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This study presents some new results on three primal-feasible computa-
tional approaches for optimizing a system composed of interrelated sub-
systems. The general structure treated is the same as the principal one
of the classic paper by Dantzig and Wolfe, except that convex nonlinearities
are permitted, provided that the overall criterion function and coupling
constraints are separable by subsystem. Each approach decentralizes
the optimization by iteratively allocating system resources to the sub-
systems, with each subsystem computing its own optimal utilization of
the given resources at each iteration. The chief obstacle to directing the
resource allocation centrally toward an overall optimum is that the optimal
response of each subsystem, as a function of its allowed resources, is not
available explicitly. All three procedures therefore approximate or gen-
erate the optimal response functions ‘as needed.’

THE OPTIMIZATION of ‘decomposable’ systems comprised of a
number of interrelated subsystems is an important and frequently
oceurring topic in economic planning, engineering, and operations re-
search. A large and rapidly growing literature on the subject bears witness
to this fact. How the present study fits into this literature can perhaps
best be indicated by considering briefly each of the words in the title.

The term decomposable system here means an optimization problem of
the form ]

maximize, Y it fi(z;) subject to

. L=k
x,-eX,-, 1= 1, veey, k, and Z:'=1 gi(x,-) gb,
where z; is an n;-dimensional vector of real-valued variables associated

with the sth subsystem, X; is a permissible region of R™ associated with
z;, fi is a real-valued payoff function, g;= (g, - -, gim) is a real vector-
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valued function specifying the role of x; in the m overall ‘system’ con-
straints, and b is a given m-dimensional real vector. The system constraints
account for the scarce resources available to the system, the tasks assigned
to it, and the interconnections or coupling between the subsystems. The
fi and g¢; functions are assumed throughout to be concave on the convex
sets X;, and (1) is assumed to possess a feasible solution.

Notice that the criterion function and system constraints are linearly
separable in the subsystem variables. This leads to the possibility of
achieving an overall optimum in a ‘hierarchical’ or ‘multilevel’ fashion by
coordinating the individual optimization of the subsystems. Two prin-
cipal types of coordination are possible: resource-direction and price-direc-
tion. Resource-directive coordination typically involves the iterative
determination of m-vectors yi, - -, ¥% such that optimal solutions of the k
subproblems

maximize,, fi(x;) subject to z;eX; and gi(z)=y:; (2)

also solve (1). Price-directive coordination, on the other hand, typically
involves the iterative determination of m-vectors A, - -+, A such that the
optimal solutions of the k subproblems

maximize,; fi(x:) +\i'gi(z:) subject to z;eX; (3)

also solve (1). Both types of coordination are aimed at decomposing (1)
into essentially k separate optimization problems. Since the computational
burden of optimization usually rises much faster than linearly with the
size of the problem, the potential saving could be quite substantial. The
semiautonomous treatment accorded the subsystems also enables each sub-
system to be optimized in the manner best suited to its structure. Of
course, there are many applications in which semiautonomy of the sub-
systems is desirable or even necessary for economie, political, or social
reasons.

The distinction between resource-directive and price-directive methods
really amounts to the distinction between ‘primal’ and ‘dual’ methods.
With resource direction, it is easy and natural to guarantee that the itera-
tively generated sequence of y; vectors leads via (2) to feasible solutions of
(1). With price direction, however, a feasible solution of (1) typically is
not produced by (3) until the very end. The term ‘dual’ is used in con-
nection with price-directive methods because, as we note in Section 6.1,
most such methods are naturally viewed as solving a dual problem associ-
ated with (1). A primal method is customarily preferred to a dual method
in practical applications, because it enables a known good initial feasible
solution to be utilized, and because a good feasible solution is usually avail-
able if the coordinating iterations are stopped prior to optimality. Hence,
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consideration will be limited to primal resource-directive approaches,
although it should be evident that there is an entirely analogous develop-
ment of dual price-directive approaches.

