REUSING STRUCTURED MODELS VIA MODEL INTEGRATION

Arthur M. Geoffrion

John E. Anderson Graduate School of Management
University of California, Los Angeles
405 Hilgard Avenue
Los Angeles, California 90024

ABSTRACT

This paper begins with a review of reusability and
modularity ideas from the software engineering literature,
most of which are applicable to the modeling context.
Many features of structured modeling support reusability
and modularity, and these are noted. The main focus of
the paper, however, is on achieving reusability and
modularity via the integration of two or more model
schemas. A 5-step approach for integrating schemas
written in SML (Structured Modeling Language) is
proposed for this purpose. Examples are given to illustrate
this approach, and the pros and cons of structured
modeling for reuse are discussed at some length.

INTRODUCTION

"Reusability” and "modularization” concepts play a
key role in the part of software engineering that is
concerned with improving software development produc-
tivity. The analogies between programming and modeling
suggest that some of what software engineers have
learned about these concepts might be adapted to improve
model development productivity.

Reusability need not involve model integration, but
integration is an important way in which reuse can occur
in the context of modeling. Reuse via model integration
is the central focus of this paper.

In particular, we treat this topic from the viewpoint
of structured modeling (Geoffrion [9] [11]). It would be
impossible to give an adequate introduction to structured
modeling within the confines of this paper, and so we
must presume prior knowledge on the part of the reader.
In a nutshell, however, one can say that structured
modeling aims to provide a formal conceptual framework
of considerable generality for modeling, within the broader
task of laying the foundation for a new generation of
modeling environments. The framework uses a hierarchi-
cally organized, partitioned, and attributed acyclic graph
to represent the semantic as well as mathematical
structure of a model. A language called SML has been
designed and implemented to support this framework
(Geoffrion [12]).

The organization of this paper as follows. Section |
reviews reusability and modularity ideas from the software
engineering literature for the benefit of readers who may
not be familiar with these ideas. Section 2 presents a
procedure for integrating the general structure of two
distinct models written in SML. Section 3 illustrates this
approach in a simple but instructive setting. The last

0073-1129/89/0000/0601$01.00 © 1989 IEEE

section discusses some of the issues that arise when one
considers structured modeling in the context of the ideas
presented in the prior sections.

Papers by other authors on model integration
include Blanning [3], Bradley and Clemence (6], Kottemann
and Dolk [17], Liang 18], Muhanna and Pick [22], Murphy
et. al. [23], Tsai [27], and Zeigler [30] (Chaps. 4,5). Each
adds a dimension not treated here. For example,
Kottemann and Dolk [17] addresses the integration of
model manipulation operations, whereas we limit consider-
ation to model definition alone. For a more general
discussion of model integration, see Geoffrion [10]. That
paper distinguishes several different kinds of model
integration and assesses the strengths and weaknesses of
structured modeling in support of each.

1. SELECTED IDEAS FROM SOFTWARE
ENGINEERING

Reusability is a prominent topic in software
engineering because being able to use previously created
and (presumably) debugged code saves work that is
expensive and for which skilled personnel are in short
supply. Advantages accrue not only to the initial
development activity, but also to the very important
activities of maintenance and modification. Moreover,
code is not the only thing that can be reused; it can be
advantageous also to reuse data, program and system
designs and architecture, specifications, test plans, and so
on. See Freeman [8] for an excellent collection of
readings on reusability.

As might be expected, different authors focus on
different aspects of reusability. Here is a selected sample
of points and opinions.

One recent article by a leading expert on software
engineering cites "reusing components" as one of six
primary options for improving software productivity
(Boehm [5]). To Boehm, reusability is most closely related
to two things: libraries of software components (like
mathematical and statistical routines) and 4GL/application
generators (like Focus and Nomad). The justification for
the second item appears to be that various of the soft-
ware components constituting a 4GL processor or
application generator are reused at each application in
place of writing a program in a traditional language.
Reuse is by reconfiguring the pre-existing components into
a relatively special purpose software system, or by using
them in lieu of a special purpose software system by
"executing" a high level specification of functionality.

Near the end of the article, Boehm offers this
opinion:

“Thus, for the 1995-2000 time frame, we can see
that two major classes of opportunities for improving
software productivity exist: providing better support
systems for broad-domain applications, involving fully
integrated methods, environments, and modern
programming languages such as Ada; and extending
the number and size of the domains for which we
can use domain-specific fourth-generation languages
and application generators."

If transposed from the context of programming to the
context of modeling, this view is very much in the spirit
of structured modeling.

Another view of reusability is provided by Balzer,
Cheatham, and Green [1]. Their basic approach is that
software should be produced by end users who write
formal specifications that can be transformed more or
less automatically by computer into the desired software.
Maintenance would not be done on source code, as is the
usual case today, but rather on the formal specification;
revised code would be regenerated as needed. This
automation-based paradigm for software development
admittedly is idealistic: the necessary technology is not
yet adequate for many applications. Thus the authors
accept skilled intervention with respect to strategic
implementation decisions. However, they argue that both
the documentation of these decisions (they call this the
"development") and their execution should be automated.
The authors claim important advantages for the
automation-based paradigm, among which is software
reusability. To quote:

"Software libraries - with the exception of
mathematical subroutine libraries - have failed
because the wrong things are in those libraries.
They are filled with implementations, which
necessarily contain many arbitrary decisions. The
chance that such an implementation is precisely
right for some later application is exceedingly small.

