. Finally, if we start from a neg-
ative inventory, the only cost during T will come from
backlogging and is computed similarly to the case
where we only incur inventory holding cost. Thus,
g(I,7) is computed as

(I —d/2)C; if [—td >0
L | P/2dxCi=Cp if 120 I—1d<0
SEOZN (1 —dp 2 ©
—1(I-1d/2)Cp if I1<0.

In order to define the objective function, we first
define the term cycle. A cycle refers to the length of
time between the ending of two subsequent cam-
paigns. A cycle of duration T; consists of a campaign
with length ©{ = 1(q;, q]Q, bj,z;) + t; and an idle time T]Q
before setting up the campaign (idle times are allowed
to balance inventory with demand and avoid accu-
mulation of inventory). During a cycle, no batches are
added to the inventory; hence, the realized cost
during cycle j is g(I;, 1;), where the cycle starts at in-
ventory [;. This problem can be formulated as a semi-
Markov average-cost problem with transition cost
g(I;, t;). The cost function for the average-cost prob-

lem is
R T
lim E{Zj:l[cs i g(I]’T])]}. (6)

R— o0 Zijl "(j

We formulate the problem of minimizing (6) as a
Bayesian stochastic dynamic program. A control
policy maps the state space to a decision of either
choosing a target attribute level g,,+1 for the next batch
or ending the current campaign. The state space
consists of the current inventory level (I), number of
batches produced so far in the current campaign (1),
current belief distribution y(b), the total consumption
of the current catalyst (T), and the cumulative attri-
bute level of the n batches produced in the cur-
rent campaign (Q). For simplicity and conformance
to practice, we allow idle time periods after end-
ing campaigns and immediately prior to setting up
campaigns. We consider two types of states. The first
is when a campaign is in process, whereas the second
is when a campaign has finished and the next cam-
paign has not yet been set up. Denote the differential
costs of the first state by h(l,n,Q,T,y(b)) and the
differential costs of the second state by w(I). The
optimal average cost of the problem is denoted by A*,

which is treated as a variable in the Bellman equation.
The SMDP is formalized as follows:

(SMDP) h(I,n,Q,T,y(b))
= min{C; + Col(Q>n) + r§1>ig1[w(l +n—t4d)

+g(1, f,) - A*t'],min Etn+1|’1n+1 [I’l(I - tn+1d,1’l +1,
Jn+1

Q + qn+1, T+ ty, V'(b)) + g(L tn+1) - A*tﬂ"’l]};
w(l) = minh( ~ 4,0,0,0,y0(b) + (L, H) ~ X'l (7)

Here yo(b) is the prior belief distribution on b (the
distribution from which b is drawn), and y’(b) is the
belief distribution over b after observing the next
batch. The duration of the next batch, denoted by .1,
is random and depends on the target attribute level
gn+1- The first term in the minimization represents the
decision to switch to a new catalyst with the option to
allow an idle time of . Here the term CeI(Q >n)
disallows switching if the attribute-level constraint is
not met (by penalizing it with a sufficiently large Co.).
The second term represents the decision to pro-
duce another batch with the current catalyst, in which
case the next target attribute level g,.1 must also be
chosen.

As a consequence of the curse of dimensionality,
this problem is too complex to solve analytically.
Therefore, in Propositions 1-4, we derive properties
of the SMDP. Specifically, Propositions 1 and 2 will be
used in Section 4 to construct a lower bound for the
SMDP, whereas Propositions 3 and 4 are used in
developing the two-level heuristic described in
Section 5.1.

Proposition 1. The differential cost function w(I) has a
global minimizer I'.

All proofs are provided in Section A of the online
appendix. According to Proposition 1, the level I is
the ideal inventory to have at the beginning of a cycle.
However, it is not necessarily optimal to immediately
start the next campaign at I*, and we might allow
some idle time. This is shown in Proposition 2.

Proposition 2. There exists an inventory level I < I' such
that if the inventory level at the beginning of a cycle is I*, it is
optimal to delay the campaign setup until inventory falls to Ij;.

For the purpose of the next two propositions, we
define four new parameters iy, I, N, and Ny, which are
calculated using the main parameters of the model.
The significance of these parameters will become clear
in the following propositions and the discussion
following Proposition 4. Define I, as the nonpositive
solution to the equation dg/dt(I;,0) = A*. Next, define N
and Nj as the smallest integers satisfying I - N <I, and
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I —No <1, respectively. Finally, define 0<[*<I, as the
solution to the equation dg/dt(I*+Ny,0) =dg/dt(I*,0).

Proposition 3. If in the current state Q<n =N, then I >
I — N is a sufficient optimality condition to end the cam-
paign, irrespective of all other state variables.

Corollary. If in the current state Q<n = N, then both [ >
Iy and I > I* are sufficient optimality conditions to end the
campaign. This results from the fact that [ > Iy and I > I’
both imply I > T* — N.

Proposition 4. Given I > I and n > Ny, if all but one of the
state variables 1, Q, T, and y(-) are fixed, there exists a
probability threshold \V such that it is optimal to end the
current campaign if and only if (iff) P(I' <I") > V.

Proposition 4 shows that when I > I and enough
batches have been produced (1 > Nj), the variable
P(I' < I") contains sufficient information to replace any
one of the variables I, Q, T, or y(-) individually in the
Bellman equation. We will use Propositions 3 and 4
in developing the two-level heuristic described in
Section 5. In the next section, we present a procedure
to compute lower bounds on the optimal average cost
of the SMDP, which will be used to evaluate the
performance of our two-level heuristic. Some results
from the lower-bound analysis are also used to develop
this heuristic.

4. Lower Bounds

To compute a lower bound on the optimal average
cost of the SMDP, we first consider a deterministic
version of the problem and compute an associated
lower bound. This lower bound does not consider the
cost of randomness and discrete production and is
usually a loose bound. However, we consider this
bound for two reasons: (1) the resulting (loose) lower
bound is used to construct a tighter stochastic lower
bound, and (2) this tractable model structure and the
respective insights are used to construct our heuristic
solution in Section 5. We then present a stochastic
lower bound that accounts for discrete production
and the randomness of the process. This bound re-
solves the inadequacies of the deterministic bound,
which result from ignoring discreteness and ran-
domness, but still ignores the uncertainty on pro-
duction parameters and assumes perfect knowledge
of the (randomly) realized catalyst productivity of
each batch; in other words, it assumes that we can
optimally exploit the productivity of a catalyst as if
we had full information. Such clairvoyant bounds
have been used in the stochastic programming lit-
erature (Ciocan and Farias 2012). Clairvoyant bounds
underestimate optimal costs because they assume
more accurate learning than is actually possible

(Brown and Smith 2013). However, we found in our
computational analysis that this bound performed
quite well in our problem context because we have
considered randomness and discrete production of
the process in computing this bound.

4.1. Deterministic Lower Bound

The deterministic version of the problem is formed
by assuming that a campaign with N batches always
takes a deterministic amount of time equal to T(N),
where T°(N) is the expected optimal time it would take
to produce N batches in a campaign, given full in-
formation on b and z or, formally,

T'(N) =Egqp. mqin[T(q, q°,b,2)]. (8)

To relax the integer constraint on N and allow con-
tinuous production, we define v*(N) for noninteger
values of N by a weighted average of the production
time of [N] and |N], the two closest integers to N:

T(N) = (INT=N)T(IN]) + (N = [N)T(NT)
N non integer. 9)

To see the reasoning behind Equation (9), note that
one way to produce N batches per campaign on av-
erage is to produce | N]batchesin ([N] — N) fraction of
the campaigns and [N]batchesin (N — | N |) fraction of
the campaigns, leading to an average time of ([N -
N)T(IN]) + (N = [N])t*([NT]) per campaign. The func-
tion T*(N) is piecewise linear and convex. It is convex
because for an integer N, the following inequality holds
as a result of decaying productivity:

TN+1)-T(N) > T(N) -t (N -1). (10)

Let Tcyc be the total length of a cycle, including the idle
time and the campaign time.

Proposition 5. The following economic production quan-
tity (EPQ) problem provides a lower bound on A*, the op-
timal average cost of the SMDP:

C+e(T
[EPQ] Agpq = min ————= 8 Teye)
Tcycj Tcyc

s.t. T (Teyed) + ts < Teye. (11)

Here the objective of the EPQ is to minimize the
average cost during a fixed cycle. The decision vari-
ables T.yc and I denote the length and the starting
inventory of the cycle, respectively. The total cost
during a cycle is equal to a one-time switching cost
plus inventory holding and backlogging costs during
the cycle (¢(I, Teye)). A total of Teyd batches are pro-
duced in a campaign to match the total demand
during the length of the cycle. The constraint ensures
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that the total time required to produce Tcyd batches
(i.e., T'(Teycd)) plus the setup time is less than or equal
to the length of the cycle. We define the following
parameters based on the solution to (11):

T;ycz optimal cycle length in (11).

TM: largest cycle length satisfying the production
constraint in (11).

T™: smallest cycle length satisfying the production
constraint in (11).

N £ T%yd: total demand during T¢. It is similar to
the optimal order quantity Q" in an unconstrained
economic order quantity model.

I: optimal inventory at the beginning of each cycle
(i.e., after adding to inventory the batches produced
in the previous campaign).

[ =1 - N*: lowest inventory reached at the end of a
cycle, just before the newly produced batches are
added.

Cig =2 C;Cg/(Cy + Cp): “balanced” inventory holding
and backlogging costs per unit time in an EPQ with
backlogging (will be discussed shortly).

CY: the supremum value of all C; such that the
constraintin (11) isnotbinding at the optimal solution
(will be discussed shortly).

Given a cycle length Ty, inventory will be positive
for a fraction of the cycle, and for the remaining time,
inventory will be negative. We show that the opti-
mal fraction of time where inventory is positive and
where it is negative are proportional to Cg and Cj,
respectively.

Proposition 6. The optimal I can be derived as a function of
Teye and replaced in the objective function. The resulting
objective function is convex in Teyc.

Corollary 6.1. Problem EPQ becomes a convex optimiza-
tion problem in the single variable Tey..

In the proof of Proposition 6 (in the online appendix),
we see that the objective over Ty becomes Cs/Tyc +
CiCs/(Cr + Cp)Teyc d/2, which is similar to an EPQ
without backlogging in which Cjp £ C;Cp/(C; + Cp)
has replaced the inventory holding cost. The parame-
ter Cjp is interpreted as the balanced inventory cost
(holding and backlogging) per unit time when the cycle
length is optimally allocated between positive and
negative inventory. The optimal production quantity
in the unconstrained EPQ problem is N" = v24Cs.

