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STRICTLY CONCAVE PARAMETRIC PROGRAMMING,
PART I: BASIC THEORY*

ARTHUR M. GEOFFRION{
University of California, Los Angeles

This paper, which is presented in two parts, develops a computational ap-
proach to strictly concave parametric programs of the form: Maximize af; (z) 4+
(1 — a)fe(x) subject to concave inequality constraints for each fixed value of
a in the unit interval, where f, and f. are strictly concave and certain addi-
tional regularity conditions are satisfied. This class of problems subsumes a
corresponding class of vector maximum problems and also, by means of a
simple device, provides a deformation method for ordinary concave program-
ming. The approach is based on exploiting the continuity properties of the
parametric program so as to efficiently maintain a solution to the associated
Kuhn-Tucker conditions as « traverses the unit interval. The same approach
can be adapted to much more general parametric programs than the one above.

In Part I, a Basic Parametric Procedure is derived and shown to be finite in
a certain sense. It forms the basis of various parametric programming algo-
rithms, depending on what special assumptions are made on the functions. In
Part 11, additional theory is developed that facilitates computational imple-
mentation, and one possible general-purpose algorithm for a digital computer
is given. An illustrative graphical example is presented and several extensions
are indicated.

1. Introduction

In Part I we present and justify a computational approach to concave para-
metric programming problems of the form

(Pa) Maximize, ofi(z) + (1 — a)fe(x) subject to g(z) = 0

for each « ¢ [0, 1], where 2 is a decision n-vector, the functions f, f, and ¢ =
(g1, -+, gm) are concave and satisfy certain additional regularity conditions
(see section 2.1), and a solution of (Pe) is available for some value of « in the
unit interval.

One motivation for studying (Pa) derives from the fact that it subsumes a
corresponding class of vector maximum problems of the form

(1) “Maximize”, fi(x), f2(x) subject to g(x) = 0.
The quotation marks in (1) signify that it is desired to find all efficient decisions,
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t The author is pleased to express his sincere appreciation to Professor Harvey M.
Wagner, under whose guidance this research was carried out as a portion of the author’s
doctoral dissertation [8] in the Operations Research Program at Stanford University.
Thanks are also due to L. Breiman and J. B. Rosen for helpful comments. This work was
supported partially by the Office of Naval Research under Task NR 047-041, Contract Nonr
233(75), The National Science Foundation under Grant 25064, and by the Western Manage-
ment Science Institute under a grant from the Ford Foundation.

244



STRICTLY CONCAVE PARAMETRIC PROGRAMMING, PART I: BASIC THEORY 245

where a feasible decision z° is said to be efficient if there exists no other feasible
decision 2’ such that f;(z') = f;(2”),j = 1, 2, with strict inequality holding for
at least one value of j. Under the conditions imposed in this paper, it can be
shown (8, 11, 12] that (P«) and (1) are equivalent in that every efficient de-
cision, for (1) is an optimal solution of (Pea) for some 0 £ « = 1, and con-
versely.

Another motive for studying (Pa) is that by a simple device it subsumes the
standard problem of concave programming. Suppose that it is desired to solve
the concave programming problem

(2) Maximize, F(x) subject to g(z) = 0.
If 2° is any feasible decision of (2), put (Pa) equal to
(3a) Maximize, aF (z) + (1 — a) Qi — (z: — z)® subject to g(z) = 0.

Then 2° clearly is the (known) optimal solution of (3,), and (3,) is identical to
(2). Applying an algorithm for parametric concave programming to (3a) be-
ginning with @ = 0 and increasing « until @« = 1, one obtains a ‘“‘deformation”
method of concave programming.' It is to be noted that this device renders
much less restrictive the assumption stated in the opening paragraph that an
optimal solution of (P«) is available for some value of « in the unit interval,
for (Pa) with a fixed is precisely of the form (2).