Three primal resource-directive approaches will be developed for solving
(1): the so-called tangential approximation, large-step subgradient, and
piecewise approaches. We use the term approaches to emphasize that the
main concern is with fundamental strategies and natural classes of algo-
rithms, rather than with tactics or particular organizations of the computa-
tions. KEach approach can spawn many algorithmic variants, depending
on how one handles the tactical questions. Some of the tactical questions
involve a selection among known algorithms for solving intermediate linear,
convex, or parametric programs such as (2); in this sense, one may regard
the present results as a framework extending the domain of applicability
of known algorithms. Thus the present development, while rigorous as
far as it goes, must leave open many of the details prerequisite to computa-
tional implementation. For similar reasons, not much attention is given
to convergence questions, although each approach offered here should con-
verge to an optimal solution of (1) if one properly attends to details.

Many of the important ideas applicable to (1) were born in the rich
literature treating the linear case. The nonlinear literature is not nearly
as rich. For this reason, and also because most real applications involve
nonlinearities of one kind or another, the scope of this study is limited to
methods workable for nonlinear as well as linear systems.

It is assumed that the reader is familiar with the foundations of linear
and nonlinear programming. He will also find it helpful, but not necessary,
to be familiar with GEoFFrION,?? which surveys the fundamental concepts
of large-scale mathematical programming.

1. ORGANIZATION, CONTENT, NOTATION

SEcTION 2 PRESENTS and justifies the manipulation of (1) that permits it
to be optimized via resource direction. This manipulation, called ‘pro-
jection,” is used to rephrase (1) in terms of the subproblems (2) as the
fundamental resource allocation problem (P), which can be interpreted as
the highest level of a hierarchical or multilevel formulation of (1).

Sections 3 through 5 may be read in any order.

Section 3 presents the tangential approximation approach to (P). The
object being approximated tangentially is the maximand of (P), which is
composed of the sum over 7 of the optimal value of (2) as a function of y;.
It turns out that a tangential approximation is automatically available
from the optimal multipliers of (2) whenever it is optimized for a given y;.
The roots of this approach are to be found in BENDERs,!¥) CHENEY AND
GoLDpsTEIN, ¥ DANTZIG AND MADANSKY,™! and KELLEY.[?®! This section
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deals at length with ways of maintaining primal feasibility when this
approach is used, an important matter not adequately dealt with in previous
studies. Primal feasibility is much easier to maintain with the other two
approaches.

Section 4 contains the large-step subgradient approach, so-called be-
cause it extends the ordinary large-step gradient approach via subgradients
and directional derivatives to cope with the nondifferentiability of the
maximand of (P). The latter difficulty is the central obstacle to the direct
solution of (P) by the powerful extant large-step gradient algorithms. Our
principal contribution is the derivation of an explicit linear program for
finding the feasible direction yielding the greatest rate of increase in the
maximand of (P). Previous studies along these lines, largely confined to
the completely linear case,: ! have generally settled for approximations
to such ‘best’ feasible directions. The optimal multipliers of (2) play a
central role.

Section 5 presents the piecewise approach, which takes advantage of the
relative simplicity of the maximand of (P) over certain regions of its
domain. The roots of this approach are due to RosEn.[3 3 Separate
treatments are given for the case where (1) is a linear program and the case
where it is a quadratic program. The treatment of the latter case appears
to be novel, as does the use of improving feasible directions (drawing on
the results of Section 4) to guide the transition between adjacent ‘regions
of simplicity.’

Some discussion is given in Section 6 which includes an indication of
how the three approaches considered can also be used to obtain price-
directive solution procedures for (1); instead of projection, the appropriate
manipulation of (1) is dualization with respect to the coupling constraints.

With a little ingenuity, a wide variety of decomposable problems can be
cast in the form (1). Linear interconnection constraints between subsys-
tems, for example, can be expressed as linear inequalities to be included
among the coupling constraints (some of the g;; would then be identically
zero). And the linear separability property of (1) in the subsystem varia-
bles can sometimes be obtained as a result of simple manipulations applied
to a nonseparable problem. For instance, the constraint, ¢i(x1)@s(22)>0
can be expressed as ¢1(21)0>0 and §=¢(x2), where 6 would be treated as
an additional component of z; and the second constraint would be treated
as a coupling constraint. Related manipulations have been suggested in
the context of ‘separable programming.’ ®1 One can also apply the ideas
in reference 21 to treat the important case in which the maximand of (1)
has the form F[fi(z1), - - -, fr(zx)], where F is quasiconcave and increasing
in each argument (i.e., the system objective functional on the performance
of the individual subsystems is nonlinear rather than a simple sum). A
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special instance of this means of achieving separability was also noted by
BeLr.19  [Note added in proof. It has recently been found that, for £>2,
the generalization to accommodate F is simpler and more efficient if done
directly rather than via the approach suggested by reference 21.]

