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A NEW SOLUTION TO THE ADDITIVE CONSTANT PROBLEM
IN METRIC MULTIDIMENSIONAL SCALING*

Lee G. CooPER
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A new solution to the additive constant problem in metric multi-
dimensional scaling is developed. This solution determines, for a given
dimensionality, the additive constant and the resulting stimulus projections
on the dimensions of a Euclidean space which minimize the sum of squares of
discrepancies between the formal model for metric multidimensional scaling
and tge original data. A modification of Fletcher-Powell style functional
iteration is used to compute solutions. A scale free index of the goodness of fit
is developed to aid in selecting solutions of adequate dimensionality from
multiple candidates.

The additive constant problem was originally formulated as the problem
of finding a constant, ¢, which converted the observed comparative interpoint
distance between a pair of stimuli, %, , into an absolute interpoint distance,
d;: , in such a way as to minimize the dimensionality of the resulting Euclidean
space in which the stimuli were to be represented.

(1) h,-,,=d,-k+c j,k=1,2,"',n,].¢k,

&) dix = l:;; (@jm — a,,,,,)2:|1/2,

where a;, is the projection of the jth stimulus on the mth dimension of a
t-dimensional Euclidean space. No solution has ever been found for this
formulation of the problem.

The first systematic reformulation of this problem was by Messick and
Abelson [1956]. They worked on the relation of the additive constant to
the elements of a matrix of scalar products, B*, among the stimulus projec-
tions. They consider the roots and vectors of B* resulting from an Eckart—~
Young [1936] resolution. They note that in a “true” solution from this
approach, there are a minimum number of large roots and the remaining
roots are zero. With fallible data, this ideal is not achievable. Neither is it
reasonable to assume that all errors would function so as to make the roots
of B*, which correspond to zero roots in the “true” solution, positive. Messick
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and Abelson, therefore, attempted to find the additive constant, for a given
dimensionality, which makes the residual roots of B* average zero. Their
approach was well thought out, consistent and logical. There has, however,
been some dissatisfaction with the results their procedure produces. The
problem seems to be that quite often relatively large negative roots appear.
If the absolute value of a negative root is larger than the value of a root
corresponding to what is claimed to be a real perceptual dimension, then the
investigator is in a very difficult position. He could claim that all negative
roots, regardless of size, are treated as part of the error and not subject to
interpretation. However, this would be an attempt to ignore the issue rather
than deal with it. Such a claim would also be counter to the rationale under-
lying the Messick and Abelson solution, even though no violation of the
mathematical formulation would be entailed. On the other hand, the investi-
gator may accept the negative root as corresponding to an imaginary percep-
tual dimension. In such a case the investigator must somehow deal with a
violation of the model proposed by Messick and Abelson and also attempt
to interpret an imaginary perceptual dimension.

There is another possible formulation of the problem. It rests on the
realization that metric multidimensional scaling provides a model for psycho-
logical reality. As such it could be in error. We could attempt to find a con-
stant such that the lack of fit of the model to reality is minimized. This
can be done by introducing a discrepancy term §;; ,

3 hix =dp + ¢+ dir

and establishing an error function G,

@ Z E & -

The problem then reduces to determining, for a given dimensionality, the
additive constant and the stimulus projections which will minimize G. If
expressions can be found for the partial derivative of G' with respect to ¢ and
each stimulus projection, then a solution can be developed using functional
iteration.