We turn now to a brief review of presently available methods for solving (Pea)
on the unit interval. It should be noted at the outset that since (Pa) is a con-
cave programming problem for each fixed value of «, then in principle the
parametric problem can often be solved on an arbitrarily fine grid of parameter
values by repeated applications of some known concave programming algo-
rithm. This straightforward approach may be fairly practical for some problems,
because the optimal solution for one parameter value can be expected to provide
a nearly optimal solution at an adjacent parameter value on the grid. It is pos-
sible, however, to make more fundamental and efficient use of the basic con-
tinuity properties which arise from the parametric nature’ of (Pa). This has
been done by various authors for a few simple classes of functions for f; , f» , and
g. If the constraints are all linear, then several efficient parametric programming
algorithms are available for certain special classes of criterion functions: when
f1 and f, are both linear functions, (Pa) can be solved by parametric linear
programming [7]; when one function is linear and the other is a quadratic
polynomial, the algorithms of Houthakker [10], Markowitz [13], and Wolfe [15]
are available;’ when f; and f, are both quadratic polynomials, an algorithm of
Zahl [16] essentially solves (Pa). Little if anything appears to have been done

1 If a feasible z° is unknown, then the successive application of the same device tempo-
rarily considering the constraints as objective functions may produce one.

2 Indeed, it is noteworthy that essentially non-parametric problems have often been
parameterized in order to imbue them with continuity properties which facilitate their solu-
tion [5, 6, 10, 15, 16].

3 See also [4, 14].
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to devise efficient algorithms for parametric problems involving more general
classes of criterion functions or feasible regions other than convex polyhedra.
This paper is intended as a contribution in this direction.

The present approach is not essentially a “simplicial” or “gradient” one, but
is addressed to the aim of efficiently maintaining a solution to the Kuhn-Tucker
conditions [12] as « traverses the unit interval. Under our assumptions, these
conditions are necessary and sufficient for an optimal solution of (Pa).

In subsection 1.1 we establish some notation and ideas and give what is for
our purposes a particularly convenient version of the Kuhn-Tucker conditions.
Section 2 is devoted to presenting and validating a Basic Parametric Procedure
for solving (Pa) on [0, 1]. The procedure can be adapted to more general para-
metric programs.

1.1 Preliminaries

For simplicity of notation, we sometimes write f(z; «) for ofi(z) +
(1 — a)fe(x). We also denote the first m positive integers by M, and use the
minus sign to denote the relative complement of two sets. For example, if S is a
set of integers then M — 8 = {te M:ig S}. The gradient of a function of
several variables is denoted by the symbol V, and the matrix of second partial
derivatives by V°.

For ay fixed, (Pay) is a standard concave programming problem for which
fundamental theoretical results have been given by Kuhn and Tucker [12]. A
convenient version of their Theorem 3 is recorded here without proof.

Theorem (Kuhn-Tucker): Consider (Pao) with o fixed. Let f(z; ap) and the
g:(z) be differentiable on the feasible region {x: g(x) = 0}, let f(z; ap) be concave
on the feasible region, and let the g.(x) be concave on E". Assume that the con-
straint functions satisfy the Kuhn-Tucker constraint qualification (see the
remark below).

Then 2° is an optimal solution of (Pay) if and only if there exist m real numbers
u and a subset S° of constraint indices such that (z°, «’, S°) satisfies the fol-
lowing conditions at & = ap :

(=) {‘(KT-l) Vif (@5 @) + 2ot wiVegi(w) = 0
(KT-2) gi(x) =0, 7¢8; u; =0, teM — 8
(KT-3) gi(x) 20, 2eM — 8
(KT-4) u; =0, te8.

Remark: For a statement and discussion of the Kuhn-Tucker constraint
qualification, see [12, p. 483] or [2]. It has been shown, for example, that if all
the constraints are linear, then this qualification is satisfied; and that the exist-
ence of a point for which all the constraint functions are positive is also sufficient
for the qualification to be satisfied. The sufficient condition that will be of direct
use in the sequel is: if z*(ao) is an optimal solution of (Pay), then the matrix
whose rows are V.g:(z*(ao)), ¢ such that g;(z*(a)) = 0, is of maximal rank [2].
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Equations (KT-1) and (KT-2) appear together so often in the sequel that we
introduce the special symbol (=S)a to denote them (in this notation, S and «
may vary). The u; will be referred to as dual variables. Dual variables with the
property that there exists (z°, 8°) such that (2°, u’, 8°) satisfies (KT-1, ..., 4)
will be called opttmal dual variables.

