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Production orders for a number of products must be scheduled on a
number of similar production lines so as to minimize the sum of product-
dependent changeover costs, production costs, and time-constraint
penalties. We treat the problem by a quadratic assignment al-
gorithm with a linear programming adjustment, and describe a success-
ful practical application for chemical reactor scheduling.

HE BASIC problem addressed by this paper can be stated as follows
(a more elaborate variant will be introduced later). There areseveral
“similar” continuous process facilities or flow-shop production lines op-
erated in parallel. Each can make (process) some subset of products with a
known production rate of Ry units per day for product p on line , at a pro-
duction cost of Ppy, dollars per unit. A transition cost of T,y dollars is in-
curred whenever line ! changes over from making product p to product p.’
A number of independent production orders are given; the k* order specifies
a demand of D* units of product p* to be produced between an earliest start
teme E* (commonly due to restrictions on raw material availability) and a
latest finish time L* (commonly due to customer delivery commitments or a
known schedule for further processing). It is desired to find a production
schedule—which line produces which products and when over a scheduling
horizon of H days—meeting the given production orders at minimum total
cost (transition plus production). Individual production orders may be
split into two or more parts to be run noncontiguously on the same line or
on different lines. The product that each line is producing immediately
prior to the start of the scheduling period is known, so that the proper tran-
sition cost (if any) can be charged for the initial product scheduled on each
line.
Scheduling/sequencing problems with changeover costs arise frequently
in the continuous process industries and in bulk production and packaging.
Prabhakar [7] refers, for instance, to chemical reactors and processors that,
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when switched from one product to another, yield a certain amount of off-
grade material before the reaction or process is stabilized at the new operat-
ing conditions. The lower market value of the off-grade material, which de-
pends on the products between which a transition is made, is responsible
for the changeover cost. Scheduling problems with sequence-dependent
changeover costs also arise for multi-use bulk production and packaging
lines in the food and consumer goods industries, for continuous treatments
in materials fabrication industries, and so on.

Related Literature

A search of the sequencing literature (see, e.g., the surveys of refer-
ences 2 and 4) revealed a dearth of previous studies closely related to
the problem posed above.

Prabhakar [8] developed a mixed integer linear programming model for a
similar class of problems that is more general in some respects (e.g., in-
ventory capacities are taken into account) but more restrictive in others
(e.g., split runs of a product may not occur on the same line). This model
appears satisfactory so long as the number of products that can be made on
each line is moderate, for the number of required 0-1 variables equals the
sum of the squares of these numbers. Thus five lines, each of which can
make any of 15 products, would require 5(152)=1125 binary variables—
which would be well beyond the capability of existing mixed integer linear
programming codes [5]. (This is the approximate size of the practical
problem that led to our interest in this class of problems.)

Deane and White [3] (see also the other references cited therein) de-
veloped a specialized branch-and-bound algorithm for a similar class of
problems with identical production lines, no time constraints, no job
splitting, and with a workload-balancing constraint on the maximum make-
span deviation of each line from the average. (In Section 2 we present
arguments against the use of such rigid constraints and introduce into our
own model a penalty function version of the workload-balancing constraint.)
It is difficult to assess the efficiency of Deane and White’s algorithm be-
cause only preliminary computational experience is presented with fairly
small randomly generated problems and no computer times are given.

The only other directly germane reference we are able to cite is Balas,
Enos, and Graves’ successful treatment of a magazine-bindery scheduling
problem [1]. Their quadratic assignment problem approach served, in
fact, as the chief inspiration for the approach taken in the present paper.

Outline of the Paper and Summary of Results

Section 1 develops an exact representation of the basic scheduling problem
as a quadratic assignment problem, provided two production-line similarity
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assumptions hold. This representation is of interest because it opens this
class of scheduling problems to a new line of attack.

Section 2 points out certain practical difficulties that follow from a literal
interpretation of the basic scheduling problem as stated above. In par-
ticular, the optimal solution may be unduly sensitive to problem data (e.g.,
forecast demands) that are normally subject to considerable managerial
discretion. We suggest a more flexible statement of the scheduling problem
that avoids this objectionable possibility. The new problem formulation
is more appealing from a practitioner’s viewpoint, diminishes the impor-
tance of the production-line similarity assumptions, and permits better
control of the size (and hence difficulty) of the associated quadratic assign-
ment problem.