If Tg,. = N"/d satisfies the production constraint,
then the constraint is not binding, and T¢, is optimal
for problem (11). In this case, the following relations
would hold:

2Csq Ci
N =N'=,/ I= N
Cis T Ci+Cp !

AgpQ = m =ICp = N'Cjp.

(12)

In order for T¢. to be feasible (hence, optimal), we
must have T" < T, . < TV If T(; . does not satisfy the
constraint, then the constraint is binding at the op-

timal T¢,. because, by Proposition 6, the objective
function is convexin Teyc. If T¢, <T™, then T¢, = T™,

and if Té‘yc >TM then TZYCTM.

4.2. Stochastic Lower Bound

The solution to the EPQ problem gives a lower bound for
the original problem, but it does not account for the cost
of randomness and discrete production. To obtain a
tighter bound, we use the EPQ problem and define a
stochastic process that is similar to the actual production
process but is regenerative and, hence, more tractable.
The optimal cost of this regenerative process is a tighter
bound than the EPQ bound for the original problem.

Recall from Propositions 1 and 2 that anideal process
is one that begins every cycle at I and sets up every
campaign at [; < I*. Based on this, we define a regen-
erative process that always starts a campaign at I and
allows free disposal so that inventory can instantly
drop to the ideal level I" if it exceeds it. We then use
Propositions 1 and 2 to establish (in Proposition 7)
that the optimal cost of this regenerative process
provides a lower bound on the optimal cost of the
original process.

We define the regenerative process by modifying
the original process as follows:

1. Production always starts at Ij.

2. Iftheinventory level I at the end of a campaign is
less than [, the inventory level is instantly raised to I
at a cost of Agpqty,r — §(I;, t,1), where Agpq is the op-
timal cost of problem (11) and t;; = (I; — I)/d.

3. If the inventory level I at the end of a campaign
is greater than Ij, the inventory level is instantly
dropped to a level I’ of choice (I > I’ > Ij), and then
production is idled until inventory reaches Ij.

Proposition 7. There exists a regenerative process satis-
fying 1-3 that has a lower average cost than the optimal cost
of the original process. As a result, the optimal average cost of
the regenerative process is less than the optimal average cost
of the original process.

Intheregenerative process, all campaigns startat Ij;
hence, it is more tractable than the original process.
However, computing the optimal cost of the regenerative
process is still not straightforward. In Section B of the
online appendix, we present an algorithm to compute
a lower bound on the optimal performance of the
regenerative process given Ij. A lower bound on the
optimal cost of the original process then can be ob-
tained by a line search over values of Ij.

5. Heuristics and Upper Bounds
In this section, we present a two-level heuristic to
solve the SMDP. This provides an upper bound on the
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value of the SMDP. To benchmark the performance of
this heuristic, we also describe a practitioner’s heu-
ristic currently employed at a large food-processing
company.

5.1. Two-Level Heuristic

In the two-level heuristic, we decompose the
campaign-planning problem with learning and decay
represented by the SMDP into two levels: a lower-level
problem at the batch level, determining the duration of
batches in a campaign, and a higher-level problem at the
campaign level, determining when to end a campaign.
These levels are defined as

¢ Level 1: Batch planning—Choose the attribute
level g,41 of the next batch.

e Level 2: Catalyst switching—While batch # is
inside the reactor, use a control policy to decide
whether to change the catalyst after this batch or
move on to batch n + 1.

We next describe the solution method for each level.

Level 1: Batch Planning. In batch planning, we focus
on minimizing the campaign duration for a given
number of batches N. We minimize the campaign
duration because it offers more buffer time and,
hence, more flexibility. The objective is to minimize
Ty +ty such that the average attribute-level con-
straint is satisfied. The number of batches N is ten-
tatively chosen as the expected number of batches in
the campaign, which depends on the higher-level
policy discussed in the next subsection. For ease of
exposition and without loss of generality, the attri-
bute level is normalized such that the required av-
erage attribute level is less than or equal to 1. Hence,
the average attribute-level constraint becomes

N
>ai <N. (13)
i=1

With this constraint, the state space should include
the cumulative attribute level. After completion of
batchi —1,a decision g; is made for the ith batch, given
the current state of the campaign [Q;, T}, y(b)]. The
resulting stochastic dynamic programming (DP) is
represented by the following Bellman equation:

vi(Q;, Ti, y(b))
= Il}ffn[Ezi,b{(b +2z)k(T;)f (q:)

+ 041 (Qi + g1, Ti + (b + z)k(T))f (1), Y (0)}, (14)
where y(b) is the current belief distribution on the

parameter b, and )’(b) is the updated belief after
observing the random outcome of b +z;. We use a

standard Bayesian updating procedure to get y’(b):
each period based on our observation of the pair
(g, ti), we observe the implied productivity b; 2b+z
through t; =b;k(T:)f(g;) or equivalently b; = t;/k(T;)f (q;)-

We use this observation along with the known
density of z; (i.e., k(z;)) to update y(b) according to
y'(b) oc y(b)x(b; — b). Here the current belief y(b) acts as
the prior belief, and the new probability density for b,
according to Bayes’ rule, is proportional to the pre-
vious density multiplied by the likelihood of ob-
serving b; conditional on b (i.e., x(b; — b)).

An analytical closed-form solution to this problem
is not available in general, and the continuous mul-
tidimensional state space of this stochastic Bayesian
DP problem makes it intractable to numerically find
an optimal policy (Mazzola and McCardle 1996).
Hence, we approach this problem with the following
reoptimization heuristic: first, we find the vector q that
minimizes the expected campaign length Ego ), ,{t(q, q°,
b,z)}, ignoring the fact that q can be adjusted in the
future. After the first batch g; is completed, we in-
corporate learning by updating y(b) and reoptimizing
the remaining batches 2 through N of q. We then
implement the revised second batch and repeat.

The reoptimization policy does not directly antic-
ipate the value of information in its decision process.
In Section C of the online appendix, we set up a tractable
three-batch example and compare the reoptimization
policy with the optimal policy. We make three im-
portant observations. First, in all problem settings
considered, the choice of 4; under the reoptimization
policy is very close to the optimal choice of g;. Second,
the resulting average campaign time is almost iden-
tical under the two policies (they are within 1% of each
other in all problem settings considered). Third, both
policies attain near-optimal exploitation of the cata-
lyst, as if full information on b were available a priori
(in every problem setting, the expected campaign
duration under the two policies is within 2% of the
minimum campaign duration). In addition, our com-
putational results in Section 7 show that our two-level
heuristic achieves near-optimal costs, implying that
the reoptimization policy adequately captures the
dynamic value of information in this problem.

With the reoptimization policy in place, we are
interested in understanding how the chosen q will
differ from the myopic policy of having every batch
meet the target attribute level (i.e, q=[1,1,...,1]).
Note that a smaller g; implies that batch i has a bigger
contribution to satisfying the average attribute-level
constraint (13). Therefore, we interpret assigning a
smaller g; to batchias placing a higher “load” onbatch
i. We are interested in whether it is better to place
higher load (i.e., smaller g;) on the production of the
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first batches (while the productivity of the catalyst is
still high) and leave a lower load on the concluding
batches or, conversely, place a lighter load on the
initial batches to avoid an overly decayed catalyst when
it reaches the final batches. As shown in Proposition 8,
this depends on the form of k(T;), the function that
defines the dependency of the productivity decay rate
(equivalently, the rate of increase in processing time)
on the total consumption. Denote q* = [4, . . ., )] as the
solution to arg ming Eq ,{7(q, q’,b,2)}.

Proposition 8. (i) If k(T) is convex in T, then there exists at
least one optimal solution where q; > q;,,. Further, if k(T) is
strictly convex, there are no optimal solutions where q; < qi,4.
(ii) If K(T) is concave in T, then there exists at least one
optimal solution where q; < q},,. Further, if k(T) is strictly
concave, there are no optimal solutions where q; > q;,;.
(iii) If k(T) is an affine function, then q; = q;,, for all i.
Proposition 8 establishes that a higher load should
be allocated to the finishing batches if k(T) is a convex
function and to the beginning batches if k(T) is a
concave function. To see the intuition behind this
finding, consider a two-batch example (N = 2). When
k(T) is convex, the decay rate is increasing in total
consumption; thus, if a high load is placed on the first
batch, the second batch will face an overly decayed
catalyst, increasing the total time required to process
the two batches. The reverse is true for a concave k(T).
Figure 1 compares q* = argming t(q, q°,b,z) with
q=1I1,...,1] for a convex k(T) and fixed q°, b, and z.

Each downward slope represents one batch, where
the attribute level is reduced from an initial level.
Each upward jump represents removing a batch and
placing another batch inside the reactor. In this ex-
ample, the optimal campaign that meets the quality
specification on average across the batches in a cam-
paign is 20% faster than the campaign that strictly at-
tains the quality specification in all batches.
Proposition 8 states that for convex (concave) k(T),
the relation 4] > g5 (77 < g5) holds. We were also in-
terested in evaluating the dependence of this ordering
on the level of uncertainty in b. For two distributions
y(-) and 7(-) with equal mean p, j(-) is considered
stochastically more variable than y(-) if the inequality
Ep5()[y(b)] = Epeyy[y(b)] holds for any convex
function y(b). The following proposition shows that
for N =2, a stochastically more variable prior belief
on b results in a greater difference between g; and 5.

Proposition 9. Let y(-) and y(-) be two prior beliefs on b
with equal mean ., where y(-) is stochastically more variable
than y(-). Let q = [q1,92] and q = [41, 2] be the respective
two-batch optimal attribute-level vectors. The following
inequality holds: |§1 — 42| > |q1 — qal.

Proposition 9 informs us that the optimal spread
between the attribute levels in a campaign increases
when there is more uncertainty in the prior distri-
bution of catalyst productivity. The intuition behind
this finding complements that of Proposition 8. Here,
for a convex catalyst decay function k(T), we would

Figure 1. (Color online) Duration of Batches in a Reactor for Campaigns with Strict and Average Attribute Levels in a
Catalytic Reaction Characterized by g; = 2exp(—2(T + 1)72%t;/b)

2
= (Campaign using an average attribute level
— — — Campaign using a strict attribute level
-
15 e
"y
= H“ﬂh
5 T
2 Bl
2 ] e
=
05
D | 1 1 | 1 1 1 | 1
0 1 2 3 4 6 7 g 9 10



Jahandideh, Rajaram, and McCardle: Campaign Planning Under Learning and Decay
Manufacturing & Service Operations Management, 2020, vol. 22, no. 3, pp. 615-632, © 2019 INFORMS 625

place a lower load (or higher 41) on the beginning
batch so that the final batch starts at a lower catalyst
consumption. However, with increasing uncertainty
inb, therisk of starting the final batch ata high catalyst
consumption increases. Thus, it is optimal to reduce
the risk by further decreasing the target load (or in-
creasing q1) on the first batch. This increases the
spread. With similar reasoning, we can show that the
optimal spread also increases in the stochastic vari-
ability of the prior for concave k(T).

