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SIMPLIFIED ESTIMATION PROCEDURES
FOR MCI MODELS*

MASAO NAKANISHI} anp LEE G. COOPER

Structural transformations of the MCI model are presented which make the model
easily estimated using dummy variables with widely available regression packages. The
MCI model is empirically shown to provide better predictive power than several other
models of similar form, but ones which do not produce logically consistent market
share estimates.

(Multiplicative Competitive Interaction Models; Dummy Variable Regression; Logical
Consistency)

1. Introduction

To encourage wider application of multiplicative competitive interaction
(MCI) models, this note presents a method for further reducing the computa-
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tional burden associated with estimating the parameters of MCI models and
producing logically consistent estimates of market shares (choice probabilities)
from MCI procedures. We present a series of structural transformations of
MCI models which allow parameters to be estimated by dummy variable
multiple regression. The MCI model is then compared to three market share
models with similar dummy variable form which do not produce logically
consistent market share estimates.

In Nakanishi and Cooper (1974) we proposed a least squares approach for
estimating parameters of a generalization of the Huff (1962) model. We call
models of the following general type multiplicative competitive interaction
(MCI) models:

™= H X,ff;au/jglh X, (1)

where:
= the probability that a consumer in the ith choice situation (period

and/or area) selects the jth object (i=1,2,...,1;j=12,...,m),

X ,,,j = the value of the Ath variable for object j in choice situation i
(X,; 20, h=12,..., H),

B, = the parameter for the sensitivity of = ; With respect to variable A.

8, = an independently and log-normally distributed, specification error.

Equation (1) produces logically consistent market share estimates (i.e. the
estimates of market share are all nonnegative and sum to one over all choice
alternatives in the market). Naert and Bultez (1973) argue that logical consis-
tency should be required as a criterion for the appropriateness of market share
models.

Model (1) may be transformed into a linear form in the parameters by

applying the following transformation to -

H
log(m;/ %) = hgl Bhlog(th/fh,_) + log(8,j/<§,-.) (2)

where 7. , X, 4. and 8 are the geometric means of 7y, Xp; and §; over j in
choice situation i, respectlvely The above transformation w1ll be referred to as
“log-centering” hereafter.

Further, we combined the specification error first suggested by a draft of
Bultez and Naert (1975) with multinomial sampling error which Bultez and
Naert do not consider. In Nakanishi and Cooper (1974), we provided general-
ized least squares estimation procedures for three cases: only specification
error present, only sampling error present, and both types of error present.

While the least squares procedures proposed by Nakanishi and Cooper
make MCI models much more available than the functional iteration or direct
search approaches of Urban (1969), Kuehn, McGuire and Weiss (1966),
Hlavac and Little (1966), and Haines, Simon and Alexis (1972), even less
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cumbersome procedures are presented in the next section devoted to estima-
tion of the MCI model by dummy variable regression.

2. Estimation by Dummy Variable Regression

Based on equation (2), we can estimate:

H
lOg(P,-j/i)}.) = hgl Bhlog(Xhij/Xhi-) + € 3)

where:

p;= an estimate of 7; (p; > 0),

p;.= the geometric mean of p; over j in situation /,

€; = the stochastic disturbance term.

The stochastic disturbance term € is a function of specification errors, 8,]-,
and multinomial sampling errors, 7, resulting from the disparity between
sample proportions p;; and population probabilities 7. Because of this combi-
nation of influences the ordinary least squares (OLS) estimates proposed
below are not the minimum variance estimators. (The generalized least
squares procedures of Nakanishi and Cooper (1974) produce asymptotically
minimum variance estimators.)