Instead, we should be placing specifications and
their recorded development in libraries. Then, when
a module is to be reused, the specification can be
modified appropriately - that is, maintained - and
its development changed accordingly. Thus,
maintenance of both the specification and its
development becomes the basis of reuse, rather than
a fortuitous exact match with a previously stored
implementation."

There seems to be a strong connection between the
automation-based paradigm and the 4GL/application
generators advocated by Boehm: the latter can be viewed
as domain-specific examples of the former.

A third article discussing reusability, Kartashev and
Kartashev [16], takes the position that the reuse of
software components is one of only two main options for
reducing software costs. Within this option, two
approaches are noted:

"... The composition approach provides for some
abstract initial representation of reused program
modules, then the use of a composition technique
such as parameterized programming, the UNIX pipe

mechanism, or special specification techniques to
construct a complex program from reusable modules
with the interfaces specified by the composition
technique.

The second approach involves the creation of
libraries of reused components that do not need
preliminary specifications to be connected to each
other.”

Goguen [15] develops the first approach in detail. He
gives this brief and tantalizing synopsis at the outset:

"...The goal is to make programming significantly
easier, more reliable, and cost effective by reusing
previous code and programming experience to the
greatest extent possible. Suggestions given here
include: systematic (but limited) use of semantics, by
explicitly attaching theories (which give semantics,
either formal or informal) to software components
with views (which describe semantically correct
interconnections at component interfaces); use of
generic entities, to maximize reusability; a distinction
between horizontal and vertical composition; use of
a library interconnection language, called LIL, to
assemble large programs from existing entities;
support for different levels of formality in both
documentation and validation; and facilitation of
program understanding by animating abstract data
types and module interfaces."

Several of these ideas have analogues in structured
modeling.

Goguen’s most intriguing ideas, and his main focus,
are those relating to LIL. The structured modeling
analogue of LIL would be a language for integrating
models (schemas or even fully specified structured
models). No such language presently exists for structured
modeling. In the modeling literature more generally, the
only efforts I know of along these lines are the recent
contributions by Bradley and Clemence [6] and by
Muhanna and Pick [22]. Since such a language could
greatly facilitate model reuse through integration, this is
a potentially fruitful area for research. Some inspiration
may be found in the literature on module interconnection
languages, which has been surveyed by Prieto-Diaz and
Neighbors [25].

A topic in software engineering closely related to
reusability is modularization. The connection is that well
modularized code is easier to reuse than code that is
poorly modularized. Presumably, the same statement is
true of models. See, for example, the classic paper by
Parnas [24], which cites these benefits for a modular
style of programming:

* shorter development time is possible because
different people can work simultaneously on
separate program modules;

* evolutionary flexibility is improved because

drastic changes can be made to one module without

impacting the others;

* understandability is improved because it should be
possible to study the system one module at a time.

That paper champions information hiding as a criterion
that often leads to better modularization than more

traditional criteria. That is, each module "hides some
design decision from the rest of the system", with its
interfaces crafted "to reveal as little as possible about its
inner working.” The design decisions worth modularizing
are those which are difficult or likely to change.

Modularization ideas play a major role in the
thinking of many leading authors in the area of program
and system design. For example, Yourdon and Constantine
[29] describe the central focus of their book as follows:

"Our concern is with the architecture of
programs and systems. How should a large system be
broken into modules? Which modules? Which ones
should be subordinate to which? How do we know
when we have a ’good’ choice of modules? and, more
important, How do we know when we have a 'bad’
one? What information should be passed between
modules? Should a module be able to access data
other than that which it needs to know in order to
accomplish its task? How should the modules be
*packaged’ into efficient executable units in a typical
computer?" [page xvi]

Much of the book’s discussion of such questions can be
translated easily into provocative positions about
analogous questions in modeling. These positions deserve
to be studied.

One of the most fashionable manifestations of
modularization and related ideas in the service of
reusability (and other popular goals) is object-oriented
programming. A particularly vigorous presentation from
this point of view is found in the book by Cox [7]. He
argues that it is possible to develop software counter-
parts of integrated circuits; counterparts in that they can
be reused readily by programmers much as integrated
circuits are reused readily by hardware designers. Here
are two intriguing passages to provide a taste of Cox’s
viewpoint:

"Objects are tightly encapsulated and thus relatively
independent of their environment. They can be
designed, developed, tested, and documented as
stand-alone units without knowledge of any
particular application, and then stockpiled for
distribution and reuse in many different cir-
cumstances. A reusable module acquires value unto
itself, while the value of application dependent code
has no value beyond that of the application as a
whole. It can be tested and documented to much
higher standards than has been done in the past.”
[page 26]

"These concepts, working together, put reusability
at the center of the programming process. Encap-
sulation raises firewalls around the objects within a
system, so that if they change, other parts of the
system can remain unchanged. Inheritance does the
converse, by spreading decisions implemented in
generic classes automatically to each of their
subclasses. The net effect is making libraries of
reusable code, called Software-IC libraries, a central
feature of the system-building shop." [page 91]

This completes the review of reusability and
modularization ideas from the software engineering
literature.

603

We turn now to a step-by-step approach for
integrating two structured modeling schemas. This is one
way in which reuse can occur in modeling. Each par-
ticipating schema can be viewed as a module.

2. A PROCEDURE FOR MODEL
INTEGRATION

This section explains a procedure for integrating
the general structure of two models. Let two SML model
schemas be given.

By necessity, we presume that the reader is
acquainted with the basic technical terms of SML
(Geoffrion [12]). For example, the reader should know
that an SML schema represents a model’s general
structure; that Schema Properties are context-sensitive
syntax rules associated with the schema; and that it falls
to SML's elemental detail tables to instantiate a schema
to a specific model instance. In what follows, a
"structural change" is any change other than simple
renaming or changing an interpretation.