Level 2: Catalyst Switching. In catalyst switching, we
develop a policy by which to decide when to switch
the catalyst. A control policy maps the state space to a
binary decision: switch or don’t switch. The state
space consists of the current inventory level (I),
number of batches produced so far in the current
campaign (1), current belief distribution of b (y(b)),
and the total consumption of the current catalyst (T).
The Bellman equation for this average-cost problem is
an approximation to the SMDP where the Q dimen-
sion is removed from the state space, and the deci-
sion variable is binary (instead of being a continuous
choice of g, which is now handled by the lower-level
problem):

h(I,n,T,y(b)) =min{Cs + CoI(Q <n)
+ rt1:1>i(1)’1[w(1 +n—td)+g(t) - At],

Etn+1 [h(I - i’n+1d,1’l + 1,T + tn+1, V’(b))

+g(1, tni1) — A*tm—l]})
w(l) = rtrlitn{h(l —1d,0,0,y0(b)) + (I, t) — A"t}

(15)

The state space is multidimensional and has contin-
uous elements. Even if the elements of learning and
decay are removed, the state space is still too large to
obtain exact solutions (Loehndorf and Minner 2013),
evennumerically. Hence, we propose an approximate
policy to efficiently summarize the large state of the
system and apply it in a simple decision rule. For this
purpose, we resort to the structural properties of the
optimal solution, described in Propositions 3 and 4.

Proposition 3 establishes that if a sufficient number
of batches N are successfully produced before in-
ventory drops too low, it is optimal to end the cam-
paignirrespective of other state variables. By contrast,
Proposition 4 shows that the probability P(I" < I') can
individually replace any of the state variables I, Q, T,
or ¥(-) by means of a probability threshold policy.
These propositions motivate a policy that targets N
batches in a campaign and ends a campaign either if
this target is reached or if the probability of inventory
dropping below [* exceeds a threshold V. Because the
exact values of the parameters Nand I* arenot known,

we use corresponding values from the deterministic
approximation (EPQ). This heuristic effectively fol-
lows as closely as possible the optimal deterministic
process suggested by the solution to the EPQ prob-
lem. Let I and T, be the optimal solution to (11).
Define [ =1 — Teycd and Iy 21+ [T(szcd) + ts]d. In the
absence of randomness and discreteness, we would
like the inventory level at the beginning of a cycle
to be I, idle the process until inventory reaches I, at
which time we set up a campaign and produce batches
until inventory is at I. The batches produced return
inventory to I. However, in the discrete-production
stochastic process, this does not necessarily happen.
At some point, we expect that if we produce another
batch, the inventory level at the end of that batch will
be lower than I, which would result in excess backlogging
costs. By contrast, if we do not produce another batch
and switch the catalyst before reaching the optimal level
of I, it would result in higher average switching costs
and possibly higher inventory costs in the next cycle.

To choose between these options, we propose to
switch before inventory gets to I only if the proba-
bility of falling below inventory I after the next batch
is greater than some threshold W. The probability
P[I,4+1 <I]is calculated using the distribution of z, and
the current belief over b:

Pll1 <I] = P[I = tyad <I] = Pltyd >1 1]
= P[(b+ Zn+1)k(Tn+1)f(%z+l)d >1-1]
I-1
k(Tn+1)f(qn+1)d ’

To illustrate the implications of this policy, note that
the boundary case of W = 1 translates to a case where
the catalyst is switched only after inventory falls
below I. Our numerical results show that if the
threshold W is correctly specified, this policy is nearly
optimal for many problem instances. The optimal
threshold W depends on the cost parameters (C, Cg, Cs)
and is not analytically computable because it would
require solving a Bellman equation almost as big as
the original problem (15). Therefore, we choose W by
simulating the process and doing a line search over V.

Denote I, for the inventory level after the pro-
duction of batch n. Given the threshold, our heuristic
separates into the following two cases based on the
initial inventory level after the previous campaign (I).

Case 1. I > Iy. Idle the process until inventory rea-
ches Ip; then set up and start the next campaign.
Producebatches1,...,nuntil P[I,,;1 <I] > W.Fori > n,
end the campaign if and only if (i) +i>1I or
(i) ; +i> E[Ii1] +i+ 1.

Case 2. I <Iy. Set up and start the next campaign with
zero idle time. Find the smallest n such that P[l,1 <
I] > W and either E[I,,] + n > Iy or E[I,] + n > E[L,11] +
n + 1. For this n, if the inequality E[I,11] + n > Iy holds,

=P|b+ 21> (16)
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run the campaign as in Case 1. Otherwise, produce N
batches such that N maximizes N/(t*(N) + t;); this N
maximizes the production rate.

The additional conditions in Case 1 enhance the
threshold policy by ensuring that the process remains
stable after the switch. Condition (i) implies that the
next campaign will start above inventory Iy. If con-
dition (ii) holds, we expect that if we switch now, we
start the next campaign with a higher inventory
compared with switching after the next batch. In
Case 2, we use the same policy as in Case 1 only if we
expect that we will be able to start the next campaign
from inventory above . Otherwise, we produce at
the maximum production rate to bring the process
back up to stable conditions.

5.2. Practitioner’s Heuristic

To benchmark the two-level heuristic, we compare it
with a practitioner’s heuristic that was implemented
as part of a broader project described in Rajaram et al.
(1999). The decision variables are t*, how long to leave
each batch in the reactor, and N, the maximum
number of batches in a campaign. The optimal #* and
N (not necessarily unique) solve the following opti-
mization problem:

) N d
rlr\},ltp [CIEJrCSN] (17a)
N
s.t. Nt*+t >d, (17b)
5 (k) <N 079

In (17a), the average inventory during a cycle is N/2;
hence, the average inventory holding cost is equal to
CiN/2. The average length of a cycle is N/d; hence, the
average switching cost per unit time is equal to Csd/N.
The constraint (17b) ensures that the average pro-
duction rate exceeds the demand rate. This follows
because the choice of {N, t*} implies a production rate of
N batches per Nt* + t; units of time; hence, for feasi-
bility, N/(Nt* + t;) has to be greater than the demand
rate d. Constraint (17¢) is the attribute-level con-
straint, approximating b + z, by the expected value .

The optimal N and t are found by discretizing t and
performing a grid search. However, +* will not be
unique because the objective function of (17) depends
only on the variable N. We choose the smallest feasible
t* to increase the production rate, which increases the
idle time between campaigns and allows a larger
buffer in case of a bad catalyst outcome.

Once the optimal t* and N are found, the practi-
tioner’s heuristic is implemented as follows: set t; = t*
for all i, and observe the resulting g; values. From the
observed g; values, update the belief distribution y(b).
After batch 1, decide whether the catalyst has the

potential to produce another batch witht,,; = #* while
preserving the average attribute-level constraint:

SHLFNE /(RE)(b + 2:) <+ 1.

leen the current information, use the expected
value of b+z, (i.e., E[bly(b)]) to evaluate the constraint;
produce another batch if and only if X/fl(t/
(k(it")E[bly(b)])) <n+1 and n+1<N. If the prediction
is wrong and the next batch violates the constraint,
stop the current campaign and incur a rework cost.
Once the campaign is ended, the catalyst is replaced,
and the new batches are released to inventory.

Observe that this heuristic does not allow for de-
liberate backlogging and is designed for the settings
where Cp > Cj; it does not provide a fair benchmark
when Cp and C; are comparable. To enhance this
heuristic and provide a fair benchmark in all set-
tings, we replace the cost term C; in (17) by Cjp =
CiCs/(Cr + Cg), which represents the optimal balance
between inventory holding and backlogging costs
(see Section 4.1). To optimally balance these costs,
instead of starting and ending the cycles at [ = N and
I =0, we start and end the cycles at I = NC;/(C; + Cp)
and I = —NC;/(C; + Cp), respectively. Finally, because
t* is chosen as the smallest feasible value for the chosen
N, the production rate will be higher than the demand
rate. Therefore, idle times are chosen such that the cycles
start and finish at these inventory levels.

6. Multiple Products
We now consider a setting where multiple products
are produced in a single reactor. Each product has
its own fixed demand rate, backlogging costs, and
inventory-holding costs. This problem is now a sto-
chastic economic lot-sizing problem with switching
costs, batch production, learning, and decay.
During the production of a given campaign, after
each batch is produced, a decision must be made:
continue this campaign and produce another batch
of the current product or finish this campaign, add
the produced batches to inventory, and start a new
campaign. Note that only one type of product can be
produced in a campaign. After a campaign is finished
and the produced batches are added to inventory, the
next decision is which product to produce next and
how much idle time, if any, to allow. These decisions
are based not only on the number of batches produced
n, the total consumption of the catalyst T, and the current
belief distribution y(b) over the inverse productivity
parameter b for the current product but also on the in-
ventory level I of all the products. We extend the ideas
discussed in the single-product setting to obtain a lower
bound and a heuristic for the multiple-product setting.

6.1. Lower Bound
Let R be the total number of products. We modify the
previously introduced parameters and variables by
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adding indices r (or superscripts, for inventory var-
iables) to denote the product type. A deterministic
lower bound on the optimal performance of the sto-
chastic system is to assume that each product un-
dergoes an EPQ process independent of the others,
except that the sum of fractions of time that the
machine is busy cannot be greater than 1:

& Cs + (I, N, /dy)

MEP A £ min
[ Q] Agsp min 2. N./d,
ROT(N,) +t
.t AR ST 1
St 2N, S {18)

We can relax the constraint in (18) using a Lagrangian
multiplier 6. This leads to

R Cs +g(I", N, /d,)+(Ti(Ny) + £5)0 ~

F(6) £ min
( ) {N,I'} ; Nr/dr

0.

(19)
The minimization problem decomposes into R sep-
arate problems
min Cs + g(fr, N,/d,) + (T:(Nr) + t5)0 )
N, I’ Nr/dr

(20)

Each of these R problems can be transformed into a
single-variable problem over N,. This is done by
noting that the optimal fractional allocation of a cycle
between positive and negative inventory is fixed,
and hence, the cycle length N,/d uniquely deter-
mines I. We solve these R single-variable problems
separately:

Cs + CIBrNVZ/Zdr + (T:(NI) + ts)é
Nr/dr ’

where Cjp, = C;,Cp,/(Cp, + Cp,) (this can be shown
using a similar logic to the proof of Proposition 6).
Because T;(N,) is convex, the numerator is convex.
Further, it is well known that if f(x) is convex, then
f(x)/x is quasi-convex; thus, Z(N,) is quasi-convex in
N,. We optimize over N, by using simple numerical
methods, so F(0) is easy to evaluate. We maximize the
concave function F(6) using a golden section search,
obtaining a lower bound on the average cost of the
deterministic relaxation of the original stochastic
problem.

minZ(N,) = (21)

Proposition 10. Strong duality holds in problem MEPQ.