The notation is quite standard. Matrices and sets are written in the
upper case, and variables and functions in the lower. All vectors are
columnar unless transposed by the superseript “¢.” * The symbol z denotes
a vector composed of the vectors i, - - -, 2x, and a similar interpretation is
accorded the symbols w, ¥, 2, @, and ¢. Vector inequalities are written
“<,” and scalar inequalities “<.” The symbol “2” means “equals by
definition.”

2. THE RESOURCE-ALLOCATION PROBLEM (P)

TaE MosT natural way of deriving resource-directive procedures for solv-
ing (1) is first to recast it in terms of the resource-allocation problem

maximize, Y i—t v:(y;) subject to Y iy y:=Db, (P)

where v;(y;) is defined as the supremal value of the following parameterized
subproblem: _
maximize,,.x; fi(z:;) subject to g.(z:) =y, (P,

Although (P,’) depends only on ¥, the notation (P,°) rather than (P;i)
is used because it is simpler.

One may derive (P) from (1) in two steps as follows. First introduce
the m-vectors yi, - - -, y» and rewrite (1) as

maximize, , O i= f«(z:) subject to:

L 4
xieXi, 1=1,---,k;  gi(®) 2y, 1=1,---,k; Disiyizb. @

In effect, this changes (1) from a problem with ‘coupling constraints’ to a
problem with ‘coupling variables,” since (4) separates into k separate
problems if y is held fixed temporarily. One may interpret y; as the
‘resources’ allocated to the sth subsystem. Next, (4) is ‘projected onto ¢’
to yield

maximize, »_i—t sup; {f«(z;) subjectto zX; and gi(z:) =y

. 5
subject to it yi=b, )

where the convention is made that the supremum (least upper bound) of
an empty set is — «. This convention reflects the fact that a choice of
y: is useless if there is no z;eX; such that g;(x;)=y:;. For a similar and
obvious reason, « — « is defined to be — . In other words, by conven-
tion one need not explicitly introduce into (5) the constraints
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yieV ;B {yeR™:gi(x;) =y; for some z;eXy). (6)

The maximand of (5) is evaluated for fixed y by solving k independent
maximization problems.

Projection, as more fully explained in reference 22, is an often used and
rigorously defensible problem manipulation sometimes known as ‘parti-
tioning.” It is a straightforward matter to demonstrate that (1) and (P)
are equivalent in the following sense (even in the absence of convexity).
TueoreM 1. A. (1) is infeasible if and only if (P) has optimal value — .

B. (1) has unbounded optimal value if and only if (P) has unbounded
optimal value.

C. If (1) has an optimal solution «°, then (P) has an optimal solution y°
and z° is an optimal solution of (Pio), where y° is any vector satisfying
gi(xio) gylo(z= L., k) and Z::I{ yioéb [6.g., yi0=gi(xi0) Jor =1, k]

D. If (P) has an optimal solution y° and z is optimal in (Pl), then
(z°, -+, x) is optimal in (1).

If the constraints (6) are explicitly incorporated into (P), the only
change required in the theorem is in part A; (1) is infeasible if and only if
(P) with (6) appended is infeasible.

It is important to realize that (P), like (1), is a concave program.
The following result is not difficult to demonstrate.

TareoreEM 2. The set Y; is nonempty and convex, and v; is concave and
nonincreasing on Y; and — o oulside of Y ;.