Step 1. Customize the two schemas to the roles that they
will play in the integrated model, but do not violate the
syntax or Schema Properties of SML. For example,
achieve consistency in units of measurement.

a. Make any appropriate structural changes.

b. Customize the genus names, module names (including
the root module name), key phrases, and inter-
pretations of each schema as appropriate. Often
this helps to reduce the amount of work that must
be done at Step 3a.

Step 2. Make technical preparations for joining the two
schemas, but do not violate the syntax or Schema
Properties of SML.

a. Anticipate duplicate genus names, module names,
key phrases, indices, functional and multi-valued
dependency names, and symbolic parameter stems,
that will occur at Step 3, and eliminate all
conflicts.

b. Usually there is at least one pair of genera, one
from each schema, that needs to be "merged".
Identify all such pairs. Make ready for the merges
by making both genus paragraphs as similar as
possible for each merging genus pair. Sometimes
they can be made identical, but not always.
Structural changes are allowed.

c. Optionally, put the "inputs" and "outputs” of each
schema in special modules. This may not be
possible to do in a fully satisfactory way.
Structural changes are allowed.

Step 3. Join the two schemas. This step can cause Schema
Property violations.

a. Concatenate the two schemas. Choose an order that
preserves monotonicity of the modular structure if
possible.

b. Continue the work begun in Step 2b, if necessary,
until each merging genus pair is identical. Drop
the second genus replicate for each merging genus
pair.

¢. Make any other structural changes necessary for
proper joining.

Step 4. Revise the integrated schema as necessary,
structurally or non-structurally, to restore satisfaction of
all Schema Properties. For example, it may be necessary
to revise the modular structure so as to restore
monotonicity.

Step 5. Optionally, make any desired final cosmetic or
structural changes, being sure to observe the syntax and
Schema Properties of SML.

The next section presents an illustrative application
of this approach. Actually, the approach is carried out
three times in a cumulative way that culminates in the
integration of four distinct models.

Additional illustrative applications are given in the
appendices of Geoffrion [14]. They apply the approach to
three simple situations. The first integrates a forecasting
model with the classical transportation model. The second
integrates the transportation model with a multi-item
economic order quantity model. The third integrates two
transportation models to produce a two-echelon
transshipment model.

All examples treat model schemas, not specific
model instances. It would be worth examining these
examples at the level of fully detailed instances, but that
is not done here.

3. AN EXAMPLE

This section illustrates the approach of Section 2
with a small but richly instructive example that has been
used by several authors. The example is due to Blanning,
who discusses model integration at some length in several

of his papers (e.g., Blanning [3], Blanning [4]). A recurring

example in his papers is the "CORP" model, which has
been discussed also by other authors (e.g., Muhanna [20}).

One of the interesting things about this model is
that it can be viewed as four interconnected submodels.
The development of this section explains how the
appropriate interconnections can be accomplished by
applying the integration procedure of Section 2 to SML
representations of the component submodels.

The CORP model is discussed at length in Geoffrion

{13] because although it appears to be cyclic, closer
inspection reveals that it need not be. The Third
Formulation therein repairs certain anomalies of the
original model and presents it as a genuine SML schema.
That is the version used here. It can be considered to be
what the final integrated model should look like, except
perhaps for its overly simple modular structure.

Original Component Models

There are four component models. The first
estimates demand.

&MKT DEMAND ESTIMAT ION
PROD /pe/ There is a certain PRODUCT.

P (PROD) /a/ : Real+ The PRODUCT has a unit
PRICE.

V (P) /f/ ; 800000 - 44000 * P The PRODUCT has a
sales VOLUME given by a certain linear demand
function in terms of PRICE.

The second model analyzes markup. It is the only
component model that differs significantly from the
corresponding one of Blanning. It does not calculate P
from the values of M, V, and E. However, that value of P
can be calculated by a solver for the satisfaction problem
of finding P such that M_ VAR is zero.

&MAR MARKUP ANALYSIS

PROD /pe/ There is a certain PRODUCT.

P (PROD) /va/ : Real+ The PRODUCT has a unit
PRICE.

V (PROD) /a/ : Real+ The PRODUCT has a sales
VOLUME.

E (PROD) /a/ : Real+ There is a total MANUFAC-
TURING EXPENSE associated with the PRODUCT.

M (P,V.E) /f/ ; P* V / E The actual MARKUP for
the PRODUCT is total revenue (PRICE times
VOLUME) divided by total MANUFACTURING
EXPENSE.

M_VAR (M) /f/ ; M - %M_TARGET The actual
MARKUP less a certain target value is called the
MARKUP VARIANCE.

The third component model predicts manufacturing
cost.

&MFG MANUFACTURING

PROD /pe/ There is a certain PRODUCT.

U (PROD) /a/ : Real+ The PRODUCT has a UNIT
COST of manufacture, exclusive of fixed manufacturing
expenses.

VY (PROD) /a/ : Real+ The PRODUCT has a sales
YOLUME.

E (U,V) /f/ ; 1000000 + U * V The total MANUFAC-
TURING EXPENSE for the PRODUCT is fixed
manufacturing expenses plus UNIT COST times
VOLUME.

The fourth model one calculates a key financial
quantity.

&FIN EINANCIAL
PROD /pe/ There is a certain PRODUCT.

P (PROD) /a/ : Real+ The PRODUCT has a unit
PRICE.

V (PROD) /a/ : Real+ The PRODUCT has a sales
VOLUME.