Based on Proposition 10, the N, values obtained by
the above procedure are feasible for problem MEPQ.
If N,/d, is the same for all products, the R products
could be functioning as if they were independent EPQ
systems. The sum of the average costs of these R systems
forms a lower bound on the optimal average cost of
the original problem. To improve this lower bound,
we use the same procedure presented in Section 4.2

by constructing a separate regenerative process to
individually improve the lower bound for each prod-
uct and compute the sum of the improved costs.

6.2. Heuristics

6.2.1. Multiproduct Two-Level Heuristic. Similar to the
two-level heuristic for the single-product case, this
heuristic uses the I" and N, values that solve the lower-
bound problem MEPQ. Define [" = I — N,and Iy =TI+
(T:(Ny) + t5)d,. Ideally, we would like to start a cam-
paign of product ¥ when its inventory level reaches [,
and produce N, batches until its inventory level
reaches [". During this time, we do not want the in-
ventory level of any other product 7’ to go below its
respective I}, . This may not be possible because in the
midst of a campaign of product 7, the inventory level of
some other product " would (in expectation) go be-
low its I if another batch of product ris produced. We
must trade off producing fewer batches of product r
with starting the next campaign with less inventory of
product 7.

Similar to the single-product case, we use a probabil-
ity threshold W, chosen by a line search over choices of
W € [0, 1]. Our heuristic dynamically makes decisions
by monitoring the inventory level of all products and
the changes in belief over catalyst productivity y(b).
We end the campaign if for some #’ the probability of
dropping below inventory I during the next batch is
greater than the threshold. We add a few conditions to
ensure that the process is stable (i.e., inventory does
not arbitrarily increase or decrease).

At the end of a campaign, we need to choose the
next product 7 to produce. For this purpose, we try to
choose the 1 that would otherwise induce the largest
backlogging cost. Note that if  is not produced in
the next campaign, it will not be replenished for at
least the duration of the next two campaigns. We
approximate the duration of the next two campaigns
by % £ min, T(N") + max, T(N") and choose 7 as the
product with the largest backlogging cost during this
time, starting at its current inventory I” and ending at
I' — 2d". With this choice of r°, we describe the pro-
posed policy for the next campaign.

Let I" be the inventory level of product r at the end
of a campaign and I, be the inventory level of product
r after producing batch  in the current campaign. For
each product r, define N”, £ arg maxy{N/(T:(N) + £)}.
We split the proposed policy into the following three
scenarios depending on the inventory vector I after
the end of the previous campaign.

Case 1. (I" < I for More Than One r) This implies
that the current inventory of more than one product is
below its optimal starting value, indicating that a
shortage might occur by the end of the next campaign.
Set up a campaign for product r, and produce exactly
N, batches.
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Case2 (I" < Iy butI” > I for Allr # r). Unlike Case 1,
the only imminent shortage is °. Produce n batches
of product 7 until either (i) I, + n > I", (ii) producing
batch n +1 would exceed the time allocated to this
campaign (Tys1 + Eltne1] > 13(Ny)), or (iii) n > N’ and
for some product ¥ we have P[I,,; <I"] > V.

Case 3 (I"> I, for All r). Let r be the product with
the lowest (I" — I})/d, (excluding r°). Compute ] = I, +
T:(Ny)dy. If ] > I", set up a campaign of product 7
without any idle time. If J<I”, allow enough idle
time such that either I” drops to J or I drops to I}
(whichever happens first) and then set up a campaign
of product 7 and follow the procedure in Case 2.

6.2.2. Practitioner’s Heuristic. Similar to the single-
product practitioner’s heuristic, the multiple-product
practitioner’s heuristic is part of the implementation
described in Rajaram et al. (1999). In their heuristic,
they use a fixed cycle length with one campaign of
each product. Because switchover costs are not product
dependent, the sequence of products inside the cycle is
not considered. Similar to the single-product setting, a
fixed batch-operation time f; and a target number of
batches per campaign N, are chosen for each product
r. The policy determining when to end a campaign of
product ris the same as in the single-product case. The
initial problem solved to determine the cycle length L,
batch durations t;, and target number of batches N, is

Z‘45:1 (%Clr + CS)

PH
( ){Arfl,ltn}lL L
s.t. N, >Ld, Vr, (22a)
R
DSUNg +1) <L, (22b)

r=1

Zf (k(nt*)ph ) <N, Vr,N,€{1,2,...}.
(22¢)

The objective is to minimize the total average
inventory-holding and switching costs during the
cycle of length L. Constraint (22a) ensures that the
number of batches that are planned to be produced
should not be lower than the demand of product r
during the cycle. Constraint (22b) enforces that the
sum of campaign times does not exceed the cycle
length. Constraint (22c) ensures that the mixture of
batches for each product meets the attribute-level

constraint. The algorithm used to approximately
solve the practitioner’s heuristic (PH) is provided in
Section D of the online appendix.

As noted for the single-product case, the practi-
tioner’s heuristic requires enhancements to provide a
fair benchmark in all problem settings. These include
enhancing the solution by replacing all Cj, in (22) by
Cip, = C1,Cp,/(Cy, + Cp,). In addition, after a campaign
of product r is completed, we delay releasing the
prepared batches such that the replenished inventory
begins at N"Cg,/(Cj, + Cg,).

7. Computational Results

To evaluate our method for the single- and multi-
product problems, we compare it with the practi-
tioner’s heuristic and with the appropriate lower
bound. We first consider the single-product case. We
were provided data from a sorbitol-production pro-
cess at the company described in the Introduction.
Salient details are summarized in Table 1.

We observe that for the actual problem parameters,
the simulated average cost of our two-level heuristic
is 12% lower than the practitioner’s heuristic, and the
average cost of our heuristic is only 1.5% above the
computed lower bound. This result shows significant
potential for saving costs and attaining near-optimal
costs if our approach is implemented. To test our
heuristic under a wide range of parameter settings
and to capture settings for other industries, we varied
the actual parameters to obtain new problem in-
stances by considering (1) concave, convex, and ex-
ponential k(T), (2) high traffic versus low traffic, (3)
low Cs, medium Cs, and high Cs, and (4) Cp = pCy,
p€[0.2,05,1,2,5].

We consider two classes of decay functions, each
specified by three parameters, 1, a, and p. The function
kD(T;) = n(1 + BT;)* best resembles the decay function
observed in our application, and the function k?(T;) =
(n+ aexp(—pT;))™" conforms with the exponential-
decay function used by Casas-Liza et al. (2005) and
other papers on performance decay. We performed a
sensitivity analysis by varying the parameters 7, a,
and g for both kV(T;) and kK (T;). Here we observe that
as long as the resulting problem is feasible or when
average production rate can meet demand, the per-
formance of our two-level heuristic is robust to
changes in these parameters. Therefore, for brevity,
we restrict ourselves to three representative decay

Table 1. Problem Settings at the Sorbitol-Production Process

Parameter d Cr Cp Cs [
Value 0.13 1 7 125 15
Variable or function b zZi q0 k(T;) fq:)
Distribution or form N(1.2,0.2) N(0,0.15) N(2,0.2) 1a+1)2 - log(%)
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functions: a convex decay function kcony (T;) = % (1 + T))'?,
a concave decay function keon(T;) = (1 + T;)%7, and
an exponential decay function ke (T:) = (0.25 +0.75
{exp(—0.2T;))~!. In all our experiments, we used f(q) =
—1In(q/¢°) in accordance with the literature (Steinfeld
et al. 1989). The initial attribute level g° varied from
batch to batch, and the data appeared approximately
normal. Therefore, in our simulations, q? was drawn
from a normal distribution with mean 2 and standard
deviation 0.2.

Define the capacity utilization as the minimum frac-
tion of time that the machine would be busy (i.e., not
idle) to meet demand. In Table 2, “Low traffic” refers
to a capacity utilization of 30%, whereas “High traffic”
refers to a capacity utilization of 75%. Note that the
process can operate at very high levels of utilization
(i.e., > 90%) only if we are able to exploit catalyst pro-
ductivity and increase the production rate.

The results for the single-product case are shown in
Table 2. The results are expressed as a percentage gap,
defined as the difference between the value of the
appropriate heuristic and the lower-bound solution
as a percentage of the lower bound for a particular
setting defined by the first entry in the row. The results
shown for the row are from the problem instances
achieved by varying the remaining parameters one at
a time. For example, consider the first row in Table 2
with the problem setting convex k(T). Varying the
remaining parameters one at a time results in 1 X 2 X
3 x5 =30 problem instances. Similarly, consider the
fourth row with problem setting high traffic. Here
there are 3 X 1 x 3 x5 = 45 problem instances. In this
manner, we compile all the results in Table 2. The final
row in the table considers problem instances with
90% utilization. Because this utilization level is not
feasible for the practitioner’s heuristic, we do not
have results in those columns.

Based on our computational analysis, we make the
following observations:

¢ The maximum utilization levels at which the prac-
titioner’s heuristic could operate were between 75%
and 85%, and this was not significantly related to the
problem parameters. After this level, the heuristic
was unable to develop a feasible production plan
that would ultimately satisfy backlog in future cam-
paigns. This is because, unlike the two-level heuristic, it
does not exploit the catalyst productivity and increase
the production rate while developing a production
plan. In contrast, the two-level heuristic considers this
aspect and is able to meet demand even at 98% utiliza-
tion. However, at utilization levels above 90%, the costs
of the two-level heuristic also grow exponentially. This
is because congestion effects owing to the random-
ness in catalyst productivity become more pronounced.
This increases backlogging and overall costs.

* In general, the practitioner’s heuristic performs
well when the utilization is low and when back-
logging costs Cp are similar to inventory costs C;.
When utilization is high, there is more backlogging
owing to randomness. However, the practitioner’s
heuristic does not explicitly consider randomness in
catalyst productivity while making decisions, which
leads to unforeseen levels of backlogging. Thus, un-
der these circumstances, its performance worsens,
and this is more pronounced when Cp > C;.