Thus, (P) is a concave program equivalent for all practical purposes to
(1). It might seem that to consider (P) in place of (1) would be to give
up convenient optimality conditions, for the Kuhn-Tucker optimality
conditions of (1) can be conveniently expressed in terms of gradients if all
functions are differentiable, whereas this is not true of (P), since the func-
tions v; are not everywhere differentiable.™*! Fortunately, however, for
present purposes the optimality conditions of (1) suffice for (P) as well,
and when they are satisfied an optimal solution of (1) is automatically
available. For, suppose that a feasible point 3/° is offered as possibly opti-
mal in (P). Let . be any optimal solution of (Pj), and test a2’ for
optimality in (1). It follows from Theorem 1 that 2° is optimal in (1) if
and only if %° is optimal in (P).

How might one go about solving (P)? Certainly any approach that
requires the supremal value functions v; to be found explicitly first is
doomed to impracticality except in very special cases. Probably the only
situation in which v; can be determined explicitly is the case m=1. Then
(P,) entails but a single parameter and it may be possible to obtain v;
via parametric programming techniques. The three approaches below are
of more. general applicability in that they evaluate or approximate v;
only as needed.

[22]
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3. THE TANGENTIAL APPROXIMATION APPROACH TO (P)

THE XEY TO the tangential approximation approach for solving (P) is the
observation that a linear support to v; is a natural by-product of its evalua-
tion. This implies that (P) can be solved by building up an adequate
approximation to each v; in terms of its linear supports.

A linear support to a concave function is any linear function whose
value is always greater than or equal to that of the concave function, with
equality holding at some point of the domain. Evaluating v; at the point
., say, requires solving the concave program (Pg‘). There will usually
exist an optimal multiplier vector X; associated with the constraints g,(x;) =
#7:; in fact, most concave programming algorithms produce A; automatically.
It is well known and not difficult to show that X; is the normal of a linear
support to v; at gi.m] _

THEOREM 3. Let § be such that (P;") has an optimal solution &; and an
optimal multiplier vector Ni. Then the function fi(Z:)—N\'(yi—3:) s @
linear support to v; at g, so that

vi(ys) <f:(Z:) “‘S\it(yi‘—gi) for all y;. (7)

To be sure that the hypotheses of Theorem 3 hold whenever (P;°) is
feasible (i.e., whenever §;eY;), we shall impose throughout this section the
following additional assumptions:

Al: f;and g;; are all upper semicontinuous functions, and X is compact.

A2: For every y:Y; (P,’) has an optimal multiplier vector A\:(y:)
agssociated with the constraints g;(z:) = y..

These assumptions are really quite mild. Upper semicontinuity is a
weaker property than continuity, and, for concave functions, only concerns
boundary behavior.

The boundedness of X; can be enforced, if necessary, by restricting x;
to some suitably large but bounded region within which an optimal solu-
tion of (1) must lie if it is to be meaningful. Assumption A2 can be re-
placed by any of a number of constraint qualification assumptions, but we
shall suggest in Section 3.2 how it can be eliminated altogether.

With these additional assumptions, one can assert not only that v;
has a linear support at every point in Y, but also that »; actually coincides
on Y; with the envelope of these supports. More precisely, we have:
COROLLARY. If the additional assumptions Al and A2 hold, then

vi(ys) =ming,er; {v:(7:) =N (7:) (ys— )} for all  yueYs.

Proof. From Theorem 3 and the additional assumptions, \;(y:) exists
as defined on Y, and

vi(y:) Svi(gi)—)\i'(ﬂi)(?ji—gi) for all y;,7:€Y .

Taking the infimum of this inequality over all §; in Y, we obtain
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vi(ys) <infyier; {0:(F:) =N (§:) (yi—Fa)}  for all  yqeYs.

But equality must hold and the infimum must be achieved, for one may
take 7:=y;.

This result suggests that (P) can be solved by building up a better and
better approximation of »; in terms of its linear supports. If an optimal
multiplier vector A\;’ has been found at each of a number of points ;' in
Y; (=0, ---,»), then the approximation to »; will be the piecewise-
linear function

v (y:) Eminimum oy, 1, ..., , {0:(yi’) — (N (yi—yi)}. (8)
We are thus led to the:

TANGENTIAL APPROXIMATION APPROACH

Step 1. Let a feasible solution y° of (P) be given such that the corresponding
subproblems (P}o) are feasible. Solve (Pjo) for an optimal solution by any suitable
concave programming algorithm and recover an optimal multiplier vector A%,
1=1,---,k. Put»=0.