E (PROD) /a/ : Real+ There is a total MANUFAC-
TURING EXPENSE associated with the PRODUCT.

N (P,V,E) /f/ ; P* V - E The NET INCOME
obtained for the PRODUCT is total revenue (PRICE

times VOLUME) less total MANUFACTURING
EXPENSE.

1t is straightforward to interconnect these four
components into a single composite model provided there
is sufficien ibility amon finitions that a rin
more than one component model. This is a critical
requirement whenever component models are to be
interconnected. Care has been taken to ensure that it
holds here. The following interconnection diagram is
adapted from Muhanna and Pick [21].

—

N fommmmmmmm o —===> N

v &FIN

[—

$M_TARGET ----

-==-=> M_VAR

S —

Note that &MKT has the task of supplying the value
of V to the other three models, &MFG the value of E to
two of the other models, &FIN the value of N, and &MAR
the value of M_VAR. All these are obvious roles because
V, E, N, and M_ VAR are computed only once in the four
models. U is not computed at all, and so must be
supplied externally. The same is true for the symbolic
parameter %M__TARGET. In addition, &MKT passes on the
externally supplied value of P, which is modeled as a
variable attribute, to the two other models that need it.
This is one of two significant differences between the
above diagram and the Muhanna-Pick diagram on which it
is based; their diagram would receive and distribute P
from &MAR (which they call "PRI") instead of from
&MKT. If our diagram did it this way, it would be cyclic
rather than acyclic. The second significant difference is
noted in the next paragraph.

Thus &CORP can be viewed as having three inputs,
U, %M_TARGET, and P, and two outputs, N and M_VAR.
If a value of P is desired such that M_ VAR is zero, then
finding such a value is the task of a solver external to
&CORP. Please note that this viewpoint differs from that
of Blanning and Muhanna, who both appear to view

605

&CORP itself (as a model) as bearing the responsibility
for finding such a value. I believe that such a viewpoint
confuses the notion of model and solver.

There is nothing to prevent the four component
models from being interconnected per the diagram by some
mechanism external to the SML notational system. Perhaps
a capability of this sort should be provided by a
modeling environment based on structured modeling; a
formal interconnection language would be one possibility.
If so, however, some defenses are needed to detect and
repair definitional incompatibilities when similar model
elements appear in multiple component models. (This is
not unlike the problems that arise in information systems
when distinct databases are to be integrated with one
another; see, e.g., Batini, Lenzerini, and Navathe 2D

That is not the approach taken here. In what
follows, we integrate the four models by stages into a
single composite SML schema. First, &MKT and &MAR will
be integrated. Then &MFG will be folded in. Finally,
&FIN will be integrated with the result of the previous
two integrations.

It is evident from the partial ordering of the
component models (such an ordering is obvious from the
interconnection diagram) that it would be wiser to
interchange the integration order of &MAR and &MFG,
for the former depends on the latter. Wiser in the sense
that monotonicity would be easier to maintain. We choose
the less favorable order to help dispel the reader’s
possible suspicion that choosing the order of integration
requires divine guidance.

Integrate &MKT and &MAR

Step 1. Null.

Step 2a. Null.

Step 2b. The merging genus pairs are PROD, P, and
V in &MKT and, respectively, PROD, P, and V in &MAR.
The PROD pair already has identical genus paragraphs.
The P paragraphs differ only in that the first is /a/ and
the second is /va/; make the first identical to the
second. The V paragraphs differ substantially; make the
second identical to the first (since the second paragraph
will be dropped at Step 3b, it is not truly necessary to
make this change).

Step 2¢. Omit.

Step 3a. Concatenate in the order &MKT, &MAR.
Call the new module &MKT_MAR.

Step 3b. Drop the PROD, P, and V paragraphs from
&MAR.

Step 3c. Null.
Step 4. Null.
Step 5. Omit.

The result is as follows.

&MKT_MAR
&MKT DEMAND ESTIMATION
PROD /pe/ There is a certain PRODUCT.

P (PROD) /va/ : Real+ The PRODUCT has a unit

PRICE.
V (P) /£/ ; 800000 - 44000 * P The PRODUCT has
a sales VOLUME given by a certain linear demand

function in terms of PRICE.

&MAR MARKUP ANALYSI
E (PROD) /a/ : Real+ There is a total MANU-

FACTURING EXPENSE associated with the

PRODUCT.

M (P,V.E) /f/ ; P* V / E The actual MARKUP
for the PRODUCT is total revenue (PRICE times
VOLUME) divided by total MANUFACTURING
EXPENSE.

M_VAR M) /f/ ; M - %M__TARGET The actual
MARKUP less a certain target value is called
the MARKUP VARIANCE.

Integrate &MKT _MAR and &MFG

Step 1. Null.

Step 2a. Null.

Step 2b. The merging genus pairs are PROD, V,
and E in &MKT_MAR and, respectively, PROD, V, and E
in &MFG. The PROD paragraphs already are identical.
The V paragraphs differ substantially; the second needs
to be made like the first, but this cannot be accom-
plished until Step 3b because &MFG has no P genus.
The E paragraphs also differ substantially; the first
needs to be made like the second, but this cannot be
accomplished until Step 3b because &MKT_MAR has no
U genus. Thus no changes at all are made at this
substep.

Step 2c. Omit.

Step 3a. Concatenate in the order &MKT_MAR,
&MFG. Call the new module &MKT_MAR_MFG.

Step 3b. Drop the second PROD paragraph. Make
the second V paragraph identical to the f: irst, then drop
the second (obviously, it is not truly necessary to change
V before dropping it). Make the first E paragraph
identical to the second, then drop the second one.