The partial derivative of G with respect to the additive constant is
relatively easy to obtain. Expressing G in a more workable form, we have

% i Z ((hik - 0)2 + Z (ajm — 0’»«.)2

() i v
= 2(hix — c)[i:, (@1n = a"')a] )

Then,
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If the comparative interpoint distances are originally given a mean value
of zero, setting the partial to zero and solving for the value of the additive
constant which minimizes G for a given set of stimulus projections, results
in the following expression for c:

The partial derivative of G with respect to a particular stimulus projection,
@;eme , Will be obtained term by term.
The first term is a constant with respect to this derivative, so that

PBELm-o]

ik
€)) T 0.
The derivative of the second term is
1
6[2 hZ ; (Z (atm - akm)2>:|
0 rms
(9) ( ; 2((1,,,,. - ai*u')(_l) + k; 2(ai‘m' - akm'))

= 2(n - l)a,-.m. - 2 Z Qime -

iFi*

Since the distances are invariant with respect to the location of the origin
of the space, we are free to aid the constraint that

(10) > ain =

With this restriction we have

(11) i; Oims = —Qjoge .
Consequently

f15 5(5 enm o]
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The partial of the third term is

DO | =

(12)

= 2na,-.... .
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This leads to the final result

aa(?G [na,.,,.. - Z (h,ok -
(14) i*m* P

(@gome — akm.)(‘; @em — “k")z)_m]'

A particular type of funectional iteration procedure, known as the
Fletcher-Powell routine [Fletcher and Powell, 1963], is well suited to mini-
mize G. Gruvaeus and Jéreskog [1970] have found their version of the
Fletcher-Powell method to be most efficient when:

i the number of arguments is large
ii. the function is complicated and time-consuming to compute
iii. the additional time required to compute derivative values, after the
function value has been computed, is relatively small
iv. second-order derivatives are not available or are time-consuming to
compute.

These four characteristics well describe the circumstances surrounding the
function of concern here.

This iterative scheme approximates the error function with a generalized
quadratic equation. It uses the first derivatives and develops estimates of
the inverse of the matrix of second-order derivatives to calculate optimal
increments at each iteration. Since no attempt was made to derive more
appropriate estimates of the inverse of the matrix of second-order derivatives,
the identity matrix is used as an initial approximation. This makes the early
iterations like those in a standard steepest descent procedure. These estimates
are improved internally to provide for very rapid convergence. The solution
using this procedure will initially be a centroid solution, but the origin may
be translated to a psychologically more meaningful position, if one can be
found, without altering the value of the error function.
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A program, COSCAL, which incorporates the Fletcher—Powell procedure,
was developed for computing the solution for the additive constant and the
coordinates of the stimulus-objects on the dimensions of a Euclidean space.
It was written in FORTRAN IV for the IBM OS 360/91 computer and the
FORTRAN H compiler. This program provides the user with the option of
using his own starting points or using starting points defined by the program.
This initial configuration is determined by estimating an additive constant
such that the smallest absolute distance is slightly larger than zero. From
these absolute distances a matrix of scalar products is developed accord-
ing to the formula given by Torgerson [1958, p. 258]. This matrix is resolved
into its principal axes and the coordinates of the objects on the first ¢ principal
axes are used as the initial configuration for a -dimensional solution.

Initial testing of this program was centered around two examples. The
first example involved errorless data to test the accuracy of the solution.
It was based on a triangular pattern of five stimuli in two dimensions. The
solution produced by the program is plotted in Figure 1. The routine con-
verged after 11 iterations within an orthogonal rotation of the exact solution.
The value of the error function, G, was zero to double precision accuracy.

The second example used real data to investigate the identifiability of
adequate solutions from multiple candidates. To aid in this an index of the
goodness of fit was developed. It is based on the ratio of the sum of squares
of discrepancies to the sum of squares of the original comparative interpoint
distances adjusted to have a mean of zero.

2 o
(15) FIT =1 — —<— .
2 (ha =)
i<k
This index eliminates the scale dependency of the function, G. When the
solution is perfect G = 0 and FIT = 1. At convergence the index of the
goodness of fit can never be less than zero.

Since a solution in zero dimensions would have all stimuli at a single
point; the additive constant which would minimize the value of @ would be
zero according to (7); all absolute distances would be zero; and thus, the
sum of squares of discrepancies would be the sum of squares of the original
comparative interpoint distances, when they are set to have a mean of zero.
Since the denominator in (15) is really G, , the error value for a zero-dimen-
sional solution, and the numerator is @, , the error value for a t-dimensional
solution, the index may be rewritten as
G: .