Step 2. Solve the current tangential approximation to (P), namely

maximize, Y it v:*(y:) subject to:
yi€Yi, 7’=11 "'yk; Z::I;ylgb)
by any suitable algorithm. Let y*** be an optimal solution. .
Step 3. Recover an optimal solution and an optimal multiplier vector A
for (Py+Y),1=1, -+, k.
Step 4. If y** is sufficiently near optimal in (P), terminate. Otherwise,
increase » by 1 and return to step 2.

9)

Note that the constraints y:eY: are introduced explicitly in (9), since
a primal resource-directive method is desired.

It is not difficult to see that problem (9) is equivalent in the obvious
sense to the concave program

maximize, » it o; subject to:
aig”i(yij)_()‘ij)t(yi_yij); J=0,--,, i=1; ) k; (10)
yieY@') 1= 1) ] k) E::Ilc yng

Assumption Al implies that (10) is sure to have an optimal solution.
Certainly (10) is a far more tractable problem than (P) itself, although
the ease of solution depends upon how conveniently the convex sets Y,
can be handled. Ways of handling Y; will be discussed in Section 3.1.
It is likely that in practice the number of linear constraints involving o
can be kept to a reasonable number less than kv by dropping certain of the

constraints that are amply satisfied at (o™, yi™). This corresponds to
p
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coarsening the piecewise-linear approximation to v; away from the current
trial solution to (P).

[Note added in proof. Rigorous justification for dropping constraints
is provided by two recent studies: B. C. Eaves and W. 1. ZanewiILL,
“Generalized Cutting Plane Algorithms,” Working Paper No. 274, Center
for Research in Management Science, University of California, Berkeley,
July 1969; and DonaLp M. Topkis, “Cutting-Plane Methods without
Nested Constraint Set,” which appears later in this issue of OPERATIONS
RESEARCH, pages 404-413.]

Note that the subproblems need be solved ab initio only once, at Step 1.
Thereafter, an appropriate solution-recovery technique—possibly of a
parametric variety™**** _—can be used at Step 3. Of course, post-
optimality techniques would also be used to reoptimize (10) after the
first execution of Step 2 (because of the simple manner in which o appears,
recovery techniques that are primal rather than dual with respect to (10)
can be used if desired).

Since v;” never underestimates v;, the optimal value of (9) or (10) at
each iteration provides an upper bound on the optimal value of (P).
These upper bounds are a monotone decreasing sequence. This, coupled
with the lower bounds provided by the y”s [which are feasible in (P)],
leads to a natural termination criterion for Step 4: stop if

2oiTied (yi ™) —maximumog e, { 20551 0i(yi )} <6,
where ¢ is a suitably small positive number.

3.1 Dealing with Y,
We must consider now how the convex sets

Y& {y.eR™:y:<gi(x:) for some z:eX)

appearing in (9) and (10) ought to be handled. Three possibilities will
be discussed:

(a) Obtain Y; explicitly.

(b) Build up an adequate outer (containing) polyhedral approxi-
mation as needed based on supporting hyperplanes.

(¢) Build up an adequate inner (contained) polyhedral approximation
as needed based on points in Y.

Of course, it may be desirable to treat ¥ differently for different 7 so
as to exploit different structures of (P,°).