Step 3c. Null.

Step 4. There is only one Schema Property
violation, the one caused by the forward reference to U
by the E paragraph. Cure it by moving the &MFG module
to the position between &MKT and &MAR.

606

Step 5. Move the E paragraph to the position
immediately after the U paragraph. This is more in
keeping with the scopes of & MAR and &MFG. Change the
modular structure (here we do not bother to list the
genera)

from to
&MKT_MAR_MFG &MKT_MFG_MAR
&MKT_MAR &MKT
&MKT &MFG
&MFG &MAR.
&MAR

The result is as follows.

&MKT_MFG_MAR

&MKT DEMAND ESTIMATION
PROD /pe/ There is a certain PRODUCT.
P (PROD) /va/ : Real+ The PRODUCT has a unit
PRICE.

V (P) /f/ ; 800000 - 44000 * P The PRODUCT has
a sales YOLUME given by a certain linear demand
function in terms of PRICE.

&MFG MANUFACTURING

U (PROD) /a/ : Real+ The PRODUCT has a
UNIT COST of manufacture, exclusive of fixed
manufacturing expenses.

E (U,V) /f/ ; 1000000 + U * V The total

MANUFACTURING EXPENSE for the PRODUCT

is fixed manufacturing expenses plus UNIT COST
times VOLUME.

&MAR MARKUP ANALYSIS

M (P,V.E) /f/ ; P* V / E The actual MARKUP for
the PRODUCT is total revenue (PRICE times
VOLUME) divided by total MANUFACTURING
EXPENSE.

M_VAR (M) /f/ ; M - %M_TARGET The actual
MARKUP less a certain target value is called the
MARKUP VARIANCE.

Integrate &MKT_MFG_MAR and &FIN

Step 1. Null.

Step 2a. Null.

Step 2b. The merging genus pairs are PROD, P,
V, and E in &MKT_MFG_MAR and, respectively, PROD
P, V, and E in &FIN. The PROD and P pairs already
have identical genus paragraphs. The V paragraphs
differ substantially; make the second identical to the
first (since the second paragraph will be dropped at
Step 3b, it is not truly necessary to make this change).
The E paragraphs also differ substantially; the second
needs to be made like the first, but this cannot be
accomplished until Step 3b because &FIN has no U
genus.

)

Step 2¢. Omit.

Step 3a. Concatenate in the order
&MKT_MFG_MAR, &FIN. Call the new module &CORP.

Step 3b. Drop the second PROD and P paragraphs.
Drop the second V paragraph. Make the second E
paragraph identical to the first, then drop the second one
(obviously, it is not truly necessary to change E before
dropping it).

Step 3c. Null,

Step 4. Null.
Step 5. Change the modular structure
from to
&CORP &CORP
&MKT_MFG_MAR &MKT
&MKT &MFG
&MFG &MAR
&MAR &FIN.
&FIN

The result is as follows. Clearly it is consistent
with the interconnection diagram given earlier. In fact,
the diagram gives an accurate view of &CORP.

&CORP
&MKT DEMAND ESTIMATION
PROD /pe/ There is a certain PRODUCT.

P (PROD) /va/ : Real+ The PRODUCT has a unit
PRICE.

V (P) /f/ ; 800000 - 44000 * P The PRODUCT has
a sales VOLUME given by a certain linear demand
function in terms of PRICE.

&MFG MANUFACTURING

U (PROD) /a/ : Real+ The PRODUCT has a
UNIT COST of manufacture, exclusive of fixed
manufacturing expenses.

E (U,V) /f/ ; 1000000 + U * V The total
MANUFACTURING EXPENSE for the PRODUCT
is fixed manufacturing expenses plus UNIT COST
times VOLUME.

&MAR MARKUP ANALYSIS

M (P,V,E) /f/ ; P* V / E The actual MARKUP
for the PRODUCT is total revenue (PRICE times
VOLUME) divided by total MANUFACTURING
EXPENSE.

M_VAR (M) /f/ ; M - %M_TARGET The actual
MARKUP less a certain target value is called
the MARKUP VARIANCE.

&FIN FINANCIAL

N (P,V.E) /f/ ; P* V - E The NET INCOME
obtained for the PRODUCT is total revenue (PRICE
times VOLUME) less total MANUFACTURING
EXPENSE.

607

Modular structure aside, &CORP is indeed exactly
the same as the Third Formulation in Geoffrion [13], as
predicted at the outset of this section.

This completes our application, thrice in succession,
of the SML schema integration approach given in Section
2.

4. DISCUSSION

This section discusses reusability and related ideas
sketched in Section 1 from the point of view of
structured modeling and the examples of model integra-
tion provided in Section 3 and in Geoffrion [14].

ISSUE: How well does structured modeling support
“information hiding" and "modularization™?

Several features of structured modeling promote the
objectives of information hiding and modularization:

(1) the core concept of hierarchical modular structure
(Definition 12 of Geoffrion [11]);

(2) the concepts of views and modular outlines
(Definitions 20 and 23 of Geoffrion [11]), and the
closely related notion of using outline processor
functions to conceal and reveal different portions of
modular structure depending on the intended
audience (Section 4.3 of Geoffrion [9]) ;

(3) the sharp distinction between models and solvers
(Section 2.3 of Geoffrion [9]) helps to keep the
internal concerns of each away from the other;

(4) model and solver libraries (Sections 2.4 and 4.3 of
Geoffrion [9]) achieve a kind of information hiding
and modularization at the macroscopic level
(although some of the models in a model library
could be relatively small reusable fragments);

(5) the distinction in SML between the general
structure of the schema and the detailed data of
the elemental detail tables enables users to be
insulated from an excessive volume of problem
specifics when that is appropriate;

(6) the distinction in SML between the formal part and
the interpretation of each genus and module
paragraph helps to insulate technical users from
excessive problem domain information, and non-tech-
nical users from excessive technical details; and

(7) each individual element in a structured model is,
in effect, a module (e.g., the details of the rule of a
function element are totally localized).

