Note on O-ring Theory of Production
Production is done with a sequence of N tasks by N different workers. Each task must be completed for there to be output. The dollar value of the equipment used is M and the interest rate is r .

$$
\begin{aligned}
& T_{i}=\left\{\begin{array}{lr}
1 & \text { if the task is completed } \\
0 & \text { otherwise }
\end{array}\right. \\
& Q=\prod_{i=1}^{N} T_{i} \\
& \operatorname{Pr} \text { ofits }=p Q-r M-w N
\end{aligned}
$$

Let the probability of completing a task be q . Then the expected profit for operations using all q workers is
$E(\operatorname{Pr} o f i t s)=p q^{N}-r M-w(q) N$
and the wage that can be offered to purchase q type workers is
$w(q)=\left(p q^{N}-r M\right) / N=q^{N} \frac{p}{N}-r \frac{M}{N}$
where M / N is the capital intensity and N is the complexity.

Issues:
Matching
Supply of q
Inessential tasks: $\prod\left(\alpha+T_{i}\right)$