It might seem that possibilities (b) and (¢) would be undesirable in
that they may require an extra infinitely convergent process within Step 2.
The following two ameliorating factors, however, should be kept in mind.
First, any approximation to Y; is cumulative in benefit since ¥; does not
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change between successive executions of Step 2. Second, »; and hence
v;", is a nonincreasing function, and therefore the optimal solution of (9)
tends to stay away from that portion of the boundary of Y; to which, as
we shall see, the approximations of (b) and (¢) are mainly addressed.
Only in quite special circumstances can one obtain Y; once and for all
as a finite collection of explicit inequalities in y;. In the case m=1 (i.e.,
¥ 18 a scalar rather than a vector variable), y.eY; is obviously equivalent
to the single inequality ¥ < maximum g;(x;) over X;. The case m=2 is
almost as obvious, since it is easily shown that ¥; is completely determined
by the image under g; of the g.-efficient points of X,. That is, under as-
sumption Al, y;eY;=y:<g:(x;) for some z; in X, that is g,-efficient. A
point z;eX; is said to be ‘g;-efficient’ if there exists no other point z;" in X;
such that g:(z:) =g¢:(x;) with strict inequality holding for at least one

Yi2

§; -EFFICIENT BOUNDARY

3

Figure 1

component function of g;. See Fig. 1. The g;-efficient boundary can be
found with considerable computational efficiency under various additional
assumptions on g; and X; by using special parametric programming tech-
niques to solve the parametric program

maximize,;ex; 091 (x:) + (1—0)ga(x:)

for values of 6 in the unit interval."****?  Once the g;-efficient boundary

is known, it is a relatively simple matter to translate this into one or more
inequality constraints on y; to as great a degree of approximation as desired.
For m2>3, extensions of the above approach become computationally
unattractive. If X, is convex polyhedral and g; is linear, however, the
following result shows that ¥; can be specified without approximation by a
finite collection of linear inequalities. In this case, (10) becomes a block-
diagonal linear program with coupling constraints.
THEOREM 4. Suppose that X;={x;20:A4.2:5b;} and gi(x;) = Bix;, where
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A; and B; are given matrices and b; is a given vector. Then Y can be ex-
pressed as the finite collection of linear inequalities bi'us —y'\’>0,7=1, -+ -,
J i, where { (uit, N, -+, (uif, Ni¥)} ©s a set of vectors spanning the cone

Cié{(#a’, )0, N =0, A'ui—B\=0}.

Proof. The elementary theory of linear programming provides a simple
and constructive proof as follows. Clearly, y;eY; if and only if the linear
program

maximize,, 50 0'z; subject to Ax;<b; and Bai=y:

is feasible and has optimal value 0. By the Dual Theorem of linear pro-
gramming, this is true if and only if the dual linear program

minimize,; ; b:‘ui—yi'\¢ subject to  (us, Ai)eCs (11)

is also feasible and has optimal value 0. Now C; is a pointed convex
polyhedral cone no matter what y; is and, consequently, (11) will have
optimal value 0 if and only if its minimand is nonnegative along every
extreme ray. If we select any nonzero vector (ui’, \;’) from the jth ray,
we obtain the desired conclusion.

Thus one could, if desired, generate Y; explicitly by generating a com-
plete set of spanning vectors for the associated convex polyhedral cone.
Algorithms for doing this are known,”*¥ but the computational burden
is likely to be excessive. Because only a small proportion of the cor-
responding linear constraints will probably ever be binding at an optimal
solution of (9), it would be natural to solve (9) by the strategy of relaxa-
tion:*® violated constraints could be generated as needed by linear pro-
gramming as implicitly suggested by the proof of Theorem 4. That is,
one would temporarily ignore all but a subset of the constraints defining
each ¥, solve the corresponding approximation to (9), and then introduce
a violated constraint if the resulting solution 7 is not feasible in (9). Test-
ing the ignored constraints for feasibility at § would be done by solving
the linear programs (11) for each ¢ with y;=4;, and a violated constraint
would be produced automatically if the optimal value is <0, i.e., if 7:¢Y..
An optimal solution of (9) will be obtained in a finite number of iterations.
This manner of handling implicit constraint sets like Y'; is due to Benders.”

The relaxation strategy for solving (9) can be generalized to apply
even when Y, is not polyhedral. This requires a method of testing whether
a given trial solution § is feasible in (9), and of obtaining a ‘violated’
supporting hyperplane to Y; if 7:¢Y; Again, the successive approxima-
tions to (10) become block diagonal linear programs with coupling con-
straints. Of course an optimal solution of (9) may not be obtained in a
finite number of iterations, since in general it takes an infinite number of
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supporting hyperplanes to characterize Y; completely. See Fig. 2, in which
the approximating polytope is sketched (shaded) for a hypothetical case
in which m=2 and 3 supports to Y, are available. The fundamental
characterization theorem, and therefore the main underpinning of the re-
laxation strategy, is as follows.