Section 3 describes how the quadratic assignment formulation can be
modified in a natural manner, with the help of alinear programming adjust-
ment, to adddress the new problem formulation.

Finally, we describe a practical application to chemical reactor scheduling
in which our approach demonstrated a clear superiority over manual solu-
tions produced by experienced schedulers. This application involves
scheduling about 25 products monthly on six reactors at Dart Industries,
Ine. The computerized scheduling program has been adopted and imple-
mented by the firm as the primary scheduling technique for one of the ma-
jor product lines.

The computational burden of our approach is sufficiently light, and its
flexibility sufficiently great, that it appears promising for various generaliza-
tions of the problem class treated here.

1. FORMULATION AS A QUADRATIC ASSIGNMENT PROBLEM

The objective of this section is to give an exact quadratic assignment
formulation of the basic problem posed at the outset.

Throughout this section we will assume that the production lines are
simalar to one another in the sense that their production rates and transi-
tion costs are proportionally related. More precisely, we impose the fol-
lowing two assumptions.

A1. There is a standard daily production rate R, units per day for each
product p and a production proportionality constant a; for each line ! such
that

Rp=aiRR, for all pairs pl such that R,;>0. (1)

A2. There is a standard transition cost T, for changeover from product
p to product p’, and a transition cost proportionality constant 8; for each
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line, such that
Tp.p'»l = 6lTp.p’ (2)

for all triples p,p’, I such that line [ can produce both products p and p’.

These assumptions hold exactly if all lines are identical. They can be
expected to hold to close approximation if all lines are basically of the same
technological design except for the scale of implementation or the “speed”
of operation. Such was the case in the practical application described in
Section 4. Even when the two proportionality assumptions do not hold to
very close approximation, it can be argued on statistical grounds that least
squares estimates of B, az, Ty, and B; (aimed at enforcing (1) and (2))
will yield good results for applications where the number of products and
the amount produced in a given schedule are large with respect to the
number of lines. Moreover, we should point out that the more realistic
problem reformulation given at the end of Section 2 greatly mitigates the
need for assumptions Al and A2 to hold exactly.

Quantization

A necessary prerequisite for a quadratic assignment problem formulation
is a finite quantization of both time and production. In particular, each
production order must be expressed in terms of equal indivisible lots and the
scheduling period [O,H] on each line must be partitioned into equal indi-
visible time slots. This must be done in such a way that each production
lot corresponds to the actual amount of work a line can do in any given
time slot.

Such a quantization can be achieved without introducing any error
(thanks to the proportionality assumptions) if a suitable basic time quantum
7 is selected. The choice of r induces a standard lot size of R,r units for
product p and a standard slot size of 7/a; days for linel. Notice that line
[ can make R,,n/a;(: (culRy)(r/cu) = Ryt units of product p in one time
slot (if it can make any at all), which is exactly one standard lot’s worth.
The choice of 7 further implies that there will be a total of

myEH/(r/e1) ®3)

time slots available on line [, and that the k* production order will be par-
titioned into

nk& D*/(Rper) 4)
lots of product p* that must be scheduled to commence after slot

E*/(r/ea) ©)
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and finish no later than slot

L¥/(r/en) (6)

if line lis used. All of the quantities identified in (3) through (6) will be in-
tegers if 7 is taken as a common divisor (preferably the greatest common di-
visor) of the numbers Hay, D*/R ¢, E*oy, Lray .

We require that the total number of lots equals the total number of slots,

m &Ym= k. Q)

Clearly >_;m; > D, n* must hold or the given problem is not feasible.
Equality will be enforced if necessary by adding a dummy product with the
right number of lots (see Note 1).

