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AN INTERACTIVE APPROACH FOR MULTI-CRITERION
OPTIMIZATION, WITH AN APPLICATION TO THE OPERATION
OF AN ACADEMIC DEPARTMENT*{

A. M. GEOFFRION,t J. S. DYER} AND A. FEINBERG$

An interactive mathematical programming approach to multi-criterion optimiza-
tion is developed, and then illustrated by an application to the aggregated operating
problem of an academic department.

1. Introduction

One of the most common difficulties obstructing the successful application of mathe-
matical programming techniques to real problems is the presence of multiple criteria.
When there are only two criteria, a commonly accepted approach is to compute numeri-
cally the relevant portion of the tradeoff curve (efficient set, Pareto-optimal set) in
criterion space and let the decision-maker select the point which he most prefers. How-
ever, when the computation of the tradeoff curve is onerous or when there are more
than two criteria, there is no general agreement regarding how to proceed. Numerous
preseriptions have been offered, nearly all of them ad hoc. See, for instance, the exten-
sive surveys of Johnsen [8] and Roy [9].

One of the present authors recently proposed [5] a man-machine interactive mathe-
matical programming approach to multi-criterion optimization. It assumes that a
large-step gradient ascent algorithm would be applicable if the decision-maker were
somehow able to specify an overall “preference function” to resolve the conflicts in-
herent in the given multiple criteria, but never actually requires this preference func-
tion to be identified explicitly. Instead, the algorithm calls only for such local informa-
tion about the preference function as is actually needed to carry out the optimizing
calculations. In other words, the viewpoint taken is this: adopt a mathematical pro-
gramming technique of known efficiency, but implement it so as to require only the
necessary information from the decision-maker concerning his preferences over the
criteria.

It is surprising that such an obvious approach does not appear to have been studied
previously. We are able to cite only the very recent independent work by Boyd [3] as
being in a similar vein. There are, of course, other approaches that might be termed
“interactive mathematical programming”—such as the Progressive Orientation Pro-
cedure [2] for multi-criterion linear programming—but in these other approaches the
interaction is usually superimposed in an ad hoc manner rather than being dictated by
the mathematical programming algorithm itself.

The interactive approach is described in the following section in the context of a
specific mathematical programming algorithm (the Frank-Wolfe method). §3 then
details a numerical application to the operation of an academic department. This
example is taken from actual experience with a pilot implementation of the approach
for the Graduate School of Management at UCLA, where we are attempting to install
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it as a permanent decision-making tool. A synopsis of the underlying mathematical
model is presented in the Appendix.

2. An Interactive Mathematical Programming Approach to Multi-Criterion
Optimization

We shall describe the proposed approach in the specific context of the well-known
Frank-Wolfe algorithm. Many other particular algorithms could also be rendered
interactive in a similar way, but we have selected Frank-Wolfe because of its simplicity,
its robust convergence properties [7], [10], and because it is embodied in the computer
program used to obtain the numerical results presented in §3.

The multi-criterion problem will be considered in the following form:

1) Maximize Ulfy(z), fo(z), -+, f- ()],  subject toz € X,

where fi, -+, f, are r distinct criterion functions of the decision vector z, X is the
constrained set of feasible decisions, and U is the decision-maker’s overall preference
function defined on the values of the criteria. The functions f; and the set X are as-
sumed to be explicitly known, but to retain a genuine multi-criterion flavor we cannot
assume that U is explicitly known.

In order that (1) be amenable to solution by mathematical programming algorithms
in general and the Frank-Wolfe method in particular, we shall assume henceforth that
X C R"is a compact, convex set and that the objective function of (1) is differenti-
able and concave on X. Two useful sufficient conditions for the assumption of con-
cavity are: (i) U is concave and each f; is linear; (ii) U is concave increasing and each
fiis concave.

It is appropriate to review the mechanics of the Frank-Wolfe method applied to
(1), ignoring for the moment the difficulty caused by the fact that U is only implicitly
known:

Step 0. Choose an initial point 2; € X. Put k£ = 1.

Step 1. Determine an optimal solution yy of the direction-finding problem

2) Maximize,ex V:Ulfi(zi), -+, fr (@) y.

Putdi = yr — .
Step 2. Determine an optimal solution £ of the step-size problem

(3) Maximizeoétél U[fl (Q}k + tdk), e ,f,(xk + tdk)]

Put 441 = o + tdi , k = k 4+ 1, and return to Step 1.

The usual interpretation of Step 1 is that it determines the “best” direction dj
(based on a local linear approximation to the decision-maker’s utility function) in
which to move away from z; . At Step 2, the decision-maker determines the amount
() of movement in this direction which maximizes his utility for this one-dimensional
restriction of the overall problem. This scheme yields a sequence of improving feasible
solutions to (1) which must converge to an optimal solution [7], [10].

Since U is not explicitly known, however, neither Step 1 nor Step 2 can be per-
formed entirely by computer. They both require certain information about U. For-
tunately the amount of required information is not great. Its acquisition from the
decision-maker as needed gives rise to the man-machine interaction in our approach,
as we now explain in more detail.
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Step 1
The chain rule yields

k
(4) - VUlfi(ze), -+, folm)] = Dz (gTU) Vaofi(2i),
where (OU/df:)* is the sth partial derivative of U evaluated at the point
[fi@e), -+, frlx)], and V.f:(xx) is the gradient of f; evaluated at z,. Thus the

(linear) objective function of (2) is incompletely known because the (@U/df:)*’s are
not known. Notice, however, that the optimal solution y; of (2) is not affected by
positive scaling of the objective function. Hence one may divide the objective function
by any positive coefficient (9U/df:)". The criterion which plays this distinguished role
will be called the reference criterion.' We may assume without loss of generality that
the reference criterion is the first one, so that (2) is equivalent to

@) Maximize,ex Q=1 W Vafi (@) v,
where we define
5) w’ & @QU/OLE/QU/ofH),  i=1,--,r

The “weights” w* reflect the decision-maker’s tradeoff between criterion ¢ and
criterion 1 at the current point, and must be obtained before (2') can be solved. There
are two principal ways of approximating them. The first is based on the equation of the
tangent hyperplane to the indifference (level) surface of U at the current point. When
divided by (@U/df1)*, this equation is

L(h — filw)) + w(h — filw)) + -+ + w*(fr — frlme)) = 0.

Thus if the decision-maker is indifferent to a change in the values of criteria 1 and 7 in
in the respective amounts A; and A; , while all other criteria stay at their current values,
then we have approximately

The approximation becomes arbitrarily exact as the amounts of change approach 0.
Hence one way to obtain w;" is to determine what (infinitesimal) change A; in the
first criterion “exactly compensates’ for a change A; in the 7th criterion, with all other
criteria remaining at their current values. This is generally termed the “indifference
tradeoff’” or “marginal rate of substitution’ between the two criteria.

The other way to approximate w." is based on the property of the gradient of U as
the direction of steepest ascent. When all criteria except the first and 7th are held con-
stant, we have

(7) w = 8/6:,

where 8;:6; is the ‘‘ideal” marginal proportion of change for these two criteria; that is,
U increases most rapidly in an incremental sense if criterion 7 changes by 8; units for
each é; change in criterion 1.

The relationship between formulae (6) and (7) is just the negative reciprocal rela-
tionship between the slopes of two perpendicular lines. This is pictured in Figure 1,

1 Since the coefficients (8U/df.)* will usually be positive in practice, this is the case considered
here. It is also possible to use a criterion with a negative coefficient as a reference criterion, in
which case one would obviously divide through by the negative of this coefficient.
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U = constant

£ (slope= -W; )

Ficure 1

where line ! represents the tangent to the (dotted) iso-preference curve through the
current point P = [fi(xx), - - - , f»(xx)], and I* is its normal.

It is perhaps worth emphasizing that it is unnecessary in principle to consider all
possible pairwise tradeoffs between criteria, although it might be advisable as a con-
sistency check to obtain from the decision-maker more than the minimal r-1 trade-
offs necessary.

This completes our general discussion of how Step 1 can be carried out. In applica-
tions, of course, one would want to give very careful thought to the experimental
procedure by which the tradeoff weights are elicited from the decision-maker [10].

Step 2

Since U is not explicitly available, (3) must be done directly by the decision-maker.
This is not as difficult as it sounds because there is only one variable, ¢, and plots can
be made of the values of all r criteria f;(zx + tdy) as a function of ¢ between 0 and 1.
The decision-maker may superimpose these plots, if he wishes, to better visualize the
problem of selecting the best value of ¢ (this is done in the example presented in the
next section ). Alternatively, the computer can tabulate the values of the criteria at se-
lected values of ¢.

We emphasize that what is required of the decision-maker is much easier than the
comprehension of an arbitrary set of choices in r-space, which would indeed be a hope-
less task. He need only comprehend a singly-parameterized curve in r-space, an object
which he can see directly in component-wise parametric form. In the important case
where all criteria are linear, the curve and its component-wise representation are simply
line segments. Of course, this is not to deny that the task of carrying out Step 2 becomes
more difficult as criteria become more numerous. But available evidence suggests that
one can probably cope with at least 6-8 criteria without undue difficulty.

The Interactive Frank-Wolfe Algorithm

Thus we see that the Frank-Wolfe algorithm for (1) can be executed interactively
with the decision-maker as follows:
Step 0. The decision-maker chooses an initial point z; € X. Put k = 1.



AN INTERACTIVE APPROACH FOR MULTI-CRITERION OPTIMIZATION 361

Step 1. a. The decision-maker assesses his tradeoff weights w,” by subjective analysis
of the current trial point via the relations (6) or (7).

b. Compute an optimal solution yz of (2'). Put dy = i — .

Step 2. Plot the functions f; (x; + tdi) over the unit interval, and have the decision-
maker subjectively determine an optimal solution # to problem (3) by inspection.
Put 2441 = @ + tdi, K = k + 1, and return to Step 1.

Except perhaps for Step 0, the entire procedure can be viewed by the decision-maker
as taking place in criterion space rather than in decision-variable space (a space that
is usually of much higher dimension). This assumes, of course, that the decision-
maker relegates Step 1b and the mechanical portions of Step 2 to a technical assistant
or a computer program. Often the initialization, Step 0, can also be done from the
same viewpoint by numerically solving for z; corresponding to an attainable point in
criterion space provided by the decision-maker. The advantage of functioning entirely
in criterion space is that it allows the decision-maker to concentrate on making trade-
off judgments with no extraneous details to distract him.

In practice, the decision-maker will be able to furnish only approximations to the
w;*’s and . Fortunately the convergence of this procedure is quite robust in the face of
such approximation errors. Hogan [7] has recently shown that, loosely speaking,
infinite convergence still holds provided the degree of approximation to the w;’s be-
comes ever more exact as k increases, and provided also that an ‘“adequate’ fraction of
the possible gain is achieved at Step 2.

Of course, it is not the infinite convergence of the procedure that really matters in
practical applications, since only a modest number of interactive iterations can actually
be carried out. Rather it is the ¢nitial rate of convergence which is of interest. Very little
is known about the initial rate of convergence of mathematical programming algo-
rithms in general, but for the Frank-Wolfe method the following intriguing result has
been demonstrated by Wolfe [10] (see also Amor [1]): if the objective function of (1)
is boundedly concave (i.e., is concave and has continuous second derivatives on X,
and there is a uniform lower bound on all eigenvalues of the Hessian) and X is a
bounded convex polytope, then for the first K iterations (K is unknown)

( V — Ulfiar), - -, folar)] >< 1 k< K
V — Ulfi(@i—), -+, fr(@m—)]) = 2 =7

where V is the optimal value of (1). In other words, the error in objective function
value is at least halved at each of the first K iterations.

3. An Application

We now describe an application of the foregoing approach to the operation of a single
academic department on a large university campus. This numerical example is based
on actual data from the 1970-1971 operations of the Graduate School of Management
at UCLA. To emphasize that the procedure can be carried out entirely in criterion
space, at least so far as the decision-maker is concerned, we suppress all reference to
decision variables and defer discussion of the detailed mathematical model of depart-
mental operations to the Appendix. Only a brief scenario of the general setting of the
problem and definitions of the individual criteria are presented in this section.

3.1 Purpose of the Model and Criteria Definitions

The faculty of an academic department is viewed as engaging in three principal
activities: formal teaching, departmental service duties (e.g., administration and
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curriculum development), and other tasks such as research and student counseling.
Formal teaching takes place at the graduate, lower division undergraduate, and upper
division undergraduate levels. We shall be concerned primarily with the allocation of
faculty effort among these activities, given an exogenous budget for personnel in terms
of Full Time Equivalent (FTE) positions. This allocation may be expressed in terms
of course sections or “equivalent course sections,”” one unit of which is defined as the
time and effort equal to the actual teaching of one course section. Expressing all
activities in related or equivalent units is not required by our procedure, but it does
facilitate the assessment of the tradeoff weights. The use of nonacademic personnel
or other resources, such- as supplies and expenses, is not considered in this model,
nor do we address the more “micro” operating problems related to course schedul-
ing or to the assignment of faculty and students to particular course sections and
classrooms.

The first three criteria of the model are the number of course sections offered by the
department at the graduate, lower division undergraduate, and upper division under-
graduate levels, respectively. Criterion four is the amount of teaching assistant time
used for the support of classroom instruction by the faculty. The fifth criterion is the
regular faculty effort devoted to major departmental service duties (here the equiv-
alent course sections correspond to reduced teaching loads). Finally, criterion six is
the regular faculty effort devoted to additional activities such as research, student
counseling, and minor administrative tasks, again measured in equivalent course
sections.

This model can be used by the department to develop aggregate annual operating
plans. A numerical example of this use will now be presented.

3.2 Initialization (Step 0)

An initial operating point was determined by modifying the actual operating point
of the department for the previous academic year. The result, provided in terms of the
criteria (fi, 7 =1, --+, 6), is presented in Table 1.

3.3 Estimation of Tradeoffs (Step 1)

The next step requires the decision-maker to provide the tradeoff weights associated
with each of the criteria. The numerical tradeoff weights and step sizes presented in
this example were indeed determined by an administrator, but for obvious reasons the
discussion below regarding their rationale must be considered as purely illustrative.
We select f;, the number of graduate sections offered, as the reference criterion. By
convention, its tradeoff weight (w:) is unity.

We now wish to obtain a tradeoff weight for f» , the number of lower division sec-
tions offered, versus f; . This weight will be estimated by considering the ‘“ideal’’ pro-
portional change. The ratio of f; to f1 at the current operating point is 16/314 = 0.051.
In other words, approximately 1 lower division section is offered for every 20 graduate
sections. Suppose the administrator feels that the undergraduate offerings of the
department should be given increased emphasis relative to the graduate offerings.
Then he may feel that an ideal proportional change from the current values for these
two criteria is more like 1 lower division undergraduate section for every 10 graduate
sections, or

Similar reasoning relating f; to fi led to ws = 0.25.
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TABLE 1
Criterion Initial Vahsx:cglo n(fiquivalent)
sections offered—graduate (f1) 314.0
sections offered—lower division (f3) 16.0
sections offered-upper division (fs) 50.0
teaching assistant time used for support (fs) 53.0
releases for departmental service duties (fs) 50.0
additional activities of the regular faculty (fs) 293.5

To obtain w; , the administrator must state his preference for changes in the number
of graduate sections versus changes in the number of departmental service releases.
He realizes, of course, that the granting of one release reduces the total number of sec-
tions offered by one. However, he may feel that the loss of 2 releases for departmental
service from the current number of 50 would be just offset, n terms of his preferences,
by a gain of 3 graduate sections. In other words, an increase of 3 additional units of
Jf1 would exactly compensate for a loss of 2 units of f; , so that

Ws = —(Al/Aa) = —(3/—2) = 1.50.

These examples have illustrated both approaches to the estimation of tradeoff
weights. The “‘ideal proportional change” approach (see (7)) was illustrated by the
determination of w, , and the “indifference” approach was illustrated by the estimation
of ws (see (6)). To obtain w,, we shall illustrate a tactic useful when it is difficult to
relate a criterion to the reference criterion, but relatively easy to relate it to some other
criterion. In this case, fs is related to f¢ , which in turn is related to f; .

Suppose the administrator has difficulty in trading off teaching assistant support
time (fi) against the number of graduate sections (f;). However, he judges that teach-
ing assistant support for 8 sections taught by regular faculty would be worth 1 equiv-
alent course section of a regular faculty member’s time devoted to “‘additional
activities.” It follows that — (As/As) = 1/8 estimates (QU/dfs)/ (@U/dfs) (it would
serve as the weight for f, ¢f f¢ were the reference criterion). However, since ws =
@U/dfs)/ (@U/df1), ws can be obtained from the relation

_(aU/af) (38U /afs) (Ae) _we
We = g .

= @U/af)  @U/of) A,
Only we remains to be estimated.

Suppose the administrator feels that time for additional duties (research, counseling,
ete.) by the faculty is particularly important. He may feel that the ideal proportional
change is an increase of 2 section equivalents in fs for every additional graduate sec-
tion. Then, ws = 8/8; = 2/1 = 2.0, and consequently w, = (0.125)(2.0) = 0.25.

3.4 Step-Size Determination (Step 2)

These tradeoff weights are used to compute a new feasible operating point by solving
the optimization problem (2'). As described in §2, we can now plot the values of all r
criteria as a function of ¢. Since all of our criteria are measured in similar units, it is
natural to superimpose their plots on the same graph as shown in Figure 2. The values
of the criteria at ¢ = 0 are the initial operating point of Table 1, and the corresponding
values for ¢ = 1 are the solutions to (2'). Since all of our criteria happen to be linear

(see the Appendix ), the plots of their values are line segments.
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Ficure 2. Step 2 of Iteration 1.

To complete an iteration of the procedure, the decision-maker must determine a
value of ¢ for which the corresponding values of the criteria are most preferred. A
vertical line may be visualized as superimposed on Figure 2, intersecting the plots of
the criteria and the ¢ axis ; by shifting this line from left to right, the decision-maker may
visualize all of the feasible solutions to this restricted one-dimensional optimization
problem. In this particular example, the administrator selected ¢ = 0.6 (the dashed
line in Figure 2). The corresponding criteria values become his revised operating point,
and he is ready to perform another iteration.

3.5 Further Iterations of the Procedure

After considering the point selected in Step 2 of the first iteration, the administrator
revised two of his tradeoff weights. He reduced ws , the tradeoff weight for releases for
departmental service duties, from 1.50 to 0.80, and increased w, , the tradeoff weight
for teaching assistant support, from 0.25 to 0.35. He felt that his relative preferences
for the other criteria remained unchanged at this new point.

The revised weights and new operating point were used to compute the results
presented in Figure 3. To complete the second iteration, the decision-maker selected
t = 1.0 as his preferred solution to the one-dimensional optimization problem (Step 2).

For the third iteration, the administrator modified only ws from 0.80 to 0.50. The
new operating point selected at the conclusion of the second iteration is an extreme
point solution to (2'). A post-optimality analysis of the direction-finding linear pro-
gram indicated that the solution would be unchanged for the new value of ws . Since
no improvement would occur in the third iteration, the procedure was terminated.
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In closing, a word of explanation may be in order concerning why the solution arrived
at required a significant reallocation of faculty effort from teaching to releases for de-
partmental service. Immediately prior to the implementation of our model, the faculty
of the Graduate School of Management adopted significant modifications in the existing
master’s degree program. The successful mounting of this new program required a
major short-term commitment of effort in such activities as curriculum design and
revision, program evaluation, and computer software development. The tradeoffs
provided by the administrator reflect, these considerations. Subsequent use of the model
to plan for the 1972-1973 academic year generated a solution with releases at a lower
level.

4. Conclusion

We have presented an interactive mathematical programming approach to multi-
criterion optimization and an example of its application to the operating problem of an
academic department. Our initial experience with this procedure has indicated that
decision-makers can provide the required information without significant difficulty.
Based on the favorable response and suggestions of the administrators of the Graduate
School of Management at UCLA, we have further refined the model to include addi-
tional detail in terms of course and student levels. This revised model has been used to
~ assist in planning the future operations of the Department. In addition, we have used
the model to aid the administration in investigating the impact of proposed changes in
policies which would significantly affect the mix and number of required courses.
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This work suggests several topics for further investigation. Foremost among those
of general interest are the development of reliable experimental procedures for estimat-
ing tradeoffs (marginal rates of substitution) between criteria, and the comparative
study of initial rates of convergence for various mathematical programming algorithms
with potential for interactive implementation. The present literature on both of these
topies is surprisingly thin.

Future applications in the area of academic management, and perhaps in other areas
as well, would benefit from the ability to treat certain parameters of the model not as
exogenously given, but as interacting decisions made at another level. For instance, the
resource budgets for an academic department are actually determined by a central
campus administration which observes and reacts to the actual or intended operating
plans of the departments. This requires a hierarchical model. The interactive procedure
described in this paper has been generalized by Geoffrion and Hogan [6] to a two-
level organization composed of a coordinator and several semi-autonomous operating
units. This enables the departmental operating problem to be treated as part of a
larger problem in which the campus administration interactively coordinates the bud-
gets of the departments so as to pursue its objectives for the entire campus.

Appendix

A brief discussion and overview of our model of the departmental operating problem
was presented in §3. We now describe the details of this model. Some of the following
may represent aspects unique to the University of California system.

Variables Under the Control of' the Department

The departmental decision variables included in the model are the following:

x1; = the number of course sections offered at level 5. Levels j = 1, 2, 3 correspond
to graduate, lower division undergraduate, and upper division undergraduate courses,
respectively.

Za = the number of regular FTE faculty of type k hired beyond the department’s
contractual commitments. In our example, types 1 and 2 represent tenured and non-
tenured regular faculty, type 3 represents teaching assistants, and types 4 and 5
represent lecturers and senior lecturers, respectively.

z3 = the number of irregular FTE faculty hired at a salary level equivalent to a
regular faculty position of type k.

Zy4 = the number of equivalent FTE of type k released from teaching for depart-
mental service duties.

All of these variables are required to be nonnegative.

Parameters Determined by the Campus Administration

Some departmental parameters are determined exogenously by the campus adminis-
tration:

yu = the academic FTE faculty of type k allocated to the department, and

y2; = student enrollment at level j.

We have assumed that course levels and student levels correspond for j = 1, 2, 3,
although the most recent version of the model makes a finer distinction.

Constraints

The total number of sections taught in the department is determined by the work
conservation equation

(8) E?’=1 T = ZZ=—1 [te(cx + ox + 2o — ax — k) — gr (@ + %)),
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where

tr = the customary number of sections taught per academic year by a faculty mem-
ber of type k,

cx = the estimated number of faculty FTE of type k to whom the department is
contractually committed for the planning period,

a, = the estimated number (in FTE) of leaves without salary by faculty of type k,

sy = the estimated number (in FTE) of faculty of type k taking sabbatical leave,

1 = the estimated faculty time (in FTE) of type k released from teaching due to
support from outside the department, and

gr = the number of equivalent sections corresponding to a full workload for an FTE
faculty of type k.
The value of g also corresponds to the teaching load of lecturers and irregular faculty,
since they perform no duties other than classroom teaching.

The hiring of irregular faculty is limited by both the available FTE and salaries
generated by vacancies, leaves, and support from outside the department. The result-
ing constraints are

9) D T = D1 (Y — G — Tu 4 ar + 73,
(10) D i bise = D onet b (Y — ok — @ + @ + 11,

where by is the average annual salary for a full-time faculty member of type k.
The constraints

(11) Tok S Y — Ck, k=1,23,4,5,

place an upper limit on the number of faculty hired ;
(12) e + Ta = bo(or + T — ap — Sk)/gk ’ k=123,

provide that teaching releases of regular faculty cannot exceed the total teaching
obligations ; and '

(13) t3(cs + Zo3 + 233) = 210

restrict the formal teaching by teaching assistants to lower division undergraduate
classes.

In addition, there are constraints which reflect policies or commitments of the de-
partment. We require that

(14) 15 = my;j , .7 = 1: 27 3:

where m;; is the minimum number of sections which must be offered at course level 7 in
order to meet departmental commitments. Similarly,

(15) Mai @y S Doims i by D by < myg @, §= 1,23,

places limits on the average class size, where

my; = desired lower bound on average class size at level j,

mg; = desired upper bound on average class size at level 7,

h; = average number of student credit hours per student-section for courses given
at level 7, and

o " = the preference by students enrolled in department % at level j * for courses
offered by the department at level j, measured in student credit hours per student for
an academic year (obtainable from registration records).

The summation over 7 in (15) ranges over all departments in the University.
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Departmental Criterion Functions

The first three criterion functions,
(16) f:i = X5, .7 = 1: 2,3,

represent the number of sections offered by the department at the graduate, lower.
division undergraduate, and upper division undergraduate levels, respectively. The
fourth criterion,

17) Ji = g2,

is the number of equivalent sections of teaching assistant time used for the support of
instruction by other faculty. Criterion five,

(18) fs = =1 Qar

is the number of sections from which the regular faculty is released from teaching for
departmental service duties. Finally, the sixth criterion,

(19) fo= Dopa1 (e + 2 — 8 — @) (G — ),

represents the balance of the regular faculty’s time (measured in equivalent sections)
devoted to areas other than classroom instruction exclusive of releases from formal
teaching duties.
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