THEOREM 5. A point y; is in Y, if and only if it satisfies the system of linear
constraints

Ny <maximumg,ex; Ni'gi(2s), all  \eA, (12)

where A2 {NeR™:\;=0 and Y i=t" Nij=1}. Furthermore, every constraint
among (12) is a supporting half-space for Y.

Proof. It is obvious that the system g;;(z:) >y, j=1, -+, m, has a
solution in X; only if every convex linear combination of these constraints
also has a solution in X,;. The converse also holds, by a fundamental re-

Yi2
BOUNDARY OF Y

Figure 2

sult in the theory of convexity (p. 64 of reference 7). The first assertion
now follows directly. To see the second assertion, we note that the first
implies that every constraint from (12) is a containing half-space for Y,
and must actually be supporting, because equality holds if we take y.;=
gilxi(\:)], where x;(\;) maximizes \;'g;(z;) over X ;.

This characterization suggests several possible methods for testing
whether a trial point §; is in ¥; and generating a violated constraint from
(12) if not. In the interest of computational efficiency, however, the choice
of such a method should be coordinated with the choice of an algorithm for
solving (P,»+1) at Step 3. The chosen method ought to be able to make
use of the available optimal solution to (P}.), and ought to furnish a
feasible (if not optimal) solution to (P;*) if #:e¥:;. Rather than attempt
a detailed discussion here, we shall be content to suggest the following
general requirement:
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Requirement for Step 3. The algorithm chosen to implement Step 3 must be
able to commence if necessary without the benefit of a known feasible solution of
(Py?) and, if (P;%) has no feasible solution, must determine a convex combination
of the constraints g,(x;) =§; that has no solution in X; (such a convex combination
exists by virtue of Theorem 5).

This requirement is not unduly stringent: it can be shown that most
‘dual’ methods addressed to (P;’) satisfy it automatically, as do most
‘primal’ methods when fitted with a ‘Phase One’ procedure designed to
find an initial feasible solution if one exists. It certainly enables the re-
laxation strategy for (9) to be carried out using the machinery of Step 3,
for if 7Y, then XA is produced such that the constraint X.'g.(z:)>

Yi2

BOUNDARY OF Y;

Y

Figure 3
\:'7; has no solution in X,—that is, such that X,"y; <max,x; Ni'gi(2;) is a
violated constraint from (12).

In addition to relaxation methods for handling Y, in (9) by outer
convex polyhedral approximation, there are also inner convex polyhedral

approximation methods to be considered. If (., ---, y?’) are known
points in Y, the polytope

{yieR™:y:< D izl @iy’ for some  @; 20, 3 oot aij=1}
is contained in Y,;. See Fig. 3, where the approximating polytope is

sketched (shaded) for a hypothetical case in which m=2, p;=3. The
corresponding approximation to (9) would obviously be

maximize,,« 9 i v (y:) subject to:
Z::lf y:i2b; Y= E;::f” @Yy 25:1“ a;;=1, and (13)
a;=20, 7=1,--- k.
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When v,;"(y:) is handled as in (10), (13) becomes a block-diagonal linear
program (k blocks) with coupling constraints. One appealing way of
refining the approximation is to make use of the optimal dual variables of
(13) corresponding to the constraints ;< D i—7* as;ys. Denote the
values of these variables by #:;. Solve the concave program

maximize,cx; 4:'gs(z:) (14)
for an optimal solution #;, and introduce the following new point (which
must lie on the boundary of Y;): y? ™ £g.(£).

pit+l

The motivation behind this choice of y7*" rests upon the fact that 4,
can be shown to be the normal of a supporting hyperplane to the current
inner polyhedral approximation to Y; at §, where § solves (13). In Fig. 3,
if the optimal solution to (13) lies strictly between y;' and v, y.* would
be the point on the boundary of Y; indicated by the heavy dot. Thus the
polyhedral approximation to ¥; would be improved in the region of interest
until no further significant improvement is possible, at which point (9)
would be adequately optimized.