Expression as a Quadratic Assignment Problem

Since any single lot of product p can be produced during any single time
slot on line I (so long as R,; # 0), the scheduling problem can be stated suc-
cinctly as: find a one-to-one map of the »_; m; time slots onto the Y n*
lots that minimizes the total corresponding costs (which include a pro-
hibitive cost for any disallowed or time-infeasible assignment). More pre-
cisely, define p to be a one-to-one mapping from the ordered set

{]_’. ..My, m1+1,. . .’ml+m2; ceey e -m} (time SlOtS) (8)
——— — —
line 1 line 2

onto the ordered set

(L. nhn' 41,00’ oo oom) (production lots). (9)
N —
order 1 order 2

Thus p(¢) = h means that the ¢*! slot is assigned to the 2t lot and the prob-
lem can be stated as

i FNEIROIE S S PR (10)

over all one-to-one maps p, where the mXm matrices @, C and A are de-
fined as explained below. Problem (10) is the desired quadratic assign-
ment problem expressed in the notation of Graves and Whinston [6], the
computational approach adopted in our implementation.

The C-matrix re-expresses the standard transition costs of (2) in terms of
lots. A typical element ¢, - must equal the standard transition cost asso-
ciated with line changeover from lot 4 to lot i'. The lot ordering specified
by (9) makes it easy to relate & and 4’ back to their products, resulting in



600 A. M. Geoffrion and G. W. Graves
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Fig. 1. The C-matrix.

a specification for C in partitioned form as given in Fig. 1. (where every
entry in a given cell is identical and has the indicated value).

The Q-matrix serves two purposes. The locations of its non-zero entries
indicate the direction of time by identifying which time slot immediately
follows which time slot on the same line. The magnitude of the non-zero
elements conveys the transition cost proportionality constants 8; . The ap-
propriate Q-matrix is 0 except for a band of 8’s immediately above the prin-
cipal diagonal; see Fig. 2.

With C and @ defined, it is clear that the first term of the objective func-
tion of (10) gives the total transition cost associated with p. To see this,
notice that the highly special structure of ¢ implies that the only ¢ pairs that
actually appear in the summation are those for which j=7+1 and 7 is not
a final time slot for any of the lines (¢#my or mi+my or - -+ or m). De-
note the set of final time slots by I;. Then the first term of (10) can be

m, my
(10 A o : | T
(o] 031 | |
m, ., | (o] :
o o 51: |
L 0 0, 4‘
198 o |
A I0 o B, |
Q= my (o] ] . :
] e e
1 | © oﬁzl
| o ol
_______ T ————————————
! I
|
| |
' |
|
L 1 1 ]

Fig. 2. The @-matrix.
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written as
Em; Q34100 (0) o (i+1)5 an

which consists, for each non-final time slot ¢, of the g-factor for the corre-
sponding line multiplied by the standard transition cost associated with
changeover from the product made during time slot ¢ to the product made
during the next time slot on the same line.

The A-matrix has typical entry a;, which. should be thought of as a
penalty (or incentive, if negative) associated with assigning slot 7 to lot A.
Its functions are to account for: (i) the fact that certain products cannot be
made on certain lines; (ii) the production costs;(iii) the transition cost (if
any) incurred at the very beginning of the scheduling period because of
the product made at the end of the previous period; (iv) a prohibitive
penalty for scheduling a lot of order % prior to its stipulated earliest start
time E* or after its stipulated latest finish time L*.

One may compose A4 as a sum of m X m matrices,

A=A0 A0+, AF, (12)

where A accounts for (i) and (ii), A° for (iii), and A* for (iv) as it pertains
to order k.

The coefficient az(; will be a very large number if the line corresponding to
slot 7 cannot make the product corresponding to lot A (refer to (8) and (9)).
Otherwise, it is equal to (R,7)P,; for the product p corresponding to lot %
and the line [ corresponding to lot 2.

The entries of A° will be 0 except for the rows corresponding to the first
time slot for each line (rows 1, mi+1, mi+m.+1, ete.). If product
pi is the initial condition on line 1, then a3, is set equal to B, times the
standard transition cost from product py into the product corresponding to
lot # (assuming line 1 can make this latter product). The other first slot
rows are specified similarly.

Prohibitive penalties for violating E*(L*) are reflected by large positive
entries in the columns of A* corresponding to order k and the rows corre-
sponding to slots that begin before (end after) time E*(L*). Of course, if the
E¥s and L*’s are such that the problem as originally stated is infeasible,
then the quadratic assignment problem solution incurs one or more of these
large penalty entries.