To estimate market shares from (3) one can use the estimated regression
coefficients BA,, and note that

H . ,m H
ﬁ,j=h1_]lx,5;/2 IT x4 4)

Jj=1h=1

Alternatively one can let the estimate of the dependent variable denoted by
H A ~
}7,]- = hEI Bthg(Xh,j/Xm- ) (%)
It follows from (4) and (5) that
7?,.] = exp()?ij)/ Zl exp()?,-j). (6)
j=

We call the transformation in (6) the “inverse log-centering” transformation.
Equation (3) is somewhat cumbersome since it does require the computation
of geometric means for several variables. One also needs to suppress the
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intercept, a feature available in SAS, SPSS and BMD, but not common to all
packaged multiple regression programs. Equation (3) can be rewritten as

H H
log p,; = 21 Bylog X+ log .. — hz Bilog X,,. +¢; . 7
fyn =1
If we let
H _
a;=log p,— > BlogX,,. 3)
A=l

«; does not change over j in a given choice situation, which suggests what is
demonstrated in the appendix, that the ordinary least squares estimates from
(3) are numerically equivalent to those obtained without log-centering from
the following dummy variable regression model.

1 H
log p; = .21 a,D,+ hzl Bilog X, + €; %)
i= =
where:

D, = a dummy variable which is equal to 1 if i/ =i and 0 otherwise,

a; = the regression coefficient for D,.
Equation (9) suppresses the common intercept term. If it cannot be sup-
pressed in a particular multiple regression package one may substitute

I1—-1 H
log p;=vo+ 2 v/D/+ ;.21 Bulog X+ ¢; (10)

i=1

where:

Yo = oy,

Y=~ a.

To estimate choice probabilities from (10) one should use the inverse
log-centering transformation, that is if we let y* be the estimate of the
dependent variable in (10) then as per Equation (6) we obtain

ﬁij=exp()5;)/' lexp()?;). €9))
j=

For the purpose of the regression analysis then one may use either (3), (9) or
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(10) all of which will produce identical estimates { ,éh}. When the total number
of choice situations (periods or areas), /, is small, one should be indifferent
between the three regression models on all criteria except those dealing with
adaptability to computational software. When [ is large, the prereduction of
data by log-centering reduces computational expense by not having to esti-
mate the parameters corresponding to dummy variables.

The dummy variable regression technique described above is also applicable
to the so-called multinomial logit (MNL) models, a typical representation of
which takes the following form:

m;

H H
= ‘”‘P(hzl B;.X;.fj)/ ,zl eXp(hEI BhXhif)' (12)
= j= -

One may view the MNL formulation as an MCI model in which all explana-
tory variables are exponentially transformed. A regression model analogous to
(9) for the model in (12) is given by:

i'=1

1 H
log Pi= 2 oD+ hgl :BhXhij+ € - (13)

Although more complex estimation techniques for MNL models have been
proposed elsewhere (cf. Manski and McFadden, 1981) equation (13) provides
an easy estimation technique when ratio-scaled estimates of 7,’s are available.
Choice probabilities for MNL models may be estimated by the inverse
log-centering transformation (11).

3. Comparison with Related Models

The dummy variables regression model (9) is directly comparable with other
log-linear models. Model (9) clearly is a generalization of the log-linear
regression model of the form

H
log p; = &y + hgl Bilog X, + €; - (14)

Model (14) is a special case of model (9) in which the intercept term is
assumed to be identical for each choice situation. This special case does not
produce logically consistent market share estimates.

To illustrate the advantage of logically consistent models, regression models
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(9) and (14) are fitted to data from Huff (1963),' along with two variations of
(14), namely,

H m;
log p; = ag + h2| ,B,,log(X,".j/ 21 X,,,.j) +¢; and (15)
- j=

H
log p; = ay + hgl Brlog( X/ X, ) + €5 (16)

where X,,. is the arithmetic mean of X wj OVer j in choice situation i. The
explanatory variables in (15) are in a share form and those in (16) are in a
normalized form. Both have been used as market share models before (e.g.,
Lambin 1972, Weiss 1968, and Wildt 1974). None of those models satisfy the
logical consistency requirement.