These features may not go as far toward the support
of information hiding and modularization as some people
might wish (cf. Muhanna and Pick [21]). Certainly they
do not go as far as the notion of a "black box,"” taken
here to mean a hiding or module so secure that special
authority is required before one is permitted to look
inside it. Black boxes don’t make sense in the context of
modeling if integration is to be an important kind of
reuse. The reason is that almost any part of a3 model can
serve ag the focus of integration with another model.
Since integration is difficult or impossible if the focal

part is inaccessibly hidden, it follows that virtually no
part of a model can be black boxed without limiting the
possibilities for integration. Obviously, to limit the
possibilities for integration is to limit the possibilities for
reuse.

To illustrate that almost any part of a model can
serve as the focus of integration, consider the case of
the classical transportation model. The development of
Appendix 1 of Geoffrion [14] illustrates that the demand
portion can be the focus of integration (with a fore-
casting model). Appendix 2 of Geoffrion [14] illustrates
that the transportation links can be the focus of
integration (with an economic order quantity model).
Appendix 3 of Geoffrion [14] illustrates that the origins
-and their supply capacities can be the focus of
integration (with another transportation model on the
front end), and that the destinations and their demands
can be the focus of integration (with another trans-
portation model on the back end). It would be easy to
develop other examples in which the transportation cost
rate is the focus of integration with a freight rate
estimation model, or in which the supply capacities are
integrated with a more detailed supply capacity estimation
model. Thus gvery part of the classical transportation
model can serve as the focus of integration.

The most extreme form of information hiding is
close to the idea of a "black box." How does one know
whether a black box contains something that is truly
consistent with what it is connected to? This is a
particularly difficult worry in the realm of modeling,
where model elements often have subtle definitions. The
only way to know for sure is for the modeler to inspect
the contents of the box, The contents alone suffice to
explain the complete function of the box. Unit of
measurement? Look inside to find out whether it is
pounds, hundredweight, tons, or some other unit. Demand
point? Look inside to find out whether it is an individual
customer, all customers of a given class of trade in a
certain area, etc. Product? Look inside to find out
whether tan and black products are grouped, whether
standard attachments are included with the basic product
itself, and so on. Cost? Only a look inside will tell you
whether it is book, actual, incremental, fully or partially
loaded, etc. It would be grossly redundant to attach all
this information to the "inputs” and "outputs" of a black
boxed model, which one would have to do to accommodate
all possible kinds of reuse.

This establishes that information hiding and
modularization ought not to be taken to the black box
extreme in the context of modeling. However, I accept
these as criteria to help guide the practical use of
features (1)-(4) listed above.

It also establishes that visibility of all model parts

nd explici ntation of their inter tions are
important objectives in support of reuse through
integration.

Structured modeling comes close to making a fetish
of these objectives. For example, the core concept of a
calling sequence (Definition 6 of Geoffrion [11]) renders
interconnections explicit, and the interpretation part of
genus and module paragraphs in SML help to make all
model parts visible to users who may find difficulty in
reading the more formalistic parts of SML. "Input"”
modules or interfaces are not necessary because calling

sequences in effect play this role. The generic calling
sequence in SML does the same thing at the level of an
entire genus. Nor are “output” modules or interfaces
necessary in structured modeling, because any element or
genus can be called by any other (subsequent) one that
needs it as input.

The above comments have to do with how structured
modeling relates to some of the ideas reviewed in Section
1. What about the model integration approach of Section
2? A brief answer is that Step 2c can increase the degree
of modularization, but that Step 3b tends to decrease it
by increasing the level of structural connectivity. It is not
clear whether the latter effect is good or bad on balance,
as its negative effects on maintainability and reusability
are offset by positive effects on efficiency and avoidance
of redundancy.

ISSUE: To what extent can the 5-step approach of
Section 2 be automated?

The approach detailed in Section 2 and illustrated
in Section 3 evidently is quite labor intensive. Certain
standard capabilities of ordinary word processors, like
the search/replace and block move features, have obvious
uses for carrying out many of the substeps, but a higher
degree of automation seems essential to facilitate model
integration in general.

A tree-oriented editor, otherwise known as an
"outliner”, would be helpful. (We note that one is
available in FW/SM, the prototype structured modeling
implementation.) It would be much more helpful to have a
SML syntax-directed (structure) editor along the lines
proposed by Vicuia [28]: it could detect or even preclude
the violations of SML syntax or Schema Properties
prohibited in Steps 1, 2, and 5, and could detect the
violations that must be fixed at Step 4.

The diagnostic part of Step 2a lends itself particu-
larly well to automation, as does -~ although it is more
difficult -- the diagnostic part of Step 4. Moreover,
specialized search-and-replace capabilities for changing
names, indices, and key phrases would be helpful for Steps
1b, 2a, and perhaps other steps.

A good implementation of all or even most of these
possibilities would greatly facilitate the integration of
structured model schemas. However, there will remain a
certain amount of modeler’s discretion that must be
exercised at most of the steps. For example, only the
modeler can decide at Step la exactly what structural
changes are appropriate. Similar discretion is needed at
the other steps, except for 3a, 2a (probably), and 3b
(possibly). That discretion, incidentally, is what an
integration language like that of Bradley and Clemence
[6] must express.

The last-mentioned reference, and Murphy, Stohr,
and Ma [23], are examples of recent work that offer
intriguing prospects for automating some of what we have
called "modeler’s discretion” by more deeply exploiting
the syntactic and semantic information available in (or
attachable to) two SML schemas.

ISSUE: Within the context of SML, is it easier to
reuse schemas per the integration approach of
Section 2, or to build monolithic schemas from
scratch?

1 believe that reuse will be significantly more
efficient than ground-up development in most cases. The
amount of work that must be done with each approach in
a particular application depends on the special facilities
available in the modeling environment and the answer to
the previous issue.

It should be possible to address this issue experi-
mentally by counting operations (or actions, or deliberate
decisions that must be made, or the amount of time
consumed) for each approach for different modelers in a
controlled setting. This is an attractive research topic.

There may be some modifications to SML that would
reduce the total amount of work that must be done in
reuse via model integration. For example, it can be a
nuisance to have to avoid duplication of names for
genera, modules, indices, functional and multi-valued
dependencies, and symbolic parameter stems. It might be
feasible to allow selected modules to limit the scope of
the names defined within them, so that all external
references would have to include the name of the
defining module in order to gain access. Duplicate names
could then be allowed because references couid be
unambiguous. Such an extension of SML would be well
worth working out.

ISSUE: Within the context of FW/SM, the prototype
structured modeling implementation, does structured
modeling put the "right” things put in libraries in
the sense of Balzer, Cheatham, and Green [1]?

Structured modeling puts model schemas, elemental
detail tables, and solvers in libraries.

A schema is an analog of a "specification” in the
sense of Balzer, Cheatham, and Green [1]. Putting a
schema in a library seems appropriate to the extent that
FW/SM facilitates revising it and integrating it with
other schemas, provided that it is of possible future
interest. See Sections 3.1 and 3.2 of Geoffrion [9] and
the appendices of Geoffrion [14].

Putting not only a schema, but also associated
elemental detail, in a library makes as much sense as
putting just the schema in the library in some situations.
One such occurs when the elemental detail is a
commercial or private database with multiple potential
applications, such as an air freight rate database that is
of possible use in any logistics model involving air
freight. Another such situation occurs when the aim is to
set the stage for model integration within the context of
the original application. Of course, there could not be
many more than one reuse of elemental detail in this case.

There can be little question about the appropriate-
ness of putting solvers in libraries, as the function they
perform is useful over the entire class of models to which
they are intended to apply.

While on the subject of libraries, it should be noted
that a library is of little use if users cannot easily find
out what is in it. This suggests that a structured model of
the contents would be useful. More generally, it could be

useful to have computer-based tools to support library
management and access. One paper dealing specifically
with libraries in the context of model management is
Mannino, Greenberg, and Hong [19]. Related papers in the
context of software, such as Prieto-Diaz and Freeman
[26], may be inspirational.

ISSUE: In programming, the goals of reusability,
maintainability, and modifiability usually are pursued
by adhering to strict disciplines like structured
programming, structured design, etc. that impose
order on the otherwise chaotic process of program-
ming. Similar goals for modeling would seem to imply
the need for comparably strict disciplines that impose
order on the otherwise chaotic process of modeling.
Does structured modeling impose such discipline?

Yes, structured modeling does indeed impose a great
deal of discipline on the modeler by comparison with
what would be the case if, say, ordinary mathematics
were used in the usual ad hoc fashion to express models.
Consider:

* All definitional dependencies among model elements
are supposed to be explicit (in the calling
sequences).

*

Circular definitional dependencies are supposed to
be avoided.

*

All values are supposed to have an explicit range.

*

Modular structure is supposed to reflect the
natural conceptual groupings of model elements.

* Model elements are supposed to be arranged in a
sequence such that there are no forward definitional
references.

Model instances are supposed to be viewed in terms
of a general class of model instances that are all
isomorphic in a certain sense.

*

Models are supposed to be sharply distinguished
from problems posed on models, and both of these
from solvers.

These conventions are imposed by the core concepts of
structured modeling (Geoffrion [11]). SML either enforces
or is consistent with all of these conventions, and lays
down others as well (e.g., the strict separation of general
structure from detailed data, and the provision for
informal interpretation as an integral part of formal
specification).

The overall intended effect of these and other
conventions is to bring order to the modeling process in
a way that will advance the goals of reusability,
maintainability, and modifiability.

Acknowledgments

I gratefully acknowledge the helpful comments of Gordon
Bradley, Dan Dolk, Sergio Maturana, Laurel Neustadter,
Yao-Chuan Tsai, and Fernando Vicufia.

Supported partially by the National Science Foundation,
the Office of Naval Research, and the Navy Personnel
Research and Development Center (San Diego). The views
contained in this report are those of the author and not
of the sponsoring agencies.

REFERENCES
[1] BALZER, R,, T.E. CHEATHAM, Jr., and C. GREEN
1983. "Software Technology in the 1990's: Using a
New Paradigm," Computer, 16:11 (November), pp.
39-45.

2

—

BATINI, C., M. LENZERINI, and S.B. NAVATHE
1986. "A Comparative Analysis of Methodologies for
Database Schema Integration," ACM Computing
Surveys, 18:4 (December), pp. 323-364.

3

—

BLANNING, R.W. 1986. "A Relational Framework
for Information Management,” in E.R. McLean and
H.G. Sol (eds.), Decision Support Systems: A
Decade in Perspective, Elsevier Science Publishers
B.V. (North-Holland), Amsterdam.