¢ In all problem instances, the two-level heuristic
significantly outperforms the practitioner’s heuristic.
In particular, the average cost of the two-level heu-
ristic is 11 % lower than the practitioner’s heuristic,
and this cost improvement ranges from 4 % to 25 %. In
addition, the two-level heuristic achieves very low
gaps with the lower bound despite the stochastic
nature of the problem. This is because reoptimization with
learning captures most of the value of information, and

Table 2. Percentage Gaps of Heuristics for the Single-Product Problem

Percent gap from lower bound

Practitioner’s heuristic

Two-level heuristic

Problem

setting Minimum Mean Maximum Minimum Mean Maximum
Convex k(T) 10.0 17.8 29.4 0.83 1.71 2.82
Concave k(T) 4.25 791 16.4 0.73 1.58 2.92
Exponential k(T) 5.16 124 23.9 0.72 1.68 2.87
High traffic 6.37 16.8 29.4 1.00 2.03 2.92
Low traffic 4.25 8.60 12.68 0.72 1.29 1.90
Low Cs 4.25 9.80 13.7 0.72 1.53 2.66
Medium Cs 4.62 13.8 25.9 0.79 1.59 2.79
High Cs 5.25 14.5 29.4 0.81 1.85 2.92
Cp=C 4.59 11.7 25.1 0.81 1.55 2.79
Cp =2C 6.14 13.7 26.1 0.76 1.82 2.85
Cp =5C; 7.35 16.5 29.4 0.72 1.85 2.92
Cp =0.5C; 4.25 10.7 23.6 0.73 1.54 2.25
Cp=02C 4.63 10.8 22.7 0.79 1.52 2.43
90% utilization — — — 3.24 5.10 7.61
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the probability threshold policy for catalyst switching
provides a near-optimal decision rule.

e The superior performance of the two-level
heuristic over the practitioner’s heuristic occurs for
two reasons: First, the two-level heuristic exploits the
productivity of the catalyst and is able to produce a
fixed number of batches in a smaller time span, thus
increasing the production rate of the process. Con-
sequently, the two-level heuristic can produce more
batches in a cycle and meet demand at a faster rate.
This advantage is more pronounced when there is
greater uncertainty in catalyst performance and the
constraint in the EPQ problem is binding. Second,
the practitioner’s heuristic uses expected parameter
values in its decision process. Thus, it does not make
efficient use of the available information (i.e., probability
distributions on parameters, etc.) and is more prone to
making suboptimal decisions.

e We observe that the optimal probability threshold
W that is used to determine catalyst switching in the
two-level heuristic decreases in Cp and increases in
Cs. A lower W results in a lower risk of backlogging,
compensating for the higher Cp. By contrast, a low W
may result in switching more frequently than desired.
Therefore, W is increasing in Cs.

¢ The heuristic is robust to the choice of W. A de-
viation of +0.2 from the optimal W increases the average
cost by less than 5% in all problem instances. A possible
explanation for this finding is the well-known in-
sensitivity of the basic EPQ model to small deviations
from the optimal cycle length (Schwarz 2008).

* When the utilization levels are between the levels
observed in practice (i.e., between 30% and 75%), the
gaps for the two-level heuristic are not sensitive to
changes in the parameters. By contrast, the gap gets
systematically higher for all parameter choices when
the utilization is increased to 90%. This is because
now significant backlogging costs are incurred, and this
increases the cost of the two-level heuristic. How-
ever, the lower bound is unchanged because it is cal-
culated by assuming a regenerative process and does
not carry backlog over from one cycle to the next. This
leads to higher gaps. Even under this extreme case of

high utilization, we see in Table 1 that the average gaps
of the two-level heuristic are 5.10%, which is reasonable
for a complicated stochastic planning problem.

The main managerial insight obtained from the sim-
ulations is that when we use the two-level heuristic for
the single-product problem, near-optimal costs can
be achieved by using a relatively simple policy. This
policy only requires computing the probability of in-
ventory falling below I, as defined in (16). Such a
policy effectively makes use of all the information
available about cost, current efficacy of the catalyst,
and inventory level.

For the multiple-product setting, we were provided
data on real parameter settings for a modified starch
process with five products, summarized in Table 3.
Here, again, we varied these parameters to obtain new
problem instances and capture settings for other in-
dustries. The approach was similar to that in the single-
product problem, except when analyzing the relation
between Cy and C;. Here Cg > C; is defined as Cg >
5C; for all products. In addition, Cp ~ C; is defined as
0.2C; < Cp < 5C; for all products and 0.5C; < Cp < 2C;
for at least two products. Finally, Cp < C; is defined
as Cp < 0.2C; for all products.

We also consider an additional comparison in the
multiproduct case. Let T, 2 v2Cs,/Cis,d, be the opti-
mal cycle length for product » from an EPQ per-
spective (Schwarz 2008), where Cjp, is the balanced
inventory holding and backlogging cost for product
r, as defined in Section 6.1. When Tr is similar across
products, a simple rotation production cycle as employed
in the practitioner’s heuristic can be near optimal. When
T, across products is highly variable, the rotation cycles
do not perform well. The corresponding gaps under
these two scenarios are included in Table 4.

It is evident in Table 4 that the proposed two-level
heuristic can significantly improve on the practitioner’s
heuristic in all problem settings. In particular, for the
actual problem parameters, the simulated average cost
of our two-level heuristic was 22.07% lower than the
practitioner’s heuristic. Thus, this approach, if used,
has the potential to significantly reduce opera-
tional costs. Also note that the percentage gap of the

Table 3. Problem Settings Measured at the Modified Starch Process

Values, distributions, or functional forms for each product number

Parameter/variable 1 2 3 4 5
d(x10%) 12 1 25 18 7

C; 1 0.5 7 9 10

Cp 20 0.05 35 50 100

Cs 125 125 125 125 125

ts 15 15 15 15 15

b N(1,0.15) N(0.2,0.03) N(1.2,0.2) N(0.9,0.15) N(0.7,0.12)
Zi N(0,0.15) N(0,0.03) N(0,0.15) N(0,0.1) N(0,0.1)

Note. For all products, the decay characteristic is k(T;) = (1 + T;)%7, the normalized initial attribute
level ¢? is drawn from N(2,0.2), and the function f(g;) has the standard form g; /4.
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Table 4. Percentage Gaps of Heuristics for the Multiple-Product Problem

Percent gap from lower bound

Practitioner’s heuristic

Two-level heuristic

Problem

setting Minimum Mean Maximum Minimum Mean Maximum
Convex k(T) 19.60 36.9 53.2 0.56 4.19 7.88
Concave k(T) 6.77 19.3 39.6 0.67 3.76 6.21
Exponential k(T) 7.03 26.6 48.4 0.79 3.99 7.34
High traffic 9.88 31.1 53.2 1.28 4.62 7.88
Low traffic 6.77 24.1 41.9 0.56 3.34 571
Low Cs 6.77 21.4 34.6 0.56 3.55 6.21
Medium Cs 9.46 25.3 41.2 0.85 3.75 7.13
High Cs 10.5 36.1 53.2 1.27 4.64 7.88
Cp > Cy 14.1 33.1 52.6 171 4.47 7.88
Cp ~Cy 7.14 26.5 53.2 0.67 4.25 7.80
Cp < (Cy 6.77 23.3 39.7 0.56 3.22 5.51
Zero T, variability 6.77 19.2 34.4 0.56 2.88 4.92
Low T, variability 9.15 24.5 39.75 1.19 3.44 5.56
High T, variability 24.0 39.2 53.2 3.37 5.62 7.88
90% utilization — — — 4.56 8.57 13.9

two-level heuristic with the lower bound is less than
10% in all cases and equal to 3.58% on average across
multiple-product settings. These results are encour-
aging, given the complexity of the problem. The
following additional observations can be drawn from
the multiproduct case:

* Under the practitioner’s heuristic, the average
cost of operation is significantly higher when the
optimal cycle length T, is varied across products
compared with when products have a similar T,. This
is because the practitioner’s heuristic uses a rotation
cycle in which the cycle length for all the products is
the same. As T, across the products becomes more
variable, it becomes less sensible to have the same
cycle length for all products. In contrast, the two-level
heuristic is a dynamic policy designed specifically to
take such difference in product parameters into ac-
count. However, even with the two-level heuristic,
costs are slightly higher when T, across products is
more variable because it becomes harder to reach a
stable production pattern. Nevertheless, the gaps of
the two-level heuristic with the lower bound are quite
low for all problem settings.

¢ Similar to the single-product case, the percent-
age gaps of the practitioner’s heuristic significantly
increase when Cg is high. However, the two-level
heuristic performs well because it dynamically con-
trols all products to follow their optimal EPQ cycles as
closely as possible. The EPQ cycle trades off Cs with C;
and Cp and is robust to changes in the production
quantity. This explains why slight deviations do not
significantly increase the average costs as long as a
good policy is in place to make the switching decisions.

The following managerial insights can be drawn
from the computational analysis. These could also be
useful for practitioners in similar industries:

1. Our relatively simple two-level heuristic nearly
attains the optimal cost of the intractable stochastic de-
cision process. The optimal cost is closely approximated
by our simulation-based stochastic lower bound.

2. For minimizing the duration of a campaign of a
fixed number of batches, the value of information,
Bayesian learning, and dynamic decision making can
be adequately captured by employing a reoptimization
policy in conjunction with observing and learning.

3. When deciding whether to switch, the proba-
bility that the inventory of each product r falls below
its respective threshold I" provides an efficient sum-
mary of the intractable multidimensional state of the
system. This can be used to make the important de-
cision of when to change the catalyst and switch to the
next campaign.

4. When deciding on the next product to produce,
we can choose the product with the greatest expected
backlogging cost during the next two campaigns. This is
somewhat similar to employing a one-step look-ahead
policy, and our numerical results support its effectiveness.

Note that our methods still require repeated Bayesian
updating of the belief distribution on the catalyst pa-
rameter (this is needed for more accurate computations
of E[t,+1] and P[I,+1 <I]). However, such mathematical
procedures seem amenable to implementation, given
the ready availability of data from the process-control
system and tools from standard commercially available
statistical software.

8. Conclusions

The problem of production-campaign planning with
uncertainty in production times, learning about pro-
duction characteristics, and decay in catalyst perfor-
mance is a challenging but important problem in
a variety of process-industry sectors such as food
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processing, pharmaceuticals, and specialty chem-
icals. We first considered the single-product case and
formulated it as an SMDP. To solve this problem, we
developed a two-level heuristic. We then considered the
multiple-product case. We modeled the relaxed de-
terministic approximation as a constrained economic
lot-sizing model and used a Lagrangian relaxation to
solve it. We were able to extend all results and tech-
niques of the single-product to the multiple-product
case.

The computational results for the single- and
multiple-product problems show that the associated
two-level heuristic achieves low percentage gaps with
the lower bound on the optimal average costs. Our
approach significantly outperforms the practitioner’s
heuristic currently employed by a leading food-
processing company. Furthermore, the two-level heu-
ristics are robust to changes in the cost parameters. This
allows us to further simplify the proposed dynamic
policy and present general and easy-to-implement op-
erational guidelines for practitioners.

This paper opens up several avenues for future
research. First, based on our application context, we
assumed that the demand rate was known and con-
stant. However, there could be substantial season-
ality in downstream demand in other settings, and it
may be more appropriate to consider a time-varying
demand rate for these situations. Second, our model
could be extended to the case with multiple reactors.
Third, one could consider alternate quality models
that may be required for meeting attribute quality
levels. Fourth, these techniques could be adapted for
production-campaign planning at catalyst-activated
batch-production processes in other process-industry
settings. This would undoubtedly require incorpo-
rating different types of production constraints. All
these extensions might require significant modifica-
tions to the methods presented in this paper and could
be fruitful areas for future work.
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Online Supplement

A Proof of Propositions

Proposition 1. We prove the existence of I = argmin{w(I)}, where w(I) was defined in (7). Observe that

(i) w(I) grows unboundedly as I — +o00, and

(i) w(I) is bounded below.

To prove that w([l) is bounded below, assume that for some I = I_,, we have w(I_) = —oo. Because we assume that the
highest achievable average production rate exceeds the demand rate, we are able to reach I_,, from any initial state with prob-
ability 1 in finite time by producing at the highest rate until inventory goes over I_,, then allowing idle time until inventory

drops to I_,. For all states I we would have w(I) = —oo, which is a contradiction B

Proposition 2. If the process reaches state T and production has stopped (the next campaign has not yet been set up),
the only state variable determining the decision will be the inventory level T". The optimal decision is either to set up the next
campaign immediately (in which case I} = 7*) or to idle the process until the inventory level reaches a certain value which we call

15. I is constant because the decision at inventory level T" when the process is idle is independent of the history of the process B

Proposition 3. First define I2£T7T —N. We first prove the Proposition for I = I, then extend it to I > I. Assume to
the contrary that n = N and I = I , but the optimal decision is not to switch to the next campaign. In this case, we will
continue producing batches and eventually switch after one or more batches, which will take a random amount of time; denote
this duration by ¢ and denote the inventory level after the switch by I;. Regardless of the outcome of ¢t and I, the following
inequality holds:

w(l +N) < g(I,ty) —t N +w(ly). (1)

This is because (i) [+ N =1 and T is by definition the global minimizer of w(.), so w(I") < w(I;), and (ii) we will shortly
discuss that %(IA, 0) = A* implies g(I,t;) > t4 \*. Taking expectations of both sides of (1) with respect to ¢, and I, the left
side is unchanged and represents the ongoing differential cost of switching, while the right side represents the ongoing differential
cost of not switching, which contradicts the assumption that not switching is optimal.

To complete the proof, we need to show that ‘;—?(IA7O) = \* implies g(I,¢,) > t4A*. First note that %(LO) is increasing

in I for I < 0, thus %(T* — N,0) > A\* can only happen when IT'-N < 0, otherwise it would contradict T being the
global minimizer of w(.), hence I <1, <0. Also, %(I, t) is increasing in t and decreasing in I for I < 0, which implies

%(I,\,O) =\ = %(f, 0) >\ = %(Iu, t)v> A* Vt > 0. From this, we conclude that g(I,t,) = g+ %(Iu7 t)dt > \*t.
Now for the more general case of I > I, the proof proceeds similar to the discussion above, with a slight difference on the left
side of inequality (1): instead of switching immediately, we allow an idle time of ¢’ at the end of the campaign to let inventory

drop to I, resulting in the following inequality:
Wl +N) 4+ g(1,t) = X" < g(I,t3) — £ +w(ls). (2)

To prove that this inequality holds, three cases need to be considered:

(i) ¢ > ty4: in this case g(I,t') —t' < g(I,t4+) — t+A* because %(I,t) < A fort <t

(ii) ¢’ = t4: here the inequality is trivial by definition of I "=T+N.

(iii) ¢ < ty: we rewrite t4 as ¢’ 4+t and g(I,t4) as g(I,t') + g(I,t4). Hence the term g(I,t') — t’A* cancels out from both

sides, leaving an inequality similar to (1) which we have previously proven W

Proposition 4. We prove the Proposition individually for each of the state variables. Note that if the unfixed state variable
is y(+), we also need a normality assumption on ~y(-) for the proposition to hold. Otherwise this assumption is not required.

Recall the original Bellman equation (7) and define the following state functions:
A(8) = Co + Cocl(@ < m) + ipfuw(l +n = t'd) + g(1,¢) = X,

B(S) = min Et'n.+1|qn+1 [h(I —tpy1d,n+1,Q + gy, T+ tn-&-ly'}/(b)) + 9, thy1) — A*tn—&-l}'

qn41



Here, S represents the collection of all state variables (I,n,Q,T,~(b)), and A(S) and B(S) represent the ongoing differential
cost of the decision to end the campaign or continue with the current catalyst, respectively. The optimal decision is to end the
campaign iff A(S) < B(S).

For the case of x = T, consider the two consumption levels T and T3, where T > T2 We prove that if it is optimal
to end the campaign at state T = T1), then all other state variables held constant, it is also optimal to end the campaign at
T = T3 Therefore, a consumption level T will exist such that we would not switch for 7' < 7" and we would switch for 7' > 7.
Since the variable P(I’ < I*) (probability of the inventory level dropping below I* during the next batch) is monotone increasing
in T (all other variables held constant), then the inventory threshold policy translates to a probability threshold policy: switch
iff P(I' < I") > .

We now prove that optimality of ending the campaign at ") would imply optimality of ending at 7®). Let S™) and S
represent two states where all variables are equal except for T(®) and T®). We show that B(S®) < B(S™), whereas it is
trivial that A(S®) = A(S™M); hence if ending the campaign is optimal for T™), it is also optimal for T?). To show that
B(5®) < B(SM), assume that in the case of B(S™") we continue the campaign, and following the optimal policy hereon,
n’ > 1 more batches are made with attribute levels q; 2 [¢ni1, Gni2, ---@nin’], Which will subsequently depend on the realized
random shocks z, 2 [2,41, Znt2,--Znin]. Consider a coupled stochastic process starting at state B(S()) but following the
same decisions as its counterpart. This results in an ongoing cost B’(S®) where B'(S®) > B(S®) (because of the possible
sub-optimality of the decisions). Given the equality of q4 and z, in the coupled stochastic processes, the campaign duration
will be longer for the process staring at S(*) than the process starting at S®). Thus the latter process has the flexibility of idling
to reach the state of the former process, implying that the optimal cost of the latter process is at least as good as the former
process. By taking the expectation over realizations of z,, this implies that B’(S®) < B(S(™), which leads to the sought
conclusion B(S®?) < B(SM).

For x = @, define QY and Q® (where QM) > Q) and respectively SV and S™). We first show that B(S™) > B(5®).
Assume that starting at state S, we continue the campaign and plan optimally hereon to result in q+ and z. Now for a
coupled stochastic process starting at S(®), the same decision process is feasible, resulting in the same campaign duration as the
former process. However, the latter process starts at a smaller () and thus has more flexibility in choosing q, resulting in a
shorter campaign and ultimately smaller cost. Similar to the reasoning for 2 = T, this implies B(S™) > B(S®)). The variable
P(I' < I") is non-increasing in @ because a smaller @) implies the potential of choosing a greater optimal g1, resulting in
a shorter batch duration and less probability of dropping below I*. Thus the probability threshold policy follows with similar
reasoning to the case of z = T, with the exception that for x = @, it is possible that we would not end the campaign for any
value of @). In this case the probability threshold policy would translate to ¥ = 1.

For 2 = ~(.), we assume that the prior vo(.) is a normal distribution, and given the normality of k(z), the variance of ~y(.)
will only depend on the number of observations equal to the number batches n. Hence the mean of the distribution (u) uniquely
specifies v(.). Consider vV (.) and v®)(.) where u( > 1 and respectively S and S®). Assume hypothetically that we
simulate the process starting at S(*) by first drawing the true value of b (denote it by b(!)) from v(!)(.), then continuing the
campaign and planning optimally thereafter, resulting in q and z,. Now consider a coupled stochastic process where b is
drawn from 'y(z)(.) using the same seed of random draw, indicating the same quantile that was used to draw "), resulting in
b > b2, The two coupled processes will have the same q and z,., but the process staring at S(?) will have a shorter duration,
offering more flexibility at the end of the campaign. By taking the expectation over the draw of b*) and z,, we conclude (with
the same reasoning as for x = T) that B(S™) > B(S®). Similar to the argument for x = T, since P(I’ < I*) is monotone
increasing in p, this results to a probability threshold policy.

Finally, consider the case = I. We show that for I(!) > () > [* if it is optimal to end the campaign at state I(}),
then all other state variables held constant, it is also optimal to end the campaign at I(?). Therefore, an inventory level I will
exist such that we would not switch for I < I and we would switch for I > I. Since the variable P(I’ < I*) (probability of
the inventory level dropping below I* during the next batch) is monotone decreasing in I (all other variables held constant),
then the inventory threshold policy translates to a probability threshold policy: switch iff P(I’ < I*) > W. Note that if it’s not
optimal to switch anywhere before I*, then this will just translate to ¥ = 1.

We now prove that optimality of ending the campaign at IV would imply optimality of ending at I(®). First note that
%(I,O) is increasing in I for I > 0 and decreasing in I for I < 0. Thus by %(1* + Ny, 0) = %(f,O), we infer that as long as
I>1I" (ie. T+n>I"+ Ny the inequality %(I +n,0) > %(I, 0) holds. This implies that if we end the campaign at IV,
allowing idle time at the end of the campaign results in a lower cost compared to allowing idle time at the beginning of the

next campaign. By definition of I, the next campaign will not be set up until inventory drops to I§, and since I* + Ny > I§,



if we end the campaign at 1™V, we would allow idle time until inventory reaches I*. During this process, inventory reaches I(?),

and since all other variables are equal, the optimal decision at I(?) will also be to end the campaign and idle until dropping to I* B

Proposition 5. To prove that the constrained EPQ (11) provides a lower bound on the original SMDP (7), we show that a
feasible solution to (11) exists with equal or less cost than the optimal average cost of the original process.
A cycle is defined from the end of one campaign to the end of the next campaign and includes any idle time. The average

total costs of inventory holding, backlogging, and catalyst switching can be re-written as:

N b S (I (w)FCr + I(w) ™ Cp + 84 (w)Cy)dw
- T—o0 T

Tt +T 0O+ 25 (3)

cyc

where I(w) is the inventory level at time w, I(w)* £ max[0, I(w)], and I(w)~ £ max[0, —I(w)]. The function &,(w) has a unit
impulse at every time w where a switching occurs, and is zero for all other w. Further simplification results in the righthand side
of (3), where I (I ) is the inventory level averaged over all instances where I(w) > 0 (I(w) < 0), and 8+ (§7) is the fraction
of total time where I(w) > 0 (I(w) < 0), and T,,. is the average cycle time.

Let the superscript * represent the optimal production strategy. We show that a fixed cycle strategy (following the EPQ
formulation (11)) exists for which the optimal average cost is equal to or less than A\* = 7+*9+*C[ + T_*G_*CB + TSJS@ For
this fixed cycle strategy, let 6t = 61", 6~ =6~ and Tyc = Typ*, i.e. the cycle always starts from inventory Tyc*ﬂi*d and

finishes at inventory —E*H_*d, and a total of Tyc*d batches are produced in each campaign. The feasibility of the cycle
length T,,. in the deterministic constraint of problem (11) (i.e. 7*(Tiyed) + ts < Teye) follows from the convexity of 7*(N),
Jenson’s inequality, and the fact that 7*(N) is a lower bound on the expected campaign length for N batches. It suffices to
show that for this fixed cycle strategy al < 7+* and I < 7_*.

For the optimal production strategy, assume a total of M cycles and let M — oco. The total production time is M m*
and the total time spent in negative inventory levels is 6~ "M ﬁyc* Let the number of cycles that reach negative inventory be

M’ < M. Hence the average time spent in negative inventory levels per negative turn is:

P

0~ MT, —
— A . cyc —
=g 20 Tae )
Assume that in the optimal strategy, all cycles start with a positive inventory level (the proofs for alternative cases follow
T-d
T2
over the total time span of negative inventory; rather it is the average over the number of cycles that reach negative values. To

with similar reasoning). The average negative inventory level per negative turn is . This is not the average inventory level
obtain the per-time average, we must compute a weighted average over the cycles: the average negative inventory level of each
cycle must be weighted proportional to the total amount of time that specific cycle spends in negative inventory. Notice that
in this case, the cycles that reach larger (absolute) negative inventory levels will be weighted more heavily (because they must
spend a longer time in negative inventory to reach that level) and cycles that end at smaller (absolute) negative inventory levels
will be weighted less. The resulting 7_* will be greater than T-¢ and thus 7_* > G_*QM. Notice that for the fixed cycle

_— * 2 *
w. Hence, I <1 . It follows with similar reasoning that I T < T, which completes

strategy previously defined, I =
the proof ®

Proposition 6. Let a = I/ T¢ycd denote the proportion of T¢,. where the inventory level is positive. The maximum inventory
during Ty is aTtycd and the average is aTcycd/ 2. The proportion of T,. where the inventory is negative is 1 —a, with a maximum

of (1 —a)T,y.d and an average of (1 — a)T,y.d/2 during this time. Hence, the average cost during the cycle time T¢,. becomes:

Cs + (aTeye) (aTeyed/2)Cr + [(1 = a)Teye][(1 — a)Teyed/2]C
Teye-

Minimizing with respect to a gives a* = ~<E—. Substituting for a and arranging the terms, the objective function becomes
Cr+Cp

C,  (_CiCp \ Tuyed
Tcyc Cr+Cp 2’

which is a convex function of T,,. B



Proposition 7. For the purpose of this proof, we refer to the original process as a “T'ype A” process and to the regenerative
process as a “Type B” process. Define a process of type B that during a campaign, follows the same batch planning and catalyst
switching decisions as in the optimal policy of process A. Once the campaign is ended, if the inventory I after a campaign is
below I, raise it instantly to I at a cost of —g(I§,tr,1) + Aepot,r- I I§ < I < T", idle the process till it reaches inventory 1
and then set up the next campaign. If I > T*, instantly decrease I to T" and idle the process till it reaches I§. We show that
the process B defined here has a lower average cost than the optimal process A.

Let w* denote the differential costs of the optimal policy of process A (as defined in (7)), and let \* be the optimal cost of
process A.
(i) Assume that in the optimal process A, inventory level reaches I < I} after a campaign. Noting that the optimal policy

would not idle the process from I to I (by the definition of I}), we have:

w*(I()k) S g(I()katIOI) + w*([) — )‘*tlol
=w*(I) > w*(Ig) = g(Ig, trgr) + A'tre1
:>’LU*(I) 2 ’U)*(IS) - g(IS7tIOI) + )‘EPQtIOI

where the last inequality follows from the fact that Agpg is a lower bound to the optimal cost. The left-side of this inequality is

the optimal ongoing differential cost of process A and the right side is the ongoing differential cost of the defined type B process.
(i) Alternatively assume that I > [§. If I < T°, then the optimal decision in process A is to idle the process to reach

inventory level I and set up the next campaign at I, same as in the defined process B. If I > T", then by definition of T we

know that w*(I) > w* (T*) Since the type B process instantly decreases from I to I, its ongoing differential cost will be less

than or equal to that of process A.

Hence, regardless of where the process begins, the ongoing differential cost of the defined process B is less than or equal to that

of the optimal process of type A R

Proposition 8. The objective is to minimize Eqo4[7(q,q’, b,z)] over q of known length N. For i € {2,3,..., N}, let Qi1
be the sum of attribute levels up to batch ¢ in the optimal q. Note that Q% = N. Define R as the total attribute level that
must be met by ¢; and ¢;_1.

R= Q;‘k+1 - Q;'k_1 =¢ +qi—1- (5)

We use the index i and write f;(¢;) to incorporate the effect of the batch-specific ¢?, and let f(g;) without the index denote the

expectation of f;(g;) over ¢7. The optimal allocation of R between ¢; and ¢;_1 solves:

min - Y(¢i—1,¢) = Eqop,2[(0+ zi—1) fi—1(qi—1)k(Ti=1) + (b+ 2z) fi(q:)k(T3)]
st. ¢g+¢g-1=R (6)
Ti=Ti1+ (b+2) fic1(qi—1)k(Ti—1).

For notational simplicity let b; = b+ z; (which implies E., (b;) = b), and without loss of generality let i = 2. Let ¢ > ¢’ > 0
such that ¢ + ¢’ = R, and let AT £ b1 k(T) f1(q) and AT £ bik(T) f1(q'); then AT' > AT. For any b > 0 we have:

¥(g,q") <¥(d,q)
S Eqo o[b1k(T) f1(q) + b2k(T 4 01k(T) f1(9)) f2(4")] < E=[b1k(T) f1(q") + bak(T + b1k(T) f1(q')) f2(q)]

&bf(q)(By, [K(T + AT)] — k(T)) < bf(q)(Ep, [k(T + AT")] — K(T)) ()
By, [k(T + AT)) — k(T) _ Ep, [K(T + AT")] — k(T)
bf(q) - bf(q')



Convexity of k(T') is sufficient for the last inequality to hold, because

k(T + AT) — k(T) _ k(T + AT") — k(T)

AT' > AT and k(T) is convex = AT < AT Vb >0
k(T + AT) — k(T) _ k(T + AT') — k(T)
W@ S k@) .
BT+ AT) — K(T) _ MT+AT) = KT) (8)
bf(q) = bf(q) te
Ey, [k(T + AT)] — k(T) < Ey, [K(T + AT)] — k(T)
bf(q) - bf(q')
Hence
k(T) convex and ¢ > ¢' = ¢(q,q¢") < (d',q) 9)

Assume that in the optimal solution to (6) for convex k(T'), ¢;—1 > ¢;. Then there exists an equally good or better solution
by exchanging ¢;—1 and ¢;. Hence if k(T) is convex, there is always an optimal solution in which ¢;—1 < ¢;. If k(T) is strictly
convex, the inequalities in (7) become strict inequalities, which proves there are no optimal solutions where ¢;—; > ¢;. This
proves part (i).

Similarly, for concave k(T), the direction of the inequalities in (7) are reversed which proves part (ii). Part (iii) is straight-

forward: replace k(T) by a + ¢T" and take the derivative w.r.t. ¢ B

Proposition 9. The proof uses the following lemma:
Lemma 1. For a two-batch problem with known b and convex (concave) k(T'), ¢ is increasing (decreasing) in b. proof. We provide
the proof for a convex k(T"). The concave case follows with similar reasoning using reversed inequalities where appropriate. For
ease of exposition and without loss of generality assume that £(0) = 1. The optimal attribute level ¢f is a function of b, defined

as follows:
q1(b) = argmin [0f(q1) + 0k (bf(q1))f (R — q1)] = arg min [f(q) + k(bf(q)f(R—q1)]- (10)

Let L(b, q1) denote the objective function minimized in (10):

L(b.q1) = f(a1) + k(0f (a1))f (R — q1)- (11)

oL

In what follows, we first show that B

, » < 0 for sufficiently small e. Then, since the partial derivative of L w.r.t. ¢
—+e€,97 (b

is negative, we can reduce the objective function by increasing ¢;. Thus, ¢} (b + €) > ¢ (b), i.e. ¢} (b) is increasing in b, which

establishes the lemma.

To establish the claim that g—L < 0, assume the contrary: g—L > 0 (Note that we are ignoring the possibility
B lb+e,q7 (b) D 1b+e,q7 (b)
that 2L = 0, because we can always find an € large enough such that 2% is nonzero). Under the contradictory

90 b+e€,q7 (b) 90 b+e€,q7 (b)

assumption, for sufficiently small §, the following inequality will hold:
L(qy (b) = 6,b+¢€) < L(qy(b),b +¢). (12)

To reach a contradiction, we show that by reducing the second arguments of both sides of inequality (12) from b + € to b, the

reduction in the left side is greater than the reduction in the right side, resulting in the following inequality:

which contradicts the optimality of ¢5(b).

The remainder of this proof establishes the mentioned contradiction by showing that:

oL oL
— — . 14
Ob lbte,q7 (b)—5 o Ob lb+e,q7 (b) (14)
This follows by comparing the following two expressions for the left and right side of (14):
oL , X * *
=k ((b+€)f(qi(b) — 0))f(a1(b) = 6)f(R — g1 (b) +9), (15)

b lbte,qr (b)—5



Ty = F O+ TGO FGEO) (R = 4 0). (16)

The inequality &/'((b+€) f(q(b) —0)) > k' ((b+¢€)f (g} (b))) readily holds because k(-) is convex increasing and f(-) is decreasing,.
Thus, it suffices to show that f(g}(b) — ) f(R—qf(b) +9) > f(¢5 () f(R — ¢;(b)). Since d is arbitrarily small, this comparison

can be made using linear approximations for f(-).
(g5 (b) = 8)f (R — g1 (b) +0) = (f(gi (b)) — 0f (a7 (1)) (F (R — i (b)) + 0.f' (R — 45 (b))

= f(g7 () f(R — g7 (b) —5f (q1 (b)) f(R — g5 (b)) (17)
+0£(qi (1) f (R —qi (b)) — 0% f" (5 (b)) f'(R — g3 ().