The concept of a valid set plays a central role in this work. A subset S° of con-
straint indices is said to be valid at ay if and only if there exists (2°, 4°) such
that (2°, u°, 8°) satisfies (KT-1) through (KT-4) at ao. Under appropriate
assumptions the optimal solution z*(a) of (Pa) and the associated optimal dual
variables u*(a) are unique and continuous. This fact, coupled with the observa-
tion that there is only a finite number of subsets of constraints, suggests that if
S’ is valid at ap, then §° is likely to be valid in some interval including e . If
this is the case, then it will be shown that one obtains z*(a) and *(a) in that
interval by solving (=8")a parametrically, and (KT-3) and (KT-4) are auto-
matically satisfied. If this is not the case, then even though (= 8°)« has a solu-
tion near «,, either (KT-3) or (KT-4) will be violated, and it is necessary to
find a new valid set before being able to proceed. Because of continuity, more-
over, a set which is valid near o, will usually differ by very few constraint indices
from S°. This approach leads to a decomposition of (Pa) on [0, 1] into a chain
of parametric subproblems. Each subproblem involves the parametric solution
of the Lagrange multiplier equations (=S8)a associated with the constraints
specified by a set valid on a subinterval of [0, 1]. By continuity, the optimal
terminal solution to one subproblem is the optimal initial solution to the next
subproblem of the chain, and the valid sets of adjacent subproblems are both
valid at the transition point between them.

2. A Basic Parametric Procedure

In this section we state and prove a Basic Parametric Procedure for solving
(Pe) for each value of @ in the unit interval. It can be modified and implemented
in various ways, as will be indicated in sections 2 and 4 of Part II.

2.1 Assumptions

We assume that an optimal solution of (Pa) is available for some value of a
in the unit interval, say « = 0 (in view of our previous discussion, this assump-
tion is not restrictive).

Throughout this work the following conditions will be imposed upon (Pa).
We denote the feasible region {z: g(z) = 0} by X.

Condition 1: The functions f;(z)(¢ = 1, 2) and g:(z)(¢ = 1,---, m) are
analytic' on some open region containing X, and the constraint functions are
concave on K"

4 A function of several real variables is analytic in a region R, if in some neighborhood of
every point of R, the function is the sum of a convergent power series with real coefficients.
The class of all analytic functions includes, for example, all polynomials, and seems amply
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Condition 2: X is non-empty and bounded.

Condition 3: The hessian matrices V,f:(z) (¢ = 1, 2) are negative definite for
all z e X.

Condition 4: If ag e [0, 1] and z*(ap) is an optimal solution of (Pay), then the
matrix whose rows are the gradients V,g:(z*(a)), ¢ such that g;(z*(a0)) = 0, is
of maximal rank.

Conditions 1 and 2 imply that X is convex and compact.

Condition 3 implies that f; and f are “locally” strictly concave on X, which
is slightly stronger than strict concavity. This, in turn, implies that f(z; a) =
afi(z) + (1 — a)fe(x) is locally strictly concave on X for each fixed value of
a ¢ [0, 1]. In the presence of Conditions 1 and 2, this last assertion remains true
even on some open region containing X and on some open interval containing
[o, 11.

Condition 4 is equivalent to requiring that the gradients V.g:(z*(a)), 7 such
that g:(z*(ao)) = 0, must be linearly independent; hence at most 7 constraints
can be satisfied with exact equality at an optimal solution of (Pay). In the re-
mark following the Kuhn-Tucker theorem, it was noted that this condition im-
plies that the Kuhn-Tucker constraint qualification holds. Thus the hypotheses
of the Kuhn-Tucker theorem are satisfied by (Peay) for each fixed a € [0, 1] when
Conditions 1, 3, and 4 hold.