2. PRACTICAL CONSIDERATIONS

We have given an exact quadratic assighment problem representation of
the scheduling problem posed at the outset. There are, however, at least
two practical difficulties yet to be faced.
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The Time Quantum 7 May Be Too Small

Recall from Section 1 that the time quantum 7 must be a common di-
visor of a certain set of numbers if the quadratic assighment representation
is to beexact. Sincethemap size m varies inversely with 7 (refer to (3), (4)
and (7)), it is possible that m may be too large to permit optimization of
(10) in a reasonable amount of computer time. Even the best available
method for obtaining optimal or nearly optimal solutions to quadratic
assignment problems, which we believe to be of the type described in ref-
erence 6, becomes onerous for m much above the range of 250 or so.
This suggests using a larger value of 7 than may be justified in a strict sense.

We believe that 7 can and should be adjusted if necessary to keep m under
control. After all, in most practical applications there is a good deal of
managerial discretion as to the choices of the numbers H, D*, E* and LF,
which, in turn, determine all of the quantities of which 7 is supposed to be a
greatest common divisor. This discretion can be used to achieve integral
values of m; and n* of reasonable size without noticeable distortion of the
problem.

The Original Problem Statement May Be Too Inflexible

The second practical difficulty is more subtle: the original problem state-
ment is fine in spirit, but tends to be unrealistically rigid and inflexible.
Demand quantities, production order time constraints, and the scheduling
period horizon are assumed known as precise numbers. Yet a minute
change in one or more of these numbers could conceivably permit a sig-
nificantly lower cost schedule to become feasible. In other words, the cost
of the optimal production schedule could be unduly sensitive to the given
data (see Note 2). From a modeling viewpoint, acute sensitivity is unac-
ceptable because the problem data are not known with such greataccuracy.
Most modelers would be willing to bend the quantities D*, E¥, L* and H
slightly if this were to result in significantly reduced costs.

A simple example will clarify the nature of the improvements sought by
relaxing the rigidity of the problem statement. Consider two hypothetical
lines that can both make any of four products with equal efficiency. Product
A (C) was being produced on line 1 (2) at the end of the previous scheduling
period. Demands are for 15 days’ worth each of A and B, 16 days’ worth
of C, and 14 days’ worth of D. The transition costs for each line are all
$1,000 except for A — D, which is $200. There are no time constraints
and the scheduling period is 30 days. Under these assumptions an obvious
optimal schedule is: produce A for 15 days and then B for 15 days on line 1,
and C for 16 days and then D for 14 days on line 2. The total transition



Scheduling Parallel Production Lines 603

cost is $2,000 and both lines run for exactly 30 days. An alternative sched-
ule that runs line 1 for 29 days and line 2 for 31 days and that has transition
costs of only $1,200 is: produce A for 15 days and then D for 14 days on line
1, and C for 16 days and then B for 15 days on line 2. It is likely that this
less expensive schedule will be preferred to the first, even though the two
lines do not finish their work exactly at the end of the 30th day. The next
scheduling period would be one day longer for line 1 and one day shorter for
line 2; an alternative might be to adjust the demands for products 4 and D
(B.and C) upward (downward) by a total of one day so as to equalize the
finish times of both lines.

A variation of the above example in which the D—C transition costs
$700 illustrates a related point. The optimal 30-day rigid schedule is to
produce A for 15 days, D for 14 days, and finally C for 1 day on line 1; and
C for 15 days followed by B for 15 days on line 2. The total transition cost
is $1,900. The second schedule mentioned above (with a cost of $1,200) is
again likely to be preferred to the rigidly optimal one, which now suffers
from an “unnecessary”’’ split in the production of product C. Splits can be
advantageous in some circumstances but are usually undesirable when one
of the split runs is very short.

These two examples show that rigid observance of the original problem
statement can lead to missed opportunities for taking advantage of good
product sequences and/or can lead to undesirable split production runs.
There are two possible remedies. One is to keep the rigid problem state-
ment but to do extensive sensitivity analysis on the “soft’” data (i.e., on the
D¥s E¥s, L¥sand H). The other remedy, far superior in our opinion, is to
adopt a less rigid problem statement that is inherently less sensitive to prob-
lem data.

An Improved Problem Statement

A Dbetter problem statement would give lower and upper limits bracketing
D* instead of a single target number, would allow E* and L* to be violated
for a price (say, for a penalty cost of «i* and " dollars per day, respectively),
and would allow individual lines to finish their work earlier or later than
time H for a penalty cost of o’ dollars per day (either long or short).

An additional benefit of such a reformulation is that the first practical
difficulty concerning the size of 7 now becomes largely academic. Such
flexibility is exactly what we need to keep the map size m within a tractable
range. Moreover, the production line similarity assumptions of Section 1
become much less important.

It is evident that a more flexible problem statement of this type removes
the scheduling problem from the realm of purely combinatorial formulations.
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No longer can it be quantized so as to be representable exactly as a quadratic
assignment problem. Yet so long as the sequencing and production costs
are strongly dominating in comparison to the penalty costs, an approximate
quadratic assignment formulation is the natural choice as the founda-
tion of a practical solution procedure. Such a procedure is giveninthenext
section.

3. A HYBRID QUADRATIC ASSIGNMENT /LP APPROACH

The preceding section proposed a more flexible statement of the schedul-
ing problem in order to avoid practical difficulties associated with the origi-
nal problem statement. If a quadratic assignment algorithm alone were to
be applied to the new problem statement, the natural way to do so would be
as follows. Lengthen H by 10 or 15 % and add enough demand for a dummy
product (see Note 1) to take up the additional production capacity. (This
will act asa kind of “slack variable” in each of the line horizon constraints.)
Select 7 so that integral m;’s and n*’s can be obtained via (3) and (4) using H
and D*s within the allowed range of their target values, and so that m is not
too large. Incorporate the time penalty costs (mi*, m*, and m' of Section
2) into the A-matrix in the obvious way. For instance, the “prohibitive”
penalties of matrix A* described in Section 1 would be replaced by finite
values calculable in a straightforward manner from E*, L*, m*, m;* and the
known duration 7/a; of time slots on each line. We have found that this
quadratic assignment approximation to the revised problem does in fact
work quite well.

A still better way to approach the more flexible problem statement, how-
ever, is to employ linear programming in tandem with the quadratic assign-
ment algorithm. The basic idea is to use the quadratic assignment al-
gorithm in the manner just described in an effort to determine the best
sequencing of products on each of the lines and then to use linear program-
ming to adjust the lengths of the various production runs thereby deter-
mined so as to minimize the nonsequencing costs subject to the given
minimum-maximum range on each of the D;’s. This is the natural division
of labor: a combinatorial algorithm for the combinatorial part of the prob-
lem and LP for the remaining “continuous’’ part of the problem.

To indicate more precisely how the linear program would be set up, it is
necessary to extract from the solution of the quadratic assignment problem
the pure sequencing information it conveys—production quantities and
timing information can be suppressed. The fundamental entity pertaining
to sequencing is the production campaign, defined as an uninterrupted period
of production on a single line earmarked for a single production order. A
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campaign sequence is a time-sequence of campaigns specified as to production
line and production order but not specified as to duration. A convenient
way to express a campaign sequence is to define a partitioned index set

PE L, -yt oyt ve s 5 2aml (13)

that numbers campaigns in chronological order by line (y; is the number of
campaigns on line [), and also to define a campaign sequence function K(-)
on I' that specifies the production order index of each campaign. Thus
K(9) = 3 means that the 9t campaign is part of the 3¢ production order.
Moreover, if we suppose that y; = 8, then I' identifies the 9t campaign as
the (9—8) = 1°t campaign on line 2.

Associated with any one-to-one map p from (8) to (9) there will be a unique
and easily extracted campaign sequence—call it K,(-) with domain I')—
identified by the maximal assigned sequences of time-consecutive lots, on
the same production line, corresponding to the same production order. The
campaign sequence associated with the quadratic assignment problem solu-
tion, p° contains all the information about p° needed by the linear program.

The function of the linear program can now be stated succinctly : without
altering the quadratic assignment campaign sequence (K, on I'y), de-
termine the duration of each campaign so as to minimize the sum of pro-
duction costs and all time penalties associated with £* and L* violations and
with departures from H in the finishing time of each production line (see
Note 3), subject to the requirement that the total quantity produced by
campaigns associated with each production order k& must be within the
specified limits bracketing DF.

The natural formulation of this problem has as many variables as there
are campaigns, as many two-sided demand constraints as there are produc-
tion orders, and an objective function that includes piecewise-linear convex
penalty terms. Figure 3 illustrates a typical penalty term associated with a
campaign corresponding to a production order k with E*>0. Here s
stands for the sum of the durations of all campaigns that occur before the
subject campaign on the same line (these are readily identified from I'), and
mi* is the per diem penalty rate for violation of E* (as defined at the end of
Section 2).

All penalty terms can be re-expressed with the help of a standard trick so
that the natural formulation is converted into an ordinary linear program.
For example, the penalty term of Figure 3, which can be expressed
as Max{0, m*E*— ms}, can be replaced in the objective function by an
auxiliary variable o subject to the linear constraints o>0 and
o >mFE* — miks,

The approximate quadratic assignment formulation given at the outset
of this section may not lead to the best possible campaign sequence in the
global sense. The obvious way to deal with this possibility is to iterate the
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Time
Penalty

lope = -12‘

I

0 EX

Starting Time of the Subject Campaign

Fig. 3. A typical time penalty.

use of the quadratic assignment algorithm or linear programming or both.
At least two kinds of iteration are possible: (a) alter the chosen quadratic
assignment approximation and solve both it and its induced linear program
again; (b) solve the quadratic assignment problem once for K0 , but solve
the linear program not only for K, but also for other plausible campaign
sequences that are ‘“‘close” to Ko in a suitable sense. We have found the
second of these approaches to be entirely satisfactory in the practical ap-
plication now to be described.

4. AN APPLICATION TO CHEMICAL REACTOR SCHEDULING

A practical application has been carried out for a complex of chemical re-
actors at Dart Industries Inc. As in the example described by Prabhakar
[7], the transition costs were the economic loss suffered by the production of
off-grade product during changeover. Five reactors of one type produce
about twenty different products each month, while one reactor of a second
type produces about a half dozen products. Since the products produced
by the two types of reactors are disjoint, the scheduling problem decom-
poses naturally into two separate problems. The five reactors of the first
type are similar so that our assumptions A1 and A2 provide a very good ap-
proximation. The standard scheduling period is one month. Some de-
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mands are a consequence of in-hand customer orders, while others are anti-
cipated on the basis of market forecasts. Earliest start times are occasion-
ally specified to take account of scheduled replenishment of raw material
supplies. Latest finish times as a result of customer delivery commitments
are more common.

The chemical reactor complex had always been scheduled manually. It
was the practice to make a monthly schedule just prior to the beginning of
every month, with this schedule being revised as necessary during the month
to account for unanticipated reactor downtime or changes in customer de-
livery requirements and raw material availabilities.

The Computer Implementation

Our algorithmic choice for the quadratic assignment problem is a variant
of Graves and Whinston’s method [6]. Variances of the completion values
of partial assignment maps are not employed, as it has been found that
means alone give the best tradeoff between solution quality and computing
time.

The quadratic assignment algorithm is interfaced with a linear program-
ming routine in the manner described in Section 3. We employed the
second type of LP iteration mentioned at the end of that section. More
specifically:

Step 1. Set up and solve the quadratic assigment problem described in the
beginning of Section 3. Extract the associated campaign sequence S°.
(More precisely, S°is the function K ,0 on I',0 defined in Section 3.)

Step 2. Set up and solve the LP problem induced by S° as explained in
Section 3. Install S°as the incumbent solution, ST¥¢, with total cost TC(ST¥¢)
equal to the changeover costs for S° plus the minimal time penalty and pro-
duction costs found by LP.

Step 3. Systematically generate “neighbors” of S7¥¢, testing each one to see
if it qualifies for further evaluation by having change-over costs strictly less
than T'C(S7~¢).  (Only if this is so does a campaign sequence have a mathe-
matical chance to improve the incumbent.) STOP if S7¥¢ has no qualifying
neighbor or if all such neighbors have already been passed on to Step 4 for
evaluation. Otherwise, go to Step 4 as soon as the next qualifying neighbor
S of S7v¢is found.

Step 4. Evaluate S by solving its induced LP problem. If the total cost of
S is less than T'C(S1¥¢), replace ST¥¢ by S. In any case, return to Step 3.

A neighbor of Sv¢ is defined here as any campaign sequence obtained by
applying one of the following operations to S7ve:

(a) Move one campaign to another position.

(b) Interchange the positions of two campaigns.
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These operations are easily formalized in terms of the notation established
for campaign sequences in Section 3. The computer implementation carries
out the four-step procedure in its entirety in a single run.

It is clear from the finiteness of the number of campaign sequences that
the above procedure must terminate in a finite number of steps with an in-
cumbent that is locally optimal for the improved problem statement of
Section 2. By “locally’’ optimal we mean that no improvement can be ob-
tained except, possibly, by changes to S7¥¢ more complex than changing the
position of one campaign or interchanging the positions of two campaigns.
Our experience has been that scanning higher-order changes is not worth the
trouble.

The LP solution is stored along with the incumbent campaign sequence, of
course, so that the entire production schedule is at hand upon termination.

Provision is made to allow the user to specify mandatory campaigns of
predetermined size for particular products and lines at the beginning of the
scheduling period. Among the several uses of this feature is the ability to
quickly rerun the scheduling problem in mid-month after some occurrence
has caused departure from the intended schedule. Provision is also made
to allow the scheduling of intentional down-time or maintenance just as
though it were a ‘“product.” Neither of these features poses any new
difficulties.

Results

A direct comparison between manual schedules made by experienced
schedulers and computer-produced schedules was arranged for a three-
month test period. This period was preceded by an initial phase during
which the computer code was being tuned and the manual schedulers were
learning to take advantage of newly developed changeover cost data. The
procedure followed was to obtain a problem statement and the correspond-
ing manual schedule, to generate a computer schedule using the given prob-
lem statement but without any knowledge of the manual schedule, and
then to evaluate the total costs of both schedules using the agreed-upon
cost data.

The computer schedule proved superior to the manual schedule for each
of the three test months, as indeed it has for all of the less formal compari-
sons made before and since. The manual schedules were 35 %, 22 %, and
25 % more expensive than the computer schedules. Since changeover costs
were amounting to several hundred thousand dollars per year, the savings
were judged ample to justify conversion to the new computer scheduling
method.

The cost savings demonstrated in these trials, substantial as they are,
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probably underestimate the true economic benefits of the scheduling pro-
gram. One reason is that the problem statements and manual schedules
were worked out at about the same time by the same people, which suggests
that the problem statements transmitted were if anything more restrictive
(difficult) than the problems actually addressed by the manual schedulers.
Another reason is that the computer program should be better and quicker
at revising schedules in mid-month after such disturbances as reactor break-
down, delayed raw material delivery, and urgent customer requests. Mid-
month revisions were not part of the tests. This last point suggests one of
the more valuable secondary uses of the program: to evaluate (approxi-
mately) the implications on cost of accepting versus refusing a customer
request to advance the delivery date on his order.

Typical scheduling runs for the 5-reactor complex take the time quantum
7 to be in the neighborhood of 3 days, which results in a total quadratic
assignment map size m of about 50. The quadratic assignment algorithm
takes approximately one minute on the IBM 360/91, and the iterative LP
phase typically takes about one fifth that long.

The computer program has been installed on the firm’s computer, is in
regular use, and is regarded by the firm as a successful application.

NOTES

1. The changeover cost from any real product to the dummy product would be
taken as 0, and the cost from dummy to any real product would be taken as
prohibitively high so that the dummy product will only be produced after all
real production on each line.

2. Sensitivity and continuity analysis of discrete and combinatorial programs is a
subject still in its infancy. See, however, Radke [9] and Williams [10].

3. The finishing time of each line is the time at which the last real campaign ends
and the first campaign (if any) of the dummy product starts.
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