(16) FIT =1 — G

Therefore, this index may be interpreted as showing the relative improvement
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FIGURE 1. SOLUTION TO THE FIRST EXAMPLE. A TRIANGULAR
PATTERN OF FIVE STIMUL! IN TWO DIMENSIONS.

of a t-dimensional solution over a zero-dimensional solution. It can be used
in a “root staring” type of procedure to aid in the selection of the proper
number of dimensions in a solution.

The comparative interpoint distances analyzed in the second example
are taken from Torgerson, Theory and methods of scaling, p. 286. They in-
volve judgments collected by the complete method of triads on nine Munsell
colors. All nine were of the same red hue. They vary in brightness and satura-
tion only. The original pattern of brightness, in value units, and saturation,
in chroma units, appears as the dots in Figure 2. Solutions were sought for
one dimension to eight dimensions. The index of the goodness of fit, the
number of iterations required for convergence, and the execution time appear
in Table 1.
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BRIGHTNESS IN VALUE UNITS AND SATURATION, IN
CHROMA UNITS, FOR THE NINE MUNSELL COLORS.
FROM TORGERSON (1958),

A plot of the fit index values versus dimensions in solution appears in
Figure 3. On the basis of scanning this plot a two-dimensional solution was
determined to be adequate. The contribution of the third dimension is
extremely minor. The two-dimensional solution is listed in Table 2.

Table 1
Summary of solution characteristics
for nine Munsell colors =-- Example 2.,

Dimensions FIT Iterations Time in seconéds
1 O, iy 8 0.36
2 0.98 15 0.51
3 0.99 27 0.93
L 1,00~ 38 1.67
5 1 - OO— 38 2. ["6
6 1400= 41 3.05
7 1.00~ 58 573
8 1.00 62 7.26
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Table 2
Solution for nine Munsell colors--Exasmple 2,
Stimulus Dimension
Number I 1T
1 2,11 2.19
2 1.08 1.4
3 2,51 -0.80
4 -0.59 1.58
2 0.19 -0.84
6 0.9k -2.78
T -1.65 0.17
8 -1.38 -2,02
2 -3.21 1.06
1.0 . . . . . .
9+
84
74
64
F
1 i
T 5
44
3
2-
14
° 3 3 L] y T T
o } 2 3 4 5 ° ¥ 3
DIMENSIONS

FIGURE 3. PLOT OF THE GOODNESS OF FIT VERSUS DIMENSIONS
FOR NINE MUNSELL COLORS - EXAMPLE 2.
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For the purpose of comparing the solution obtained by this procedure
with the solution obtained using the Messick and Abelson approach, both
solutions were rotated to maximal congruences with the original theoretical
configuration. The rotational system was the Schonemann and Carroll [1970]
extension of orthogonal Procrustes [Schonemann, 1966; and Cliff, 1966] which
allows for translation of origin, central dilation, and orthogonal rotation to
a least squares criterion. The average squared error for the Messick and
Abelson solution given by Torgerson [1958, p. 289] was .99 and for this new
approach was .95. This indicates that the new solution is at least somewhat
superior to the Messick and Abelson solution in its ability to retrieve the
theoretical configuration from the real data. The transformation matrices,
the dilation factors, the translation vectors, and the rotated solutions are
listed in Table 3 for both solutions.