BLANNING, R.W. 1987. "A Relational Theory of
Model Management," in C.W. Holsapple and A.B.
Whinston (eds.), Decision Support Systems: Theory
and Application, Springer-Verlag.

[4

—

[5] BOEHM, B.W. 1987. "Improving Software Produc-
tivity," Computer, 20:9 (September), pp. 43-57.

[6] BRADLEY, G.H. and R.D. CLEMENCE, Jr. 1988.
"Model Integration with a Typed Executable
Modeling Language," Proceedings of the Twenty-
First Hawaii International Conference on System
Sciences, Vol. I11, January, pp. 403-410.

[7

COX, B.1., Jr. 1987. Object-Oriented Programming,
Addison-Wesley, Reading, MA.

8

—

FREEMAN, P. 1987. Software Reusability, IEEE
Cat. No. EH0256-8, Computer Society Press,
Washington, D.C.

9

—

GEOFFRION, A. 1987. "An Introduction to
Structured Modeling," Management Science, 33:5
(May), pp. 547-588. A version that includes a
section on implementation will also appear in
Proceedings of the Conference on Integrated
Modeling Systems (held at the University of Texas,
Austin, October 1986). The latter version is
available as Working Paper No. 338, Western
Management Science Institute, UCLA, 75 pages,
6/86. Last revised March, 1988. This is the version
referenced here.

[10] GEOFFRION, A. 1987. "Integrated Modeling
Systems,” Working Paper 343, Western Management
Science Institute, UCLA, 16 pages, 11/86. Last
revised March, 1988. To appear in the Proceedings
of the Conference on Integrated Modeling Systems
(held at the University of Texas, Austin, October
1986).

610

[11] GEOFFRION, A. 1987. "The Formal Aspects of
Structured Modeling," forthcoming in Operations
Research. Available as Working Paper 346, Western
Management Science Institute, UCLA, 39 pages,
5/87. Last revised August, 1988.

[12] GEOFFRION, A. 1988. "SML: A Model Definition
Language for Structured Modeling," Working Paper
360, Western Management Science Institute, UCLA,
129 pages, May.

[13] GEOFFRION, A. 1988. "A *Cyclic’ Model Discussed
by Blanning and Muhanna," Informal Note, UCLA,
10 pages, June 5. Revised August 4.

[14] GEOFFRION, A. 1988. "Reusing Structured Models
via Model Integration," Working Paper 362, Western
Management Science Institute, UCLA, 42 pages,
September.

[15] GOGUEN, J.A. 1986. "Reusing and Interconnecting
Software Components," Computer, 19:2 (February),
pp. 16-28. Reprinted in [8].

[16] KARTASHEYV, S. and S. KARTASHEYV 1986. "Guest
Editors’ Introduction," Computer, 19:2 (February),
pp. 9-13.

[17] KOTTEMANN, J.E. and D.R. DOLK 1988. "Process-
Oriented Constructs for Model Integration,"
working paper, Naval Postgraduate School, 28
pages, March. Submitted for publication.

[18] LIANG, T.P. 1986. Toward the Development of a
Knowledge-Based Model Management System, Ph.D.
Dissertation, University of Pennsylvania.

[191 MANNINO, M., B.S. GREENBERG and S.N. HONG
1987. "Knowledge Representation for Model
Libraries," Working Paper CBDA 143, Center for
Business Decision Analysis, the University of Texas
at Austin, August,

[20] MUHANNA, W. 1987. "Composite Models: Hierarchi-
cal Construction, Circularity, and Deadlocks,"
Working Paper, University of Wisconsin -

Madison, October.

[211 MUHANNA, W.A. and R.A. PICK 1986. "A Systems
Framework for Model Management," School of
Business, Univ. of Wisconsin-Madison, December.
Revised August, 1988.

[22] MUHANNA, W.A. and R.A. PICK 1988. "Composite
Models in SYMMS," Proceedings of the Twenty-
First Hawaii International Conference on System
Sciences, Vol. II1, January, pp. 418-427.

[23] MURPHY, F.H., E.A. STOHR and P. MA 1988.
"Composition Rules for Building Linear Program-
ming Models from Component Models," Working
Paper, Information Systems Area, Graduate School
of Business Administration, New York University,
June 17.

[24] PARNAS, D.L. 1972. "On the Criteria To Be Used
in Decomposing Systems into Modules," Comm.
ACM, 15:12 (December), pp. 1053-1058.

[25] PRIETO-DIAZ, R. and J.M. NEIGHBORS 1986.
"Module Interconnection Languages,” J. Systems
and Software, 6:4 (November), pp. 307-334.
Reprinted in [8].

[26] PRIETO-DIAZ, R. and P. FREEMAN 1987.
"Classifying Software for Reusability," /JEEE
Software (January), pp. 6-16. Reprinted in [8].

[27] TSAIL Y. 1987. "An Operational Approach to Model
Integration Using a Structured Modeling
Framework," Research Paper, Anderson Graduate
School of Management, UCLA, 60 pages,
December. Revised 2/88.

[28] VICUNA, F. 1988. "A Modeling Environment for
Operations Research,” Ph.D. Research Proposal,
UCLA, July.

[29] YOURDON, E. and L.L. CONSTANTINE 1979.
Structured Design, Prentice-Hall, Englewood
Cliffs, NJ.

[30] ZEIGLER, B. P. 1984. Multifacetted Modeling and
Discrete Event Simulation, Academic Press,
London.