2.2 Statement of the Basic Parametric Procedure

For convenience we view a as increasing from 0 toward 1.

Step 1: Solve (PO) by any convenient method, so that (z* (0), u (0) S* )
satisfying (KT 1) through (KT-4) at « = 0 is at hand. Put o’ = 0, 8° = §%,
and (z, u)" = (z"(0), u*(0)).

Step 2 Solve equatlons (=8%a by any convement method as « increases
above o’ for the umque continuous solution® (z*(), u*'(«)) satisfying the left
end-point value (z, u)’ so long as this solution satisfies (KT-3) and (KT-4);
that is, until @« = o, where

= Max{a:o L a £ 1,0:(z%()) 20,ieM — &,
and % (a) 2 0,5¢ 8", on [, al}.

If &' = 1, terminate. Otherwise put (z, )° = (2*(a’), ¥*(a’)) and go to
Step 3.

Step 3: Solve equations (=8)a by any convenient method as « increases
above o for the unique continuous solution (z°(a), u°()) satisfying the left
end-point value (z, «)° for different sets S which satisfy

(4) {ieM: () >0 S {ieM: g:(s()) = 0}

wide enough to include most continuous functions likely to be encountered in applications.
Except for Theorem 3, the Basic Parametric Procedure requires only twice continuous
differentiability rather than analyticity of all functions.

5 Throughout this work we employ the symbol (z%(a), u%(a)) to denote a solution of the
equations (=8)a.
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until for some S, (% (), u* (a)) satisfies (KT-3) and (KT-4) on [¢, & + ¢
for some ¢ > 0. Put o =a, 8 = 8, and return to Step 2.

Complete justification requires proof of the following.

Theorem (Basic): Assume that Conditions 1 through 4 hold. Then the follow-
ing assertions regarding the Basic Parametric Procedure hold:

(i) Step 2 is well-defined.

(u) At each execution of Step 2, (z° (a), u® (a)) (z*(a), u*(a)) on
[, &].

(iii) Step 3 is well-defined.

(iv) Step 3 will be executed only a finite number of times before termination
obtains.

2.8 Theoretical Development

Continuity plays a crucial role in parametric programming.

Theorem 1 (Continuity):

(i) Assume that Conditions 1 through 3 hold. Then (Pe) has a unique optimal
solution z*(a), and z*(a) is continuous on some open interval containing [0, 1].

(ii) Assume that Conditions 1 through 4 hold. Then (Pea) has unique optimal
dual variables u;*(a)(¢ = 1, .-+, m) and 4*(a) is continuous, on some open
interval containing [0, 1].

Proof: The continuity of 2*(a) can be obtained from standard continuity and
compactness arguments. The existence of #*(a) is obtained by showing that the
Kuhn-Tucker theorem applies on some open interval containing [0, 1]; unique-
ness and continuity by expressing «*(a) in the neighborhood of any ao ¢ [0, 1]
as a continuous function of z*(a) [8, p. 68 ff].

It will prove convenient to introduce some special notations. Define A« to be
the set of constraint indices corresponding to the constraints which are active
at o in the sense that their dual variables are strictly positive:

Ao = {ie M:u(a) > 0.

Define Ba to be the set of constraint indices corresponding to the constraints
which are binding at *(e):

Ba = {ie M: gi(z*(a)) = 0}.

The sets Ae and Ba are well-defined on some open interval containing [0, 1]
because of the existence and uniqueness of (z*(a), u*(a)) on some such in-
terval. We can now state two important corollaries of Theorem 1.

Corollary 1.1: Assume that Conditions 1 through 4 hold. Then for each
ag € [0, 1] there exists an open interval containing «, such that, on this interval,

Aay C Aa C Ba C Bag .

Proof: The outermost relations follow directly from the definitions of Aa and
Ba and the continuity of z*(a) and %*(e). The middle relation follows from
(KT-2) and (KT-4).