Table 3
Rotation of Solutions to the Theoretical Configuration

Coscal Messick and
Solution Abelson Solution

Transformation Matrix

0,95 0.31 1.00- .07
0.31L -0.95 - .07 1.00-

Dilation Factor

1.0k 1.11

Translation Vector

5.00 T.11 5.00 T.1l1

Rotated Solution

7.79 5.64 8.12 5.60
6.53 6.04 6.79 5.78
T.22 B8.71 7.48 9.02
k.93 5.36 4.8y 5.03
L.92 7.99 L.o7 8.21
5.02 10.16 4.86 10.12
3.43 6.k2 3.19 6.30
2,98 8.66 2.88 8.92
2.18 5.02 1.90 5.02
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The rotated configuration using the new solution is indicated in Figure 2
as the tips of the arrows originating from the theoretical position. If we
consider the centroid of the theoretical configuration as a ‘“psychological
origin” the real data points indicate that the subjects consistently under-
estimate the magnitude on the “chroma’” dimension and consistently over-
estimate the magnitude on the ‘“value’ dimension. This isreflected numerically
in a .99 correlation of the real data on the “chroma” dimension with the
theoretical data on this dimension, and a .99 correlation of the real data on
the ‘“value” dimension with the theoretical data on this dimension.

Discussion

With the development of nonmetric multidimensional scaling, a question
has arisen as to the practical and theoretical value of metric multidimensional
scaling. On the theoretical side of the issue, data meeting metric assumptions
should be scaled using a metric procedure rather than a nonmetric one.
This assertion does not have the same force when applied to an exploratory
methodology such as multidimensional scaling as it does with the confirmatory
methods of statistics. A parametric statistic is more powerful than a corre-
sponding nonparametric statistic [Siegel, 1956, p. 31], but no criteria parallel
to “power” exists for multidimensional scaling. It can be easily demonstrated
[Cooper, 1970a) that in theory as the number of stimuli becomes smaller,
a metric multidimensional scaling criterion allows for far less distortion
of the underlying stimulus configuration than does a nonmetric criterion
such ag “‘Stress” [Kruskal 1964a and b]. In practice this advantage may not
be as dramatic. This is because the numerical algorithm widely used for
nonmetric multidimensional scaling {Young and Torgerson, 1967] generates
starting points for the iterative procedure in the same way as this metric
procedure. Even though it is theoretically inappropriate to use such a pro-
cedure on nonmetric data, the practical ramification of this for metric data
would most likely be some reduction in the advantage of metric multi-
dimensional scaling,

The practical advantages of metric over nonmetric multidimensional
scaling have not yet been fully investigated. However, one of the greatest
advantages is that metric multidimensional scaling provides the investigator
with the clearest and most traceable relations between the original data
and the final solution.

This property becomes especially important when multidimensional
scaling is used in combination with other multivariate techniques such as an
individual differences model for multidimensional scaling [Tucker and
Messick, 1963; Tucker, 1970]. These models are extremely powerful in their
ability to represent systematic individual differences from the variability in
the original responses. The proper data with which to enter these models are
the scalar products between stimuli [c.f. Cooper, 1970b; Tucker, 1970].
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Scalar products can, of course, be obtained from either metric or nonmetric
multidimensional scaling. But metric multidimensional scaling has a special
advantage here. The investigator can use the metric scaling eriterion to solve
for the appropriate or adequate number of dimensions to include in the
scaling solution for each subject. The stimulus configurations can be saved
for later between-individual comparisons, while the additive constant can
be used with the original comparative interpoint distances to form scalar
products. These scalar products contain variability which may be common
over subjects, but which might well have been lost if the scalar products had
been computed from the stimulus configuration. The loss of this variability
would occur because of a reduction in the dimensionality of the stimulus
configuration. Since the nonmetric method can only obtain scalar products
from the stimulus configuration, the only way to preserve this variability
is to obtain a configuration with zero Stress. This would usually entail
obtaining an (n — 1)-dimensional solution for » stimuli, which is very im-
practical. Further, even if the (n — 1)-dimensional solution is obtained it
is not very useful for later, between-individual comparison.

While further research is needed to compare directly metric and non-
metric multidimensional scaling solutions from metric data, there seem to be
two practical advantages for metric multidimensional scaling. First, metric
scaling maintains a simple linear relation between the original data and the
final solution. Second, metric scaling is more readily amenable for usage
with the individual differences model for multidimensional scaling.
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