It is interesting to observe that this method for handling Y; is equiva-
lent to rewriting (9) as

maximize, , 2 oy 0 (ys) subject to:
x,‘GX,', Z=1, ,IC, gq(xa)éy., 7'=1; ;k) Z::If?hgb; (15)

and then applying DaNTzIG AND WOLFE’s nonlinear decomposition method
(Chapter 24 of reference 12) only to the g; functions (in the terminology of
reference 22, one would describe this as inner-linearizing g; over X; and
then applying the strategy of restriction).

3.2 Alternative to Assumption A2

Let y:eY; be fixed such that v; is finite. It is known®* that an
optimal multiplier vector for (P,*) exists if and only if the one-sided direc-
tional derivative

v (yi32:) 2 limeo i(yitte:) —vi(y:) 1/t (16)

is not + » in any direction z;eR™; and (see reference 16, p. 80) that
v (yi; 2:) is finite for all z; if y; is in the interior of ¥;(intY;). Thus an
optimal multiplier vector must automatically exist everywhere on intY;, and
assumption A2 is needed only for the boundary of Y.

This observation suggests that one might dispense with assumption
A2 altogether, provided that y; is restricted to intY,. This can be done
by perturbing y.” slightly, if necessary, so that it is sure to lie in intY..
Any m-vector with all negative components will do as a perturbation di-
rection. Or, if a point § satisfying Zi:’f §:=b and §:eintY; is known, then
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the perturbation direction (§;—;”") will point into the interior of ¥; from
every boundary point and avoid even miniscule violations of the con-
straints Z;Z’f y:=b after perturbation. If the amount of perturbation
tends to 0 as »— o, then the perturbed sequence (y;") can converge to a
boundary point of Y if an optimal solution to (P) is, in fact, on the bound-
ary.

An additional argument for dispensing with assumption A2 comes from
the observation that optimal solutions of (P) tend not to occur at points
y* where an optimal multiplier vector does not exist (i.e., where v, (y*;
2;) =+ o for some z;), for then v;(y;) increases at an infinite rate as y; de-
parts from y;* in direction z; into the interior. (It is known [reference 16,
p. 79] that if v;'(y.*; 2;) = « for some 2, then it is « for all z; pointing into
the interior of Y;.) This implies a natural repulsion away from any points
on the boundary of Y; at which assumption A2 fails.

4. LARGE-STEP SUBGRADIENT APPROACH TO (P)

SoME oF THE most powerful algorithms for concave programming with
differentiable functions are so-called ‘large-step gradient methods.’ [10,41.4)
(These methods are known to produce near-optimal solutions quickly,
although to obtain high acecuracy it may be preferable to resort to second-
order methods.) Such methods produce a sequence of feasible solutions,
each determined from the previous one by the choice of an improving
feasible direction followed by a step in this direction. The gradient of the
extremal function usually guides the choice of an improving feasible direc-
tion, and the step size is usually determined by maximizing the extremal
function along the chosen direction subject to the constraints. Unfor-
tunately, these algorithms do not apply directly to (P), because its maxi-
mand need not be differentiable even if all of the functions defining (1) are.

In this section we shall suggest how such algorithms can be modified so
as to overcome the nondifferentiability obstacle. The optimal multipliers
of (P,%) will play a central role in obtaining a complete local characteriza-
tion of v; via subgradients, thereby enabling an ‘optimal’ choice of an
improving feasible direction (or proof that none exists). These develop-
ments, conveyed in Sections 4.1 and 4.2, will enable Step 2 of the following
procedure to be carried out successfully.

LARGE-STEP SUBGRADIENT APPROACH

Step 1. Let a feasible solution 3° of (P) be given such that the corresponding
subproblems are feasible. Solve each (P;o) for an optimal solution by any suitable
algorithm for concave programming; if any subproblem has an unbounded optimal
value, then so does (P) and the procedure terminates.

Step 2. Determine a ‘good’ improving feasible direction z¢ for (P) at y°; if
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no improving feