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MULTICOMMODITY DISTRIBUTION SYSTEM DESIGN BY
BENDERS DECOMPOSITION*t

A. M. GEOFFRION anp G. W. GRAVESS§
Unaversity of California, Los Angeles

A commonly occurring problem in distribution system design is the optimal lo-
cation of intermediate distribution facilities between plants and customers. A multi-
commodity capacitated single-period version of this problem is formulated as a mixed
integer linear program. A solution technique based on Benders Decomposition is de-
veloped, implemented, and successfully applied to a real problem for a major food
firm with 17 commodity classes, 14 plants, 45 possible distribution center sites, and
121 customer zones. An essentially optimal solution was found and proven with a
surprisingly small number of Benders cuts. Some discussion is given concerning why
this problem class appears to be so amenable to solution by Benders’ method, and
also concerning what we feel to be the proper professional use of the present compu-
tational technique.

1. Introduction

1.1 The Model

The simplest version of the problem to be modeled is this. There are several com-
modities produced at several plants with known production capacities. There is a
known demand for each commodity at each of a number of customer zones. This
demand is satisfied by shipping via regional distribution centers (abbreviated DC),
with each customer zone being assigned cxclusively to a single DC. There are lower
as well as upper bounds on the allowable total annual throughput of each DC. The
possible locations for the DC’s are given, but the particular sites to be used are to be
selected so as to result in the least total distribution cost. The DC costs are expressed
as fixed charges (imposed for the sites actually used) plus a linear variable charge.
Transportation costs are taken to be linear.

Thus the problem is to determine which DC sites to use, what size DC to have at
each selected site, what customer zones should be served by each DC, and what the
pattern of transportation flows should be for all commodities. This is to be done so as
to meet the given demands at minimum total distribution cost subject to the plant
capacity and DC throughput constraints. There may also be additional constraints
on the logical configuration of the distribution system.

The mathematical formulation of the problem uses the following notation.

) index for commoditics,

J index for plants,

k index for possible distribution center (DC) sites,

* Received August 15, 1973.

1 An earlier version of this paper was presented at the NATO Conference on Applications of
Optimization Methods for Large-Scale Resource Allocation Problems, Elsinore, Denmark, July
5-9, 1971. This research was partially supported by the National Science Foundation under Grant
GP-36090X and the Office of Naval Research urtder Contract N00014-69-A-0200-4042. Reproduction
in whole or in part is permitted for any purpose of the United States Government.

§ We wish to express our gratitude to Mr. Steven M. Niino, Manager of Operations Research at
Hunt-Wesson Foods, Inc., for his outstanding contribution to the success of the practical applica-
tion reported in this paper. We also want to thank Mr. Shao-Ju Lee of California State University
at Northridge for his invaluable assistance in carrying out a difficult computer implementation’

822
Copyright © 1974, The Institute of Management Sciences



MULTICOMMODITY DISTRIBUTION SYSTEM DESIGN BY BENDERS DECOMPOSITION 823

l index for customer demand zones,
Si; supply (production capacity) for commodity 7 at plant j,
Dy demand for commodity ¢ in customer zone I,
Vi, Vi minimum, maximum allowed total annual throughput for a DC at site k,
fr fixed portion of the annual possession and operating costs for a DC at
site k,
Uk variable unit cost of throughput for a DC at site k,
Cijkl average unit cost of producing and shipping commodity % from plant j
through DC % to customer zone I,
Tijn a variable denoting the amount of commodity ¢ shipped from plant j
through DC k to customer zone ,
Yrt a 0-1 variable that will be 1 if DC k serves customer zone [, and 0 other-
wise
2k a 0-1 variable that will be 1 if a DC is acquired at site k, and 0 otherwise.
The problem can be written as the following mixed integer linear program.
(1) Minimize, »0,4,.~0,1 Zijkl Cijiiiel + >k [fezr + VD it Dyri)
subject to
2) Zkl T < Sij, all 4y
®3) Zy‘ Zijie = Duyr, all <kl
(4) Do Y = 1, all
(5) Vier < 2 a Dy < Vize, allk
6) Linear configuration constraints on y and/or 2.

The notation y, z = 0, 1 means that every component yx; and z; must be zero or one.
It is understood that all summations run over the allowable combinations of the in-
dices, since many combinations are either physically impossible (such as an 75 com-
bination which signifies a commodity that cannot be made at plant 7) .or so obviously
uneconomical as not to merit inclusion in the model .(such as a kIl combination that
would serve customers in Miami from a DC in Seattle).

The correspondence between this model and the verbal problem statement should
be apparent. The quantity > i Da Y1 is interpreted as the total annual throughput
of the kth DC. Constraints (2) are the supply constraints, and (3) stipulates both
that legitimate demand must be met (when yi; = 1) and that z;5; must be 0 for all
ij when i = 0. Constraints (4) specify that each customer zone must be served
by a single DC. Besides keeping the total annual throughput between V; and Vi or
at 0 according to whether or not a DC is open, (5) also enforces the correct logical
relationship between y and z (i.e., zx = 1 g, = 1 for some 1). Constraints (6)
are deliberately not spelled out in detail for the sake of notational simplicity. The
only requirement is that they be linear and do not involve any z-variables.

1.2 Discussion of the Model

There are several features of the model which warrant some discussion either to
point out the flexibility they afford or to indicate the manner in which they differ
from related models to be found in the literature.

The reader may have noticed that the transportation variables are quadruply
subscripted, whereas previous intermediate location models (Bartakke et al. [2];
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Ellwein and Gray [8 p. 296]; Elson [9]; Marks, Licbman and Bellmore [19]) employ
separate transportation variables for plant-to-DC and DC-to-customer shipments.
That is, we might have used two sets of triply subscripted variables (z:; and ru,
say). linked by a flow conservation constraint for each commodity-DC combination.
This alternative suffers from a lack of flexibility for some applications because it
“forgets” the origin of a commodity once it arrives at a DC. In the real application
which sired the work reported in this paper, for instance, the so-called ‘‘storage-in-
transit” privilege was a very important determinant of rail transportation costs for
several of the commodities. A transit rate is figured as the direct plant-customer rate
plus a nominal charge for stopping over at the DC which serves the customer, so
long as this DC is not too far off the direct line. The transit rate is usually smaller
than the simple sum of the plant-DC rate and the DC-customer rate. Obviously the
2% and zg; formulation cannot cope with the transit feature. Another advantage of
the 2:;; formulation over the xi;x & i formulation arises when some commoditics
are perishable; it may be neccessary to disallow the possibility of shipping such com-
modities over jkl routes for which the total journey times are likely to be excessive.

The quadruply subscripted transportation variables also make it casy to accommo-
date direct plant-customer zone shipments so long as a customer zonc does not try
to receive a given commodity both from a DC and a plant. For instance, supposc
that a certain subset of customer zones is to obtain all commodities directly from the
plants instead of via DC’s. Then one simply adds a fictitious DC site ko , say, with the
associated zr, and yx,.’s fixed at unity, and specifies the rates ¢;jx,. appropriately for
each associated 75l (there is no need for (5) to include a constraint for k¢). One may
also accommodate the situation in which a customer zone obtains some commodities
directly from the plants and the others through its DC. Just make the c;;’s corre-
sponding to the direct commodities independent of the possible DC’s for such a cus- .
tomer zone, and omit the 7/ combinations corresponding to the directly shipped com-
modities from both Q. Dy terms in the model.

Another unique feature of the model is that no customer zone is allowed to deal
with more than one DC, since the yx’s must be 0 or 1 and not fractional. Thus each
customer’s demands must be satisfied by a single DC or directly from a producing
plant (as described above). This assumption, which is required by the decomposition
technique developed below, is frequently justified in practice. Our first-hand experi-
ence with three firms, each in a different industry, is that their accounting systems
and marketing structures are geared to serving each customer zone from a single DC.
Any change in this convention would be expensive both in terms of added administra-
tive costs and in terms of less convenient service as perceived by customers. There
would also be economic disadvantages due to reduced economies of scale in DC-to-
customer shipments. Evidently a similar situation exists for other firms, as the de-
sirability of this feature is frequently mentioned by other authors with practical ex-
perience [2], [6], [9], [10].

Notice that lower bounds as well as the customary upper bounds may be stipu-
lated on warchouse throughput. This is useful for its own sake when there are reasons
why each DC must be larger than a certain minimum size, and also to facilitate using a
simple trick to permit a piecewise-linear representation of economies of scale and other
nonlinearities (or even discontinuities) in DC costs as a function of throughput: simply
introduce alternative DC’s at a given site with different size ranges controlled by
Vi and V , with f; and v, specialized accordingly. For instance, a piecewise-linear DC
cost function with three pieces would require three alternative DC’s (small, medium
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and large) each with fi and v dictated by the corresponding piece of the DC cost
function. A simple configuration constraint can be included among (6) to ensure
that at most one of the alternative DC’s is opened at each site if this is not an auto-
matic economic consequence of the model. The same trick also allows some economies-
of-scale in transportation costs to be incorporated. This is especially useful for the
in-bound (plant-to-DC) component of transportation costs for nontransit commod-
ities. The larger the size range of an alternative DC, the lower should be the unit
in-bound rates. The annual throughput of a DC has a much smaller influence on
economies-of-scale for the out-bound rates, because the mode of transportation and
delivery requirements are largely determined by the customers. This is especially
true in view of the model assumption that each customer zone must be supplied by a
single DC (the degree of consolidation of out-bound shipments is therefore relatively
predictable for a given DC-customer zone pair).

The arbitrary configuration constraints (6) give the model quite a lot of flexibility
to incorporate many of the complexities and idiosyncrasies found in most real appli-
cations. For instance, (6) permits:

@ upper and/or lower bounds on the total number of open DC’s allowed;

® specification of subsets of DC’s among which at most one, at least one, exactly
two, etc., are required to be open; :

@ precedence relations pertaining to the open DC’s (not A unless B, etc.);

® mandatory service area constraints (if DC A is open, it must serve customer
zone B);

@ more detailed capacity constraints on the size of a DC than (5) permits, as by
weighting the capacity consumption characteristics of each commodity differently
or by writing separate constraints for individual or subsets of commodities;

® constraints on the joint capacity of several DC’s if they share common resources
or facilities;

® customer service constraints like

(Zkl bik Dilykl)/Zl D, < Ty,

where t4; is the average time to make a delivery of commodity 7 to customer zone !
after receiving an order at DC k, and T is a desired bound on the average delivery
delay for commodity <.

A few additional remarks are in order concerning how the present model fits into
the existing literature. Its chief ancestors are, of course, the well-known and much
simpler “plant location’’ models (see Balinski and Spielberg [1, p. 268ff.]; Gray [16];
Ellwein [7] for surveys). These are basically single commodity transportation problems
with fixed charges for the use of a source. Often the sources are assumed to have
unlimited capacity. Recent work on capacitated problems of this type includes Davis
and Ray [5], Ellwein and Gray [8], Fieldhouse [10], Geoffrion and MecBride [13],
Khumawala and Akine [17], and Soland [21]. These authors all use branch-and-bound,
which has emerged clearly as the most practical optimizing approach.

A natural extension of the capacitated plant location problem to the optimal loca-
tion of intermediate facilities in multi-echelon systems has been studied by Marks,
Liebman and Bellmore [19]. They report reasonably good computational experience
with a conventional branch-and-bound algorithm in which the linear programs, which
specialize to capacitated trans-shipment problems, are solved by an out-of-kilter
routine. The same model is considered very briefly by Ellwein and Gray [8], who indi-
cate that their capacitated plant location algorithm can be generalized to this case
but give no computational experience.
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If we now add the multicommodity feature, there appears to be no existing litera-
ture on special purpose optimizing algorithms. The only studies of multicommodity
intermediate facilities location problems of which we are aware have used general
purpose mixed integer linear programming systems. Bartakke et al. [2] describe an
application of Bonner and Moore’s Functional Mathematical Programming System
for the Univac 1108 1o an industrial problem with 4 plants, 4 commodities, 10 inter-
mediate distribution sites with 3 possible sizes for each, and 39 customer points. It
reportedly required 45 minutes of CPU time to optimize the resulting model with 210
rows, 30 binary variables and 1600 continuous variables. Elson [9] describes a special-
ized matrix generator and report writer for use in conjunction with the OPHELIE
MIXED system for multicommodity intermediate location problems. Computational
experience is given for one relatively small problem. The author refers to other com-
putational experience with problems of similar size, from which he estimates that
problems with 15 plants, 3 commodities, 45 DC sites, and 50 customer zones can be
solved in about 8% system minutes on the CDC 6600 (assuming a 3:1 conversion
ratio of billable system time to central processor time). '

The reader who wishes to delve into the literature more deeply is encouraged to
consult the excellent and massive (273 page) annotated bibliography on location-
allocation systems prepared recently by Lea [18].

1.3 Plan of the Paper

§2 specializes Benders’ well-known partitioning procedure to our problem in such a
way that the multicommodity LP subproblem decomposes into as many independent
classical transportation problems as there are commodities. This decomposition makes
it possible to solve problems with virtually any number of commodities. Possible
points of interest in this section include the technique used to recover the optimal
multipliers for each LP subproblem from its analytically reduced and separated com-
ponents, a variation of Benders’ original procedure which has proven effective in this
context, and some remarks on the reoptimization capability of this approach via the
use of previously generated Benders constraints for revised problems.

§3 briefly describes a full-scale computational implementation which we have used
to redesign the national distribution system of a major food firm. This application is
discussed at some length in §4, with considerable stress placed on the importance of
certain types of pre- and postoptimality runs to the professional success of this study.
Actual computational experience is quoted in detail. The reader will be surprised,
as we were, that in every run just a few iterations of Benders’ procedure sufficed to
find and verify a solution optimal to within a few tenths of one percent. Since this
was also true for another large (unrelated) practical problem, it would seem that the
class of problems studied herein is unusually amenable to solution by Benders’ method.

§5 passes along a lesson learned from early computational experience concerning
alternative logically equivalent model representations which are really not equivalent
at all when solved by Benders Decomposition. We found that the representation used
here is far superior to the natural more compact one we had tried earlier. This phe-
nomenon is examined and implications emerge which may well be useful in other
applications of Benders’ method.

Some conclusions from our experience to date are offered in §6.

2. Application of Benders Decomposition

Most real-lifc applications of problem (1)-(6) are too large to be solved economi-
cally by existing general mixed integer linear programming codes [12]. The application
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addressed below had 11,854 rows, 727 binary variables and 23,513 continuous vari-
ables. The model does, however, have a conspicuous special property that enables
it to be decomposed in such a way that the multicommodity aspect becomes much
less burdensome: when the binary variables are temporarily held fixed so as to satisfy
(4)-(6), the remaining optimization in z separates into as many independent classi-
cal transportation problems as there are commodities. This can be seen either from
the physical interpretation of the problem or directly from (1)-(3). The transporta-
tion problem for the 7th commodity is of the form

Minimize Zil Ciji 14k
(71) subject to

2 iian < Sy, ally

2o ziiwr = Da, alll

Tk >0, all jl,

where £ () is defined, for each I, as the k-index for which y;; = 1 in the temporarily
fixed y-array (by (4), k(1) is unique for each 1).

The simplicity of the problem for fixed (y, z) suggests the application of Benders
Decomposition [4]. A conventional specialization of this approach is given in §2.1,
and the following section explains how the necessary multipliers of the full subproblem
may be analytically synthesized from the multipliers of the reduced and separated
subproblems (7i). §2.3 describes a variant of Benders’ approach which we have found
to be more suitable for computational purposes. Finally, the cost-saving reoptimiza-
tion capability inherent in this approach is pointed out in §2.4.

2.1 Specialization of Benders Decomposttion

Application of Benders Decomposition to (1)- (6) in the standard fashion leads to
the following algorithm.

Step 0. Select a convergence tolerance parameter e > 0. Initialize UB = o,
LB = —w, H = 0. If a binary array (y', 2') satisfying (4), (5) and (6) is given,
go to Step 2; otherwise, go to Step 1. '

Step 1. Solve the current master problem

(8) Minimizey,.o,15, 2ok U2k + 062 a Dl + %o
subject to (4), (5), (6) and
(9) Yo + Zm W?leilykl > - Zij u?jsij ) h = 1, H

H+1 H H+1

by any applicable algorithm. Let ("™, 2", y6™) be any optimal solution. Put
LB equal to the optimal value of (8), which is a lower bound on the optimal value
of (1)=(6). Terminate if UB < LB + .

Step 2.

(a) Solve the linear programming subproblem
(10) Minimize; o Zi]’kl Cijki%ijkl

subject to (2) and (3)

with y = y”* by any applicable algorithm. Denote the optimal value by T'(y
and the optimal solution by z”*'. Then the quantity

(11) D™ 4 v Doyl + TG

H+1)
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is an upper bound on the optimal value of (1)-(6). If (11) is less than UB, replace
UB by this quantity, store (y**, 2%, z"™) as the Incumbent, and terminate if
UB < LB + e

(b) Determine an optimal dual solution for (10) with y = " ™: denote it by »”*
(corresponding to (2)) and #" ™ (corresponding to (3)). Increase H by 1 and return
to Step 1.

A few remarks on this procedure are in order. First, note that an e-optimal termina-
tion criterion has been used. The available upper and lower bounds on the optimal
value of (1)—(6) coincide to within e upon termination, at which time the Incumbent
has been demonstrated to be e-optimal in (1)-(6). Prior to termination it is known
only that the Incumbent is within (UB-LB) of the optimal value. IFinite convergence
is assured for any ¢ > 0.

Second, note that no provision is made at Step 2 for the possibility that (10) may
be infeasible for some choices of y. This possibility can be handled easily within the
standard framework of Benders Decomposition by slightly complicating the above
algorithm, but we elect to preclude it here by assuming without loss of generality
that 2 ; S > > Dy for all 7 (otherwise (1)—(6) is infeasible) and that all possible
~ jk combinations are technically allowed (if joko corresponds to an uneconomical route,
take cijuor equal to any comparatively large number). It is not difficult to verify
that these innocuous assumptions imply that (10) is feasible and has a finite optimal
solution for every binary y satisfying (4).

Third, as indicated previously, the LP subproblem (10) is most easily solved by
solving an equivalent collection of independent classical transportation problems—
one for each commodity. This can be demonstrated by observing that since y"*
satisfies (4), (3) implies

£ = 0 for all 45kl with & = k(1)
where £ (1) is the k-index for which y;;™ = 1. Thus (10) simplifies to

Minimize 2; (2_j1 cijimijian)
subject to

Do ke < Si, alld)
25 dijian = D, allidl
Tiian >0, all 4jl.

This problem obviously separates on 7 into independent transportation problems of
the form (7i). If the optimal value of (7i) is denoted by 7. (y"*"), then T(y"™"") =
Zi T (lJHH)~

The reduction of (10) to independent problems of the form (7i) greatly simplifies
Step 2a, but Step 2b then becomes less straightforward. The required optimal dual
solution for (10) must be synthesized from the optimal dual solutions of (7i). The
relationship between the optimal primal solutions of (10) and (7i) is obvious, but
the relationship between the optimal dual solutions requires some analysis. This
analysis is as follows.

2.2 Details on Step 2b

Step 2b requires an optimal dual solution (u”™, #**) to (10) with y fixed at y" ™.
Since (10) is solved via (7i) rather than ‘directly, the required dual solution must be
synthesized from the available dual optimal solutions to (7i).
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TFor notational simplicity, the superscript H + 1 will be replaced by an overbar
(e.g., ¥"* becomes 7). Denote the available optimal dual variables of (7i) by @i
(corresponding to the supply constraints) and #; (corresponding to the demand
constraints). It will be shown that the appropriate formulae to be used at Step 2b
are: :

(12a) ' Wij = Rij, all 45
(12b) T = Max; { —@:; — cimi}, all 2kl

To derive (12), one must compare the duals of (10) with those of (7i), where y
is fixed at §. The dual of (10) is

Maximizeuso,r D mirr(— D) + Dis wij(—Sij)
(13) subject to
—Uij — Tikl S Cijkl , all 7,_7kl

Notice that for any fixed u, the optimal choice of 7 is obvious since there are no joint
constraints on m and each my; is constrained only from below by the bound

bﬁgl(u) A Max,- {—u” —_ C{jkl}.

If (—D.gr) < O then the best choice of iy is b (w), while if (—D.@x) = 0 then
the optimal choice is any number greater than or equal to b (u).

Notice also that when (—D.jx;) = 0, as when k 5 k(l), the corresponding constraints
may simply be dropped from (13) since they may always be satisfied without any
effect on the value of the objective function. Thus (13) is equivalent to

Maximizew zo;xjy ; vit D miia (= Dagran) + D wii (—Si;)
(14) subject to
—Ui; — mior < Gk, all gl

with the understanding that for 7kl with k 5% k (), 74, is any number greater than or
equal to b (7). .

Now consider the duals of (7i) for each ¢, which may be combined into a single
linear program since there are no variables in common. That is, (g, ) is an optimal
solution of

Maximize, so0,0 D+ [ D) mii (—Si;) + 2 1va(—Di)]
(15) subject to
—nij — i < Cijkan,  all gl
Comparison of (14) and (15) reveals that these are identical optimization problems
(remember that §iuy: = 1), and hence the choice
(16a) Wij = fij, allig
(16b) Fiwr = 0a, alldl

is optimal in (14). In view of the previous discussion, we also have the following
necessary (given (16a)) and sufficient condition on the remaining m;x;’s:

(160) 7T',;kl > Max]- {—/7.“' - cijkl}, for all 7kl with &k # E(l).
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Relations (16a)-(16¢) give the desired complete optimal solution to (13). Since
(16a) is identical to (12a), it remains but to reduce (16b) and (16¢) to the form
(12b).

Relation (16¢) is easily converted to the form of (12b) by selecting 74 in (16¢) to
be as small as possible, that is, so that equality holds—for, by the nonnegativity of
Dy in (9), this gives the best approximation to the optimal transportation cost
function 7. Second, by inspection of (15) we see that

(17a) Ua = Max; {—@gy — cuiod, alled: =Dy <0
(17b) V41 2 1\/.[an {—,L-L” — Cijic(l)l}; all 2{: —Dil = 0.

We may assume without loss of generality that equality holds in (17b), for if not
then one may simply redefine o,; so that it does hold without upsetting the optimality
of (@, 7) in (15). Hence

Vi = 1\1an {—ﬂij — Cijl'c(l)l}, all ZZ,
which shows that (16b) reduces to (12b) and concludes the proof of (12).

2.3 The Variant Actually Used

There are numcrous variants of the pure Benders Dccomposition algorithm de-
scribed in §2.1. One variant of particular interest is not to solve the current master
problem at Step 1 to optimality, but rather to stop as soon as a feasible solution to
it is produced which has value below UB-e. This implics, of course, that the master
problem no longer produces a lower bound on the optimal value of (1)—(6) and so
LB must be inactivated. The termination criterion of Step 2a must be deleted and
that of Step 1 must be replaced by: “terminate if the current master problem has no
feasible solution with value below UB-¢; the current Incumbent is an e-optimal solu-
tion of (1)-(6).”

It is not difficult to sce that this variant must converge to an e-optimal solution
within a finite number of iterations. This follows from the finiteness of the number of
dual solutions of (10) and from the easily verified fact that if any dual solution should
be produced more than once at Step 2b, then the Incumbent must be improved by at
least e at each such repetition. There can be no more than a finite number of repetitions
because the optimal value of (1)-(6) is bounded below. ‘

The principal motivation behind this variant is that the early master problems have
too little information about transportation costs to be worth optimizing very strictly.
It takes several “Benders cuts” of the form (9) in order to give accurate information
concerning these costs. This suggests that the master problems should be subopti-
mized, particularly when H is small. The degree of optimality achieved by this variant
increases with H for two reasons: the minimal value of the master problem increases as
H increases duc to the accumulation of cuts, and the threshold UB-e decreases each
time an improved Incumbent is found.

A sccond motivation is that the variant’s master problems are feasibility-seeking
only:

Find y,z2=0,1 and 1y, to satisfy (4), (5), (6), (9) and
Zk [frer + UkZizDuykz] + yo < UB-¢
or, cquivalently upon elimination of y, ,

Find y,z =0,1 tosatisfy (4), (5), (6) and
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9a) D% [fver + ve D aDaye] — Z-ij u?jSij — 2w Dy < UB-¢,
h = 1,---,H.

Thus we may literally introduce any appealing (linear) objective function, say ¢ (y, 2),
and take the master problem to be:

(8a) Minimizey,.-01 ¢ (y, 2) subject to (4), (5), (6) and (9a).

It is not necessary to optimize (8a), of course, but merely to produce a feasible solution
if one exists. The choice of ¢ should be so as to encourage the production of useful
feasible solutions. We have found the last (Hth) function appearing on the left-hand
side of (9a) to be a good choice in practice.

We remark that (8a) is a pure 0-1 integer program, whereas (8) is a mixed integer
program due to the appearance of y,. This gives (8a) the added advantage of being
somewhat more convenient to work with.

2.4 Re-Optimization

One of the'advantages of the Benders Decomposition approach is that it offers the
possibility of making sequences of related runs in considerably reduced computing
times as compared with doing each run independently. The need for multiple runs is
particularly acute in distribution system design studies because of the great economic
consequences of the final solution, the difficulties of ascertaining future demands and
costs with precision, and other reasons discussed at some length in §4.2.

The reoptimization capability of Benders’ approach is due to the fact that the cuts
(92) generated to solve one problem can often be revised with little or no work so
as to be valid in a modified version of the same problem. Assume for a moment that
this is so. Then the modified problem can be started with these old (possibly revised)
cuts included in the initial master problem and each master thereafter. If the optimal
(y, #) solution of the modified problem is not too far from the optimal (y, 2) solution
of the original problem, then one would expect termination of the procedure in fewer
major iterations than would be the case if it were begun from scratch.

The revision of cuts so as to be valid in a modified version of the problem is an
easy matter so long as the c;j; coefficients do not decrease. This limitation is due to
the requirement that («*, #*) in (9) and (9a) must be feasible in the dual subproblem
(13) corresponding to the modified version. Thus, increasing some c¢;;;’s and making
arbitrary changes in the V,’s and V,’s and in the configuration constraints (6) re-
quire no revisions at all in (9a); except, of course, that appropriate values of UB and
¢ must be used. Changing an f; or v is easily accomplished by a simple revision for-
mula. Changing an S;; or D;;, on the other hand, requires forethought in that the
uii’s and wg’s themselves enter into the revision formulae; normally these duals
will not be saved since there is no need for them once a cut is calculated. Saving the
;s poses no particular problem because the number of allowable 7j combinations is
relatively small in most applications. This would permit arbitrary changes in the
S;;’s. Saving all of the my;’s would be burdensome storage-wise, so it is best to re-
construct them from the u.;;’s via (12). Thus arbitrary changes in the D.;’s are only
slightly more difficult to accommodate than changes in the S;,’s.

The usefulness of this reoptimization capablhty is indicated by the computational
experience presented in §4.3.
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3. Computer Implementation

An elaborate all-FORTRAN implementation has been carried out for the variant
of Benders Decomposition described in §2. The objective of solving large problems in
moderate computing times required the use of efficient algorithms for solving the
master problems and subproblems, and careful data management techniques. These
matters are discussed briefly in this section.

3.1 Master Problem

The master problems, of the form (8a), are pure 0-1 integer linear programs with a
variable for every allowable DC-customer zone combination (yx;) and for every
possible DC site (zx). Typically this leads to at least several hundred binary variables.
Thus it was necessary to devise a specialized method which exploits the special struc-
ture of (8a). The method we employ is a hybrid branch-and-bound/cutting-plane
approach with numerous special features.

The cuts employed are the original mixed integer cuts proposed by Gomory in 1960,
and are applied to each node problem in order to strengthen the LP bounds and to
drive variables toward integer values in preparation for the choice of a branching
variable. Absolute priority is given to z-variables over y-variables in branching. Re-
versal bounds are calculated for variables which are branched upon using relaxed
versions of (8a) which drop the integrality requirements on y (while keeping the
integrality requirements on z) and transfer a linear combination of all constraints
except (5) and individual variable bounds up into the objective function [11]. The
multipliers which determine the linear combination are the appropriate dual variables
of a node problem solved as a linear program (ignoring the integrality requirements on
both y and 2).

The linear programming subroutine takes full advantage of the generalized upper
bounding constraints (4), and also exploits certain other aspects of the problem
structure. It economizes on the use of core storage by generating columns as needed
from compactified data arrays.

Finally, it should be mentioned that a number of logical relationships between the
variables are built in-at various points of the master problem algorithm so as to de-
tect several kinds of infeasibility and “fix”” the free variables when this is justified.

3.2 Subproblem

The transportation subproblems (7i) are solved using a new primal simplex-based
algorithm with factorization (Graves and McBride [15]). Contrary to the conventional
wisdom, such methods are superior to out-of-kilter type algorithms for most network
flow applications [14], [15]. This is certainly true for the present application, where
only the costs of the transportation subproblems change between successive solutions.
An earlier implementation using an out-of-kilter algorithm was an order of magnitude
slower on the average.

3.3 Data Input and Storage

Core storage requirements are economized by extensive use of overlay, cumulative
indexing, and the creation of compact data sets from which model coefficients can be
generated conveniently as needed. Most of the larger of these data sets are kept on
disk. Raw problem data pertaining to permissible ¢jk! combinations, transportation
costs, and customer demands are input from tape to a preprocessor program which
creates the appropriate data sets on disk. These are then accessed directly by the main
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program, which receives the rest of the problem data (Si;, Vi, Vi, fi, v and con-
figuration data for (6)) from direct keyboard input using the URSA conversational
CRT-display remote job entry system at UCLA. The editing and scope display fa-
cilities of URSA make this an ideal means of entering and revising all but bulk data.
Matrix generation and similar chores are accomplished entirely by the preprocessor
and main programs.

The specific types of configuration constraints (6) accommodated in the current
program include: fixing selected yx; and 2, variables at specific values to set up regional
or otherwise reduced versions of the full problem; mutual exclusivity constraints on
DC sites; mandatory service area constraints for each DC; and a limit on the maxi-
mum number of DC’s that may be open.

Newly generated cuts are stored on disk for use in the reoptimization mode de-
scribed in §2.4. The last primal transportation solution is also stored on disk to serve
as an advanced start in subsequent runs for which it is still feasible.

4. Solution of a Large Practical Problem

4.1 Overm’ew

Hunt-Wesson Foods, Inc., produces several hundred distinguishable commodities at
14 locations (Wesson refineries, Hunt canneries, and co-packers) and distributes
nationally through a dozen distribution centers. The firm decided in 1970 to under-
take a thorough study of its distribution system design with particular emphasis on
the question of distribution center locations. The study was prompted both by the
need to resolve several expansion and relocation issues that had arisen, and by the
recognition that a systematic global study of the entire distribution system would
be likely to disclose opportunities for improvement that could not be identified by
conventional analyses of individual cases and geographic regions.

The primary outcome of the study was that five changes were recommended in the
firm’s configuration of distribution centers (the movement of existing DC’s to differ-
ent cities and the opening of new DC’s). The three most urgent of these changes have
been carried out as of this writing and the other two are in process. The realizable
annual cost savings produced by the study are estimated to be in the low seven figures.

§4.2 describes the various types of computer runs needed to carry out the study.
Actual computational experience is summarized in §4.3.

4.2 Eight Types of Computer Runs

It is obvious that most distribution system design problems are of sufficiently
major economic consequence to warrant the most careful computational treatment.
Yet we were surprised by the large number of runs needed to deal properly with the
various aspects of a real application. No less than 8 different types of runs can be
distinguished, each of which may require several—sometimes many—distinct sub-
missions:

® probationary exercises

® regional optimization

@ global optimization

® “what if ... ?”

® sensitivity analysis

® continuity analysis

® tradeoff analysis

® priority analysis.
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For obvious reasons we cannot go into detail on all of these phases of the study, but
we would like to make some general remarks on each in the light of our experience.

The purpose of the probationary exercises is to expose any possible shortcomings of
the model, data, or computer code that may compromise their managerial usefulness.
They must be regarded as “on probation” until proven otherwise, no matter how
meticulous have been the data verification and program debugging efforts. A series of
exercises is required in which the computer competes with management in carefully
designed decision situations. Each situation must be limited in scope, as by restricting
the number of free optimization variables, so that its complexity does not overwhelm
the managers’ ability to apply experience and familiar analytical techniques—yet it
should be broad enough to exercise a significant portion of the model. The computer’s
solution and the managers’ solution must be compared and any significant discrepancies
must be reconciled, by hand calculation if necessary. For instance, it is useful to run
the problem locked in to the current configuration of distribution centers so that the
only optimization required is service area design and transportation flows. The series
of exercises should involve each part of the model at least once. In this fashion the
model, data and computer code truly earn their credibility.

Regional optimizations focusing on natural geographical regions are bridges be-
tween probationary exercises and global optimizations runs, to help tune internal
algorithmic parameters and tactics while producing useful results. Four such regions
were sufficient in our application.

Far from being the climax of a study, a global optimization run with all decision
variables free requires considerable further study to confirm its validity and enhance
its usefulness. It spawns additional runs to answer management’s many inevitable
“what if . . . ?” questions (what if a certain DC were kept open, or a certain customer
zone were serviced by another DC, or a better rail rate negotiated here or DC lease
there, etc.). It also raises questions concerning the sensitivity of the optimal solution
to variation of the data. The need to address such questions is taken for granted in
applications of linear programming but they are often slighted in large-scale integer
programming applications—presumably on the grounds of their excessive computa-
tional cost. Our experience, however, is that such runs are indispensable as a source of
useful insight into the behavior of the model and its tolerance for estimation errors.
For instance, they revealed a serious error made during the initial formulation of the
model concerning the specification of the lower limits V. on distribution center through-
put. Runs done using demand projected for several years beyond the primary target
period of the study gave reassurance that dynamic factors were not unduly difficult
to cope with via the static model used here.