Table 1 shows the OLS estimates of the parameters of the four models.
Model (9) gives a marginally better fit as indicated in the R 2-values. When the
estimates of m;’s are computed from respective models (by inverse log-
centering in the case of (9)), marked differences emerge. The first column of
Table 2 shows the mean squared deviation between 7, ; and p;; of (analogous to
the variance of estimation errors) for each model. The mean squared deviation
for the MCI model is by far the smallest. Since (9) includes dummy variables,
it has fewer degrees of freedom than other models, and its better fit is not
strong evidence of its superiority.

A cross validation analogous to the one in Nakanishi, Cooper and Kas-
sarjian (1974) may be performed here. The parameters of all models may be
estimated from each pair of choice situations and used to “predict” the choice
probabilities in each remaining choice situation. The average cross validity
correlations between actual and predicted probabilities are all very high. But
the average of the mean squared errors strongly favors the MCI model (9),
which produces mean squared errors three to ten times smaller, as shown in
Table 2.

The dummy variable regression (10) should make the estimation of multipli-
cative competitive interaction (MCI) models easy. It should be emphasized,

The data taken from Huff (1963, pp. 453-454). The estimated values of choice probabilities
are p;; = n;;/n;, where n, is the sample size in situation i and n; is the number of respondents who
chose object j (a shopping center in this case). The variables are shopping center size in thousands
of square feet (used as a surrogate for width of display space), and travel time. Finding a scalar to
convert center size into width of display space is superfluous in model (1) since multiplying each
explanatory variable by a constant, possibly unique to each choice situation, does not affect the
estimates of f,. Choice measure were collected on 14 shopping centers in three neighborhoods.
Centers which received no share of a neighborhood were dropped from that choice situation. This
resulted in m, = 5, m, = 8 and m; = 12 shopping centers.
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TABLE 1
Parameter Estimates* for Log- Linear Models with Standard Errors (in Parentheses)
Parameters
Model
(Equation) Qg a, a az B B, R?
(9) MCI — —-6.22 - 5.82 -579 1.46 —241 0.78
(1.38) (1.33) (1.31) (0.26) (0.29)
(14) - 573 - — — 1.40 —2.34 0.77
(1.28) (0.25) (0.28)
(15) —4.48 — — — 1.60 —2.11 0.69
(0.68) (0.29) (0.22)
(16) —345 — — — 1.44 —~2.40 0.76
(0.16) (0.26) 0.29)

* All parameter estimates are significant at the 0.01 level.

however, that (10) is an ordinary least squares procedure and does not
produce the best estimators in terms of minimum variance. Generalized least
squares procedures (cf. Nakanishi and Cooper 1974) are needed to produce
(asymptotically) minimum variance estimators.

By following an approach analogous to that indicated here, the dummy
variable regression (10) can also be generalized to extended MCI models
which allow parameters to vary over objects, j, or models in which the market
share of one brand is affected by the marketing efforts of others. The
methodological issues involved in these generalizations are the topic of sepa-
rate development.

Appendix

Consider the least-squares estimates &; and ,é,, and (9):

m 2

rom 1 H
Min > > |log p; — X &D; — hgl (BilogX,,;)

B =1 j=1 =1

TABLE 2
Mean Squared Error Between Actual and Estimated Market Shares

Average Cross Validation Results

Model Mean Correlation Mean
(Equation) Squared Error? of pand p Squared Error
9 (MCIy? 0.005 0.988 0.005
14 0.017 0.987 0.016
15 0.039 0.962 0.050
16 0.022 0.988 0.032

“Degrees of freedom are 20 for the MCI and 23 for other models.
b Estimated market shared are computed through the inverse log centering
transformation.
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For any given B, the optimal «; has the property:

m; 2

H
l\/gxi_n 21 log p; — o&; — (hz_:l B,,logX,,,j)

i j=

Note that given { §8,}, the problem of finding the optimal «, becomes
separable. Thus

m; H
_ 1
6= 2, (logpj ’zl ﬁ,,logX,,,.j)
=L 3 (logp, - 2 Bh > log Xy,
ij= lj—l

= (log S ﬁhlogih,-.)
h

By substituting the optlmal value & into (9) we get (3) thereby proving the
result that the optimal B,, for (3) are the same as those for (9).
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