Corollary 1.2: Assume that Conditions 1 through 4 hold. Then there is an
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open interval containing [0, 1] such that, for each fixed value of « in this open
interval, a subset S of constraint indices is valid at « if and only if Ae < S C Ba.

Proof: This assertion is a simple consequence of the uniqueness of (z*(a),
4*()) and the definition of validity.

The significance of Corollaries 1.1 and 1.2 is that the totality of valid sets at
ag € [0, 1] contains the totality of valid sets for « sufficiently near «y. Hence
the optimal solution of (Pey), which yields Ay and Bay, gives a strong indica-
tion of the identity of a valid set for « near ay .

The next theorem shows that equations (=8S)a can be solved on some open
interval about a, € [0, 1] if S is valid at ag .

Theorem 2: Let ay € [0, 1] be fixed, let S be valid at ap, and assume Conditions
1 through 4 hold.

Then there exists an open interval oy containing and symmetric about aq, and
an open neighborhood N (z*(a), w*(a)) containing (z™(ao), w* () ), such that
on Iy there is a unique function (z°(a), u*(a)) in N(z*(ao), v*(ao)) which
satisfies (=8)a. Furthermore, (2°(a), u*(«)) is analytic on Iay .

Proof: The proof [8, p. 74 ff.] is an application of the appropriate version of
the Implicit Function Theorem [3, p. 39] to (=8)ec.

Corollary 2.1: Let ape [0, 1] be fixed, let S be valid at a, and assume that
Conditions 1 through 4 hold.

Then there exists an open interval containing oy and contained in I« such
that, for each fixed value of « in this interval, the following three assertions are
equivalent:

(i) Sisvalid at a.
(ii) (2°(a), u'(a)) = (z*(a), u*(a)).

(iii) gi(z°(a)) = 0,7e M — 8 (ie., (KT-3) is satisfied)

ui(a) 2 0,7¢ 8 (ie., (KT-4) is satisfied).

Proof: (i) = (ii). By continuity, (z*(c), u*(a)) & N(z*(a0), u*(c)) for all
«a sufficiently near «y ; by the validity of S at @ and Corollary 1.2, one concludes
that (z*(a), u*(a)) satisfies (=8)a; since the solution of (= 8)« is unique in
N(z* (o), () for a & Tay , assertion (ii) follows.

(il) = (iii). Obvious.

(iii) = (i). Assertion (iii) and the fact that (z°(a), u®*()) satisfies (=8)a
imply by the definition of validity that S is valid at a.

One more result must be established before a complete proof of the Basic
Theorem can be given.

Define a point of change of Ba as a point o’ with the property that there is no
open interval containing ’ such that Ba = Ba' everywhere on that interval. A
similar definition holds for a point of change of Aa. In the sequel, the phrase
“point of change” is used to refer to either a point of change of Aa or of Ba,
or possibly of both.

Theorem 8 (Finiteness): Assume that Conditions 1 through 4 hold. Then
Aa and Ba each have a finite number of points of change on [0, 1].

Proof: Suppose that Ba has an 1nﬁn1te number of points of change on [0, 1]
Then there is a cluster point a«* &[0, 1] of these points of change. Let
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(&), &’ €0, 1], be a sequence of distinct points of change of Ba which converges
to . Applying Corollary 1.1 at o’, we see that there exists an open interval
containing &’ such that Ae” € Aa C Ba C Bea’ on this interval. By the defini-
tion of a point of change of Be, for each «” there exists a number 8” contained in
this interval and in (¢” — 1/v, & + 1/») such that Ae” < Af" < B’ < Bd’
(note the use of < to denote a proper subset of Bo’). Clearly (8’) — &*. From
Corollary 1.1 applied at o, we see that we have demonstrated the existence of
two sequences (&) — ¥, (8") — &, such that Aa™ C Ao’ € AR < Bf' <
Bd’ C Ba™ for all » sufficiently large. Since there is but a finite number (2™)
of possible sets which BS” or Ba” could possibly be, we may assume, taking a
subsequence if necessary, that there exist sets B’ and B” such that Bg =
B" < Ba’ = B’ for all ».

Consider the function z” (a) defined as in Theorem 2 applied at o*. Since
B" is valid at «* and at all &’ and £, » sufficiently large, 2° (o) = 2*(a) at
these points. Take 4 ¢ B — B”. Then g;,(z° (¢’)) = 0 and g;,(z* (8")) > 0,
all » sufficiently large, and gio(xB”(a*)) = 0. In other words, we have shown
that o is a non-isolated zero of gio(xB”(a)), and that this function is not iden-
tically zero on any open interval about o*. But this leads to a contradiction of
the well-known fact [1, p. 518] that the zeros of an analytic function which is
not identically zero are isolated, for by Theorem 2 and Condition 1 we have that
9:,(z% (@) is analytic on some open interval about «*. Hence the supposition
that Ba has an infinite number of points of change on [0, 1] is false.

A similar argument shows that A« cannot have an infinite number of points of
change on [0, 1].

Applying the result of Theorem 3 to a given (Pa), define 0 £ &'y < o'z <

- < o'y £ 1 to be the collection of all points of change of Aa or Ba or both.
As a matter of convention, we take ¢’y = 0 and ay4; = 1. From Corollaries 1.1
and 1.2 we conclude that any set which is valid at @, a’; < @ < aj41, is also
valid on the entire closed interval [o;, e741]. In addition, it may also be valid on
other intervals, of course. Among the sets which are valid at «'; there are all
those which are valid on [aj_1, a';] or on [a';, aj4l.

We are now in a position to prove the Basic Theorem.

Proof (Basic Theorem): First we prove parts (i) and (ii). At the beginning of
each Step 2, (z, u)° and S° satisfy (KT-1) through (KT-4) at o’, so that S° is
valid at o and (2, u)" = (z*(a"),u*(a")).Let J,1 £ J £ N + 1 be the largest
integer such that S° is valid on [¢’, &s]. (&; = 'y = &° = 0 is permissible the
first time Step 2 is executed.) Applying Theorem 2 at each point of [o’, a'/],
it follows that (= S)a has a unique analytic solution (z° o(a), uso(a)) satisfy-
ing the left end-point value (z, u)" on some interval containing [, a,,;]. This
solution satisfies (KT 3) and (KT-4) and equals (z*(a), v*(«)) on [a o'l
by Corolla,ry 2 1.If o g = 1, the solution of (Pa) on [0, 1] is complete. If &'y < 1,
however, (z*'(a), 4™ (a)) does not satisfy (KT-3) and (KT-4) for any «a ¢
(a T aJ+1) for otherwise, by Corollary 2.1 applied at o', , S” would be vahd on
s, CKJ+1] which Would violate the definition of J. Clearly the scalar o’ defined
in Step 2 is precisely a';, and (i) and (ii) hold.
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Next we prove (iii). Any set S which satisfies (4) is valid at «’, by Corollary
1.2 and the fact that (.’cso(a'), uso(a')) = (z*(a'), w*()). Applying Theorem
2 at o', we see that if S satisfies (4) then (=8)a has a solution as stated on
[o, & + «] for some ¢ > 0. By Corollary 1.1 we know that at least one such
S, say S, isvalid on [¢, &' + €] for some 0 < & < ¢ ; by Corollary 2.1 applied
at o, (z¥(a), u¥'(@)) satisfies (KT-3) and (KT-4) on [¢, ' + ¢ for some
0 < € < €. Since there is only a finite number of sets satisfying (4), 8" will
be found after a finite number of trials.

Finally, we prove (iv). It was established in the proof of (i) that Step 3 is
entered each time a point of change o’ is encountered at Step 2 such that the
current set S° being used at Step 2 is not valid immediately above a'. It was
established in the proof of (iii) that Step 3 finds a set which s valid immediately
above o in a finite number of trials, and control is returned to Step 2 along with
the new valid set. By convention, we have taken « increasing, and by Theorem
3 there is but a finite number of points of change on [0, 1]; it follows that Step
3 will only have to be executed a finite number of times before termination ob-
tains. The proof is complete.’
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