—_ =

Now note the following:

(i) f(g(d)) < f(R—q; (b)) because f(-) is decreasing and ¢j (b) > R — ¢5(b) (by Proposition 8).

(ii) f (g5 (b)) < f'(R—¢;(b)) < 0 because f(-) is convex decreasing.

(iii) The term 62 f(g; (b)) f'(R — ¢; (b)) is negligible because the arbitrarily small variable § has a power of two.
Combining the above notes, we get:

—6f"(q1 () f(R — g5 (b)) + 0f (a5 (b)) f'(R = i (b)) > 0

(18)
= f(gi(b) = 8) f(R —qi(b) + ) > fai (b)) f(R — g7 (b)),

which completes the proof of Lemma 1 B

Now assume that b is uncertain and is drawn from the prior distribution v(-). We reuse the function L(b,q;) defined in the

proof of Lemma 1. The optimal attribute level of batch 1 satisfies:

q; = argmax E )[L(b, 1)) (19)

qr bry(e

Define the function be,(g1) as the certainty equivalent for the random parameter b, satisfying the equation

bNI%(.)[L(l% q1)] = L(beq(q1), q1)- (20)

The first order condition for the optimality of ¢ is:

8]EbN’Y(‘)[L(bﬂQ1)} =0 = aL(beq((h)vql)

=0. 21
oqn a7 oq a7 @)

We now replace the distribution «(-) by a more variable distribution 4(-) and show that ¢} increases for convex k(7). We use

the symbol ~to redefine all respective variables. First observe that L(b,q1) is convex increasing in b, thus:

VE 0.0 > | B [L0.00)] = bel@) > begla). (22)

AL (beq(q1),q1) < OL(beq(q1),91)

From the proof of Lemma 1, we know that l;eq(ql) > beg(q1) implies e - e

o This translates to:

aL(Eeq (ql )a Q1)

OEpsy L(b,
<0 b~ (+) ( Q1)
g

h oq

. <0. (23)
q;
Thus, the objective function is reduced by increasing ¢;. Thus, ¢; > ¢j. This, combined with the fact that ¢f > ¢5 (by
Proposition 8) and ¢; + g2 = 2, implies that ¢7 > ¢ > ¢ > ¢ = ‘(jf — (j;| > |qi‘ - q;| An identical reasoning with reversed
inequalities proves that for concave k(T), the optimal attribute level of batch-1 is less for the more variable distribution, i.e.

G<G<G<G=|G-|>a—q|m

Proposition 10. By using a change of variables N-! = 1/N,., we obtain a convex optimization problem over the variables
N,;7! (note that if f(z) is convex, then z f(x~!) is convex over positive values of z). The convex set defined by the constraint

has an interior point because the maximum achievable production rate is strictly greater than the demand rate. Hence Slater’s



condition holds for the problem over N,~! and strong duality holds. The solutions to the primal and dual problems are unaffected

by the change of variables from N, to N, !, hence strong duality also holds for the original problem (18) over N, B

B Stochastic Lower Bound Algorithm

We refer to the original process as a “Type A” process and to the regenerative process as a “Type B” process. This simulation

based algorithm is designed to compute a lower bound on the minimum average cost of a type B process given Ij.

1. Set A to Agpg (the optimal cost of problem (11)).

2. Repeat the following simulation procedure until the simulated average cost seems to have converged:
set up a campaign at inventory level I}. Simulate a b and a sequence of z;s and ¢7s, then with full information on q°, b
and z, plan the campaign to minimize the differential cost of the current cycle. The decision variables are the number of
batches N and the attribute levels ¢;, summarized in the vector q. Let I(q) £ I — 7(q,q", b,z)d denote the inventory

level after the campaign. The differential cost of the cycle is evaluated as follows:

(i) If I(q) + N < I§, the differential cost is:

915, tryr(q)) — Migr(q) — 9o, tror) + AepPQtior

where t7,7(q) = (Ig — I(q))/d is the time required for inventory to go from I§ to I(q). The term —g(I,tr,1) + Aepqti 1
is the cost of instantly raising the inventory level from I(q) to I, from the definition of a type B process, and t1,;» =
(Io — I(q) — N)/d.

(ii) If I(q) + N > I}, the differential cost is:

915, tror(q)) — Migr(q) + ISSIISH}&)JrN{g(I’ trry) — My}

where the term min{g(I,¢;s,) — Atrr, } comes from the definition of process B. It allows the inventory to drop instantly from
I(q) + N to any I such that I < I < I(q)+ N. In the optimal policy for process B, the chosen I is one that minimizes
the differential cost to return to I§. It is easy to check that the differential cost increases with N after I(q*) + N < 0.
Hence, the largest N that needs to be considered is the first N that satisfies I(q*) + N < 0.

Once q is chosen, record the cycle cost and cycle time (respectively equal to g(I5,trr(q)) — 95, t1,17) + AepQtr,rr and
t1,1(q) for case (i), and equal to g(I§,t1,1(q)) +min{g(l,tr1,) — Mt11,} and M r(q) for case (ii)) to enable computing of the

average total cost after each iteration and checking for convergence.

3. Update the value of X to the average cost computed in step 2, and return to step 2. Repeat this process until A converges.

The resulting A is the optimal cost of a type B process.

To prove that this algorithm converges to a lower bound, note that the simulated process is an analog of process B, where
the decisions are made with full information on b and z. Therefore the optimal cost of this process is a lower bound on the
optimal cost of process B. Additionally, this process is also regenerative, as the inventory level I before campaign setup is a
recurrent state, hence the value iteration algorithm converges to the optimal cost (Bertsekas (1995, vol. 2)). This algorithm is

also effectively a value iteration algorithm, where the A at each iteration is evaluated using simulation.

C 3-Batch Example for Sufficiency of Re-optimization Policy

We consider a 3-batch campaign (N = 3) and sequentiall choose ¢1, g2, and g3 to minimize the total duration of the campaign.
For simplicity, we fix the initial dimensionless attribute level at ¢” = 2. We consider two planning scenarios: in the first scenario,
a policy q = [¢1, ¢2, ¢3] is computed as q = argming Ey, ,{7(q,b,2)}, of which ¢; is executed, then [g2, g3] is re-optimized after
observing t;. In the second scenario, q1, g2, and g3 are sequentially chosen as the optimal solutions to the dynamic program
(14). In the first scenario, in choosing ¢; we do not anticipate the fact that we are able to choose [g2, g3] based on more accurate
information, whereas in the second scenario we solve a dynamic program that accounts for all outcomes of ¢;. To evaluate the
most extreme-case difference between the two scenarios and to enable tractability of the dynamic program, we assume that

full information becomes available once we observe t;. That is, we assume that b is initially unknown, but is learned through



f71(t1/k(0)) once t; is observed (there are no random shocks to hinder the learning process). With these settings, the dynamic

program (14) converts to a two-stage formulation as follows:

va(qr,t1) = I%in[bk(tl)f((h) +bk(t1 +t2) f(3 — @1 — q2)],
where b= f~1(t,/k(0)) and to = bk(t1)f(q:), (24)
v1(0,0) = min[Ey {bk(0) f(q1) + v2(q1, b(0) f(q1))}]-

A numerical solution to (24) is computed by discretizing and enumerating g1, g2, and b, which evaluates the expected
campaign length under scenario 2 and also allows computing ¢i. The first scenario is also evaluated by enumerating qi, go,
and b, but here instead of ¢; being the optimal solution to (24), it is the first element in q = arg ming Ep{7(q,b)} (denoted by
q$). Additionally, the expected optimal campaign duration under apriori knowledge of b (i.e. a clairvoyant decision maker) is
evaluated using Ep{ming[7(q,b)]} (also using enumeration).

We may now compare the two policies by computational experiments. We let f(q) = —log(q/2), and in order to compare
the policies under a wide range of settings, we consider three classes of functions for the catalyst decay function k(T'):

(i) K(T) = (T +1)7,
(ii) k(T) = alog(T + 2),
(iii) k(T) = aexp(T).

For class (i), we alter the scale parameter a within the range [0.1,100] and the power parameter p within the range [0.2, 3].
For classes (ii) and (iii), we alter the scale parameter a within the ranges [1,100] and [0.1, 2] respectively. In all our test problems,
we assume a normal prior on b with mean 1 and standard deviation 0.2. We consider 220 problem settings in total, and make

the following observations, which are also summarized in §5.1 and used to justify the re-optimization policy.

1. Considering the fact that we enumerate ¢; in increments of 0.02 in the range [0.02, 2], ¢} and ¢§ coincide in 209 out of 220

problem instances, and have at most 0.04 difference in the remaining 11 instances.

2. In all 220 problem instances the expected campaign time under the re-optimization policy is within 1% of the expected

campaign time under the optimal policy.

3. In all 220 problem instances the expected campaign time under both policies is within 2% of the expected optimal campaign

time under apriori knowledge of b.

D Algorithm for solving PH

In the practitioner’s heuristic for the multi-product case, the problem PH is approximately solved by iterating over ¢ of one
product. Choose any one of the R products and index it by 7.

Algorithm.

1. Initiate t =ty and & = step size.

2. Lett:=t.

3. Let Ny = max[N] s.t. 27]:[:1 f_l(W:)mw) < N.

4. Let L = N;/ds.

5. Let N, = [Ld,] for all other r.

6. Let t} = min[t,] s.t. 25:1 X

7.

t* R
7]6(7”{)#17%) < N, forr #7.

If the variables chosen in steps 2-6 meet the constraints (22a)-(22c), evaluate t by V() = w Otherwise,
V(t) = oco.
8. t+06—t Ift> dlf’ go to 9; otherwise go to 2.
9. Let t; = argmin V(t), choose the rest of the variables by the procedure in steps 3-6, and terminate.

To understand the assignments in steps 4 and 5 of the Algorithm, observe that in the optimal solution to PH, the equations

L = min g" and N, = [Ld,] will hold: if L < min Ne I can increase without violating the constraints, reducing the objective

s

function. If N, > [Ld,|, N, can decrease to reduce the objective function. Both cases contradict optimality. Therefore, the

assignment in steps 4 and 5 satisfies the mentioned equations.
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