Continuity analysis is similar to sensitivity analysis except that the purpose is to
discover a possible pathology which cannot arise for ordinary linear programming
models. We are referring to the possibility that a small change in the data may induce
a sudden incommensurately large decrease in the optimal value of (1)-(6), a situation
to which a modeler is likely to be quite averse since almost any datum can be changed
by a small amount for a commensurately small cost (see Williams [23]). This situ-
ation can occur when the data changes lead to a discontinuous change in the feasible
region. Changes in data appearing only in the objective function (1) [i.e., in the ¢ijui,
v and fy coefficients] cannot lead to such behavior. The other data should be checked
by doing a run which relaxes each such coefficient somewhat; that is, each V} should
be decreased and each ¥ and S;; should be increased (it can be shown that relaxation
of the Vi’s and V’s precludes the need to perturb the D;’s). If the decrease in the
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TABLE 1
Priority Analysis Results
DC Locations %f‘:fff_:‘;s‘;'oﬁ? Total Cost Differences
OPT Optimum (6 changes) Optimum 100.00
A Current Current 103.15
B Current Optimum 101.43 1.72 save over A
B.1 1 “ 101.45 —0.02
B.2 2 “ 101.34 0.09
B.3 Current & One 3 “ 101.14 0.29( save
B.4 Change: 4 “ 101.42 0.01| over
B.5 5 « 101.37 0.06| B
B.6 6 “ 100.71 0.72
B.7 Current & Best 1 “ 100.01 0.01} loss
B.8 Subset of Changes {2 “ 100.12 0.12} over
B.9 Omitting: 4 “ 100.13 0.13) OPT
C Current & Changes 3, 5, 6 Optimum 100.30 1.13 save over B
C.1 Current & Changes |1 “ 100.29 0.01] save
C.2 3,5,6 and Also: 2 “ 100.17 0.13; over
C.3 4 “ 100.13 0.17) C
D  Current & Changes 2, 3, 4, 5,6 Optimum 100.01 0.29 save over C

optimal value of (1)-(6) is excessively large by comparison with the estimated eco-
nomic cost of changing these coefficients,’ then additional more specific runs must
be undertaken to localize the source of difficulty. A managerial decision would then
have to be made concerning possible revisions of the problem data or even of the model
itself. No serious discontinuities were detected for this application.

Tradeoff analysis runs are appropriate when there are other major quantifiable
criteria besides cost in evaluating the desirability of a given distribution system de-
sign. Perhaps the most important secondary criterion is the quality of customer service
as it depends upon the distance between a DC and the customer zones it serves. One
possibility is to adopt the average delivery delay criterion suggested in §1.2 and to
solve the problem with successively tighter 7;’s. In this manner one may generate the
tradeoff curve between total distribution cost and the average delivery delay for any
given product or weighted combination of products.

The last type of run on the list is priority analysis. When a study reaches the point
wherc management is ready to consider practical implementation of the results, it is
useful to distinguish the aspects of the solution yielding the largest savings from those
of relatively marginal significance. Runs done to help refine this distinction suggest
which aspects of the solution most urgently call for implementation and which should
be postponed or even dropped as too marginal to be worth the organizational upset.
In the present application this mainly involved trying to assess the relative economic
value of each of the major changes recommended for the distribution center configura-
tion then extant. The actual process is summarized in Table 1, which focuses on the
distribution center locations because these are the decisions of primary managerial

1 Only the coefficient changes actually required for feasibility of the new solution would, of
course, enter into this estimation.
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concern. As the first row indicates, the optimal DC configuration can be viewed as
requiring 6 changes to the current (1970) configuration. Some of the changes require
relocating an existing DC to a different city and the others require opening a new DC.
The total distribution costs corresponding to the optimal configuration are normalized
to 100. Row A gives the relative total cost corresponding to the current DC configura-
tion and also the current service areas and transportation flows. Row B retains the
current DC configuration but optimizes the service areas and transportation flows.
Notice that slightly more than half of the total possible savings could be achieved by
service area and transportation flow realignments alone.

Now comes the analysis of the relative value of each of the 6 changes, from which
some subset is to be selected for implementation. Runs B.1-B.6 indicate the savings
of each change if done individually. Changes 3 and 6 appear to be very attractive,
changes 2 and 5 only moderately attractive, and changes 1 and 4 unattractive. Change
5, however, was quite appealing to management on the grounds that it would give
additional warehousing space in a region of the country where space was in particu-
larly short supply. Management therefore was inclined to give top implementation
priority to changes 3, 5 and 6. This inclination was supported by the results of runs
B.7-B.9, which examine the effect of omitting one of the other changes and selecting
the best subset of the remainder. It turned out that changes 3, 5 and 6 were among
those selected in every case. Top priority was therefore given to changes 3, 5 and 6
- which, row C reveals, jointly save a little more than one would expect from simply
adding their individual savings (1.13 versus 1.07). Changes 1, 2 and 4 were examined
again individually given the acceptance of 3, 5 and 6. Changes 2 and 4 now look quite
attractive, while 1 continues to be borderline. This conclusion is supported by runs
B.7-B.9 because the same results would have been obtained if changes 3, 5 and 6
had been mandatory in these runs. In light of this analysis and of factors outside the
scope of the model, management gave second priority to changes 2 and 4. Change 1
was considered too marginal for implementation. Row D shows that changes 2 through
6 are only 1/100 of 1% away from the system optimum.

4.3 Computational Performance

This section summarizes the code’s computational performance on the Hunt-Wesson
problem. All computing times refer to UCLA’s IBM 360/91.

Table 2 presents ten representative runs without use of the reoptimization tech-
nique discussed in §2.4, and threc with it (labeled R). None of these runs incorpo-
rated any type (6) configuration constraints beyond the locking open or closed of
certain distribution center sites, so that the reader would be assured that the problem
was not so severely constrained as to greatly facilitate optimization (our experience
has been that while configuration constraints do tend to make the problem easier,
the influence on computing times is rarely dramatic). Runs 6 and 7 are identical except
for the specification of e. Runs 8 and 9 are identical except that the V.’s were
all 10 % higher in run 8. Runs 2R, 3R and 6R are identical to runs 2, 3 and 6 respec-
tively, except that cach was initiated using all of the cuts generated by runs 1, 5 and
4, respectively. The largest number of free DC sites in any of these runs is 30 because
the remaining sites were determined to be dominated as obviously uneconomical
during the probationary exercises and regional optimizations.

The most striking conclusion to be drawn from Table 2, and indeed from our en-
tire computational experience, is the surprisingly small number of iterations required
for convergence even with very small values of the optimality tolerance e. The num-
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TABLE 2
Representative Runs
DC’s
RunNo. |7 7 | Free 01 Variables® Rows e (%)® Major Iter. |Execution Time (Sec.)(®)
Free I‘O(’;]é:d
1 0 16 249 4,403 0.06 3 16.7
2 0 16 254 4,488 0.03 4 23.8
2R 0 16 254 4,488 0.03 4 16.6
3 7 11 287 4,944 0.03 5 25.5
3R 7 11 287 4,944 0.03: 4 17.5
4 15 4 336 5,657 0.06 4 23.2
5 20 1 349 5,783 0.15 4 24.9
6 20 5 411 6,857 0.06 7 50.5
6R 20 5 411 6,857 0.06 5 38.1
7 20 5 411 6,837 0.15 4 29.4
8 25 1 427 7,054 0.15 5 43.8
9 25 1 427 7,054 0.15 5 37.7
10 30 1 513 8,441 0.15 5 191.0

(Notes: (a) z;’s corresponding to the free DC’s plus yx:’s corresponding to DC'’s either free
or locked open; (b) percentage of the optimal total cost; (c) in addition to execution time, each
run required about one second of link editing time.)

ber of iterations increases only slowly with the size of the problem. Some partial ex-
planations for this fortunate state of affairs are offered in the next section.

Table 3 gives further details on the runs listed in Table 2. For convenience, the
optimal value of each run is normalized to 100. The difference between the ‘“total”
and “master” columns is the time at each major iteration spent extracting and solving
the 17 transportation problems plus cut generation time. About half of this time, which
runs quite consistently around 5 seconds, is spent performing the extraction from the
data sets on disk.

From Table 3 it can be seen that suboptimizing the master problem as described in
§2.3 is generally successful in helping to keep the time spent on it quite small. As one
might expect, the final master problem tends to be relatively difficult for the larger
problems. Notice also that the actual cost of the designs produced by the successive
master problems usually (but not always) improves monotonely. Finally, we can ob-
serve that reoptimization saves computing time but not necessarily major iterations,
and that it tends to yield a good first design.

It should be emphasized that the same standard internal and external parameter
settings have been used in all of the runs. This was done in the interest of compara-

bility. But, obviously, many useful alternatives exist which may lead to improved

performance in specific cases. Ior instance, gradually reducing e at each major itera-
tion is a more effective way to achieve a desired low final e at termination than keeping
it constant. Initializing UB at a good known upper bound less than 4 e is also pos-
sible and beneficial in most runs. And selectivity in choosing which prior cuts to use
for reoptimization is helpful. All such ad hoc adjustments have been avoided here.

5. A Lesson on Model Representation

Anyone accustomed to working with linear programming applications is inclined
to economize on the number of constraints he uses in a large-scale model. The model
(1)-(6) presents an obvious opportunity to economize on the number of type (3)

\
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Detailed Results for the Runs of Table 2

TABLE 3
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Execution Time (Sec.)

RunNo. | praaidtn | \Cinent Mastor G115

Master Total

1 1 103.51 5.8 11.5
2 100.00 0.2 5.1

3 Termination 0.1 0.1

2 1 102.78 7.5 13.1
2 100.00 0.2 5.3

3 100.01 0.6 5.1

4 Termination 0.3 0.3

2R 1 100.02 0.9 6.9
2 100.04 0.2 4.5

3 100.00 0.3 5.0

4 Termination 0.2 0.2

3 1 102.96 3.7 9.4
2 100.04 0.2 5.3

3 100.01 0.4 5.4

4 100.00 0.3 5.3

5 Termination 0.1 0.1

3R 1 100.04 0.9 6.9
2 100.02 0.4 5.1

3 100.00 0.5 5.3

4 Termination 0.2 0.2

4 1 102.00 1.3 6.9
2 100.01 0.5 5.3

3 100.00 3.7 8.6

4 Termination 2.4 2.4

5 1 101.94 1.3 6.8
2 100.30 0.5 5.5

3 100.00 5.4 10.4

4 Termination 2.2 2.2

6 1 102.95 1.4 7.2
2 100.40 0.6 5.7

3 100.35 2.5 7.5

4 100.29 2.6 7.5

5 100.19 1.1 6.1

6 100.00 0.3 5.3

7 Termination 11.2 11.2

6R 1 100.39 0.8 7.3
2 100.34 0.2 5.0

3 100.30 5.9 10.8

4 100.00 0.9 6.0

5 Termination 9.0 9.0
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TABLE 3 (Continued)

A . Execution Time (Sec.)
RunNo. | et | Clirent Mastor (5
Master Total
7 1 102.90 1.5 7.1
2 100.36 0.5 5.4
3 100.00 3.3 8.8
4 Termination 8.1 8.1
8 1 103.86 0.7 7.3
2 100.37 0.7 5.7
3 100.15 4.6 9.8
- 4 100.00 0.5 5.4
5 Termination 15.6 15.6
9 1 104.09 1.5 7.0
2 100.37 0.6 5.6
3 100.20 2.7 7.8
4 100.00 0.5 5.5
5 Termination 11.8 11.8
10 1 105.51 1.6 6.9
2 100.38 0.5 5.3
3 100.19 2.7 7.6
4 100.00 0.3 5.1
5 Termination 166.1 166.1

constraints without changing the logical content of the model in any way: replace
(3) by

(3a) ij T = Dg all <l

(3b) Dot = (O D)yr, all kl.

This formulation performs the two functions of (3) separately, namely ensuring that
all demands are met and enforcing the appropriate logical relationship between the
z’s and the y’s. The resulting representation of the problem is equivalent (has the
same set. of feasible solutions), and usually has fewer constraints. For the Hunt-
Wesson application, the representation using (3a) and (3b) in place of (3) has 8,855
fewer constraints!

It turns out, however, that it would be a serious mistake to use this representation
with any type of Benders Decomposition approach. The reason is that it leads to
much weaker cuts. To see this, recall that all variants of Benders Decomposition
work by accumulating linear supports to 7'(y), which is defined in Sec. 2.1 as the opti-
mal total transportation cost as a function of the configuration design y. For a given
binary § satisfying (4),

(18) — 2 %iiSii + 2w (— Dos Daftad)yu
is such a support, where % and 7 are defined as in (12). This support is derived from

the original formulation of the problem using (3) and is implicit in (9) and (9a).
The corresponding support for the revised formulation using (3a) and (3b) in place
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of (3) can be written as:
(18a) — ZU W ;S:; + Zkl [— 21 D (7iiay + Maxy (7o — Tokayd ) [Yn -

It is evident by inspection (subtract #;iuy; from both sides) that

Tl < Ty + Max, {’fri/kl - fl'il}}(z)l} for all 7,kl,

with the magnitude of the difference increasing with the number of commodity classes.
Hence every yii-coefficient of (18) must be at least as large as the corresponding co-
efficient of (18a). That is, (18) uniformly dominates (18a) over the region of in-
terest (y = 0); it is a “tighter” support for the function 7'(:). The more commodity
classes there are the greater will be the improvement of (18) over (18a).

The result that (18) dominates (18a) implies that the representation using (3) is
to be preferred over the ‘“‘equivalent’” more compact representation using (3a) and
(3b). Any variant of Benders Decomposition should converge in fewer major itera-
tions for the first formulation than for the second. We have direct computational con-
firmation of this fact as a result of having turned to the first representation only after
experiencing disappointing results with the second. Tables 4-6 show three approxi-
mately comparable disjoint regional optimizations using the original Benders De-
composition approach for both representations. We say “approximately” comparable
because some internal parameters of the master problem algorithm were changed
slightly during the time lapse between the runs, but we are confident that this does
not alter the comparison significantly. The convergence parameter ¢ was set at 0.02
in all runs.

These comparative results indicate that the more compact representation con-
sistently requires many more iterations for convergence, due principally to poorer

TABLE 4

First Comparison of Benders Decomposition for Two Allernative
Model Representations

Major Iteration %gg;eiggtggn Representation (3)
Number
LB UB LB UB
1 — 5.410 — 5.053
2 4.150 5.023 5.000 5.028
3 4.349 «“ >5.008 | (Convergence)
4 4.415 «
5 4.534 «“
6 4.601 “
7 4.631 “
8 4.661 “
9 4.714 “
10 4.716 “
11 4.750 “
12 4.750 “
13 4.774 “
14 4.774 “
15 4.808 “
16 4.817 “
17 4.817 “
18 4.839 “
(No Convergence)
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TABLE 5

Second Comparison of Benders Decomposition for Two Alternative
Model Representations

Major Iteration R(gl;l;e:;’a“t;";’)ﬂ Representation (3)
umber
LB UB LB UB
1 — 5.134 —_ 5.083
2 3.892 «“ 4.937 4.960
3 4.245 “ >4.940 | (Convergence)
4 4.453 5.046
5 4.534 “
6 4.544 «“
7 4.574 5.043
8 4.680 “
9 4.680 “
10 4.735 “
11 4.735 “
12 4.749 “
13 4.749 5.027
14 4.749 “
15 4.759 “
16 4.768 “
17 4.768 “
18 4.785 5.010
19 4.785 “
20 4.785 “
(No Convergence)

TABLE 6

Third Comparison of Benders Decomposition for Two Alternative
Model Representations

Major Iteration l}gg;e:;’&t?‘_};)o)“ Representation (3)
Number
LB UB LB UB
1 — 5.158 — 5.158
2 4.425 5.036 4.925 4,957
3 4.431 “ >4.937 | (Convergence)
4 4,436 “
5 4,438 4.967
6 4.461 “
7 4.494 “
8 4.494 «“
9 4.496 “
10 4.505 “
11 4.508 “
12 4.512 “
(No Convergence)

lower bounds from the master problem. The time per iteration is approximately the
same for both representations because the size and structure of the master problem
and the individual transportation subproblems is exactly the same in both cases.
Thus the representation using (3) is far superior. The other representation was all
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but unuseable in our application, considering the many validation and post-optimi-
zation runs required.

A closely analogous observation concerning the crucial importance of model repre-
sentation has been reported recently by Beale and Tomlin [3]. They undertook to
solve a practical problem concerning the optimal decentralization of office facilities
using a direct branch-and-bound approach with a problem formulation which turns
out to be very close to the one considered here. Their experience was that the problem
proved to be much more tractable computationally when some of their constraints like
(3a) and (3b) were replaced by constraints like (3).2

In this connection, we would like to point out an interesting relation between the
two representations which becomes pertinent when problems of this sort are addressed
by LP-based branch-and-bound. It can be shown that the convex hull of the feasible
solutions to (3a), (3b), (4), x = Oand y = 0, 1 is given by the constraints (3), (4),
z = 0and y = 0. Thus the common practice of dropping integrality requirements in
order to produce an LP relaxation at each node yields a tighter relaxation when (3)
is used than when (3a) and (3b) are used. The price of this tighter bound and the
reduction in branching which it affords is, of course, the additional time required to
solve a larger LP at each node. It seems probable that some mixture of the two repre-
‘sentations will be superior to either one alone in terms of total computing time (e.g.,
the separability of (3), (3a) and (3b) with respect to I suggests that (3) might be
used just for the I’s corresponding to the largest total demand). This appeared to
be the case in Beale and Tomlin’s study. It should be emphasized that the extra size
of (3) by comparison with (3a) and (8b) does not offer any difficulty whatever when
Benders’ approach is used, thanks to the analytic reduction which takes place prior
to setting up the continuous subproblems to be solved at each major iteration. The
ease with which Benders Decomposition can use such superior model representations
is a comparative advantage over direct branch-and-bound which does not seem to be
generally appreciated.

The theoretical result stated above also suggests a general methodology for dis-
covering improved model representations: for various subsets of constraints involving
some of the integer variables, try to explicitly derive the convex hull of the integer
feasible points. Another related instance where this can be done is given in Geoffrion
and McBride [13].

6. Conclusion

The major conclusion arising from this study is the remarkable effectiveness of
Benders Decomposition as a computational strategy for static multicommodity inter-
mediate location problems. The numerical experience quoted in §4.3 shows that only a
few cuts are needed to find and verify a solution within one or two tenths of one per-
cent of the global optimum. The same type of behavior was observed in another full-
scale application carried out recently for a major manufacturer of hospital supplies
with 5 commodity classes, 3 plants, 67 possible DC’s and 127 customer zones. This
behavior, together with the advantages of being able to decouple the multicommodity
capacitated multiechelon transportation portion of the problem into a separate

2 The authors are grateful to K. Spielberg for pointing out the following early reference con-
taining related ideas: Guignard, M. and Spielberg, K. “Search Techniques with Adaptive Fea-
tures for Certain Mixed Integer Programming Problems,” Proceedings IFIPS Congress, Edin-
burgh, 1968.
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classical transportation problem for each commodity, yields an extraordinarily power-
ful computational approach.

The reasons why Benders’ approach requires so few cuts for this problem class are
not yet clearly understood. The discussion of §5 shows that one essential ingredient is
making an appropriate choice among alternative mathematical representations of
the same physical problem. We were able to employ a representation which incorporates
the many constraints describing the convex hull of a portion of the problem’s integer
feasible solutions. This was workable because of special opportunities for analytic
simplification inherent in Benders’ approach (it would not have been computationally
feasible to use the same representation with a branch-and-bound approach to the
problem). We hope that others will be motivated to study the questions raised by
our observations with the objective of understanding more clearly the convergence
behavior of Benders Decomposition and how to enhance it through appropriate
choice of model representation.

Another conclusion we have reached on the basis of our experience is that every
effort must be made to make it easy and economical to carry out the numerous pre-
and postoptimality runs required to properly execute a practical application. This
point, discussed in §4.2 and so well appreciated in the domain of linear programming,
is rarely addressed in the existing integer programming literature. The burden of this
requirement is exacerbated by the fact that many of the required runs must achieve
very nearly optimal solutions if they are to be useful. This is certainly true of the
probationary exercises, where significant suboptimality could shake management’s
confidence in the entire project, and is also true for “what if . . . ?,” sensitivity, conti-
nuity, tradeoff and priority analysis runs as well because their very usefulness depends
on the ability to measure differences between the solutions of different runs in a series.
Obviously the tolerance on optimality must be quite tight if one is to avoid reaching
spurious conclusions when making such comparisons. The results of §4.3 show that
the approach developed here meets this requirement at reasonable computational cost.

The success with the present model suggests the desirability of expanding its scope.
We shall mention here but two of the more appealing and easily accomplished possi-
bilities. One is to include selection among alternative plant sites and plant capacity
expansion projects via some additional 0-1 variables. Another is to take account of
the service elasticity of demand, that is, of the fact that a customer zone’s demand
for various commodities tends to increase with the proximity of its assigned distribu-
tion center due to the advantages of decreased delivery delay [20], [22]. One way: to
incorporate this effect is to replace D;; in the model by D, , the demand for product
1 by customer [ if assigned to distribution center k. A (negative) net revenue term
would also have to be appended to the objective function since total revenues to the
firm would no longer be constant. Both of these extensions require but simple modi-
fications to the algorithmic approach and do not upset the major factors controlling
its efficiency (the use of a model representation yielding powerful Benders cuts and
the separability of the multicommodity transshipment subproblem into an inde-
pendent transportation problem for each commodity). We hope to be able to report
on these and other extensions in a future paper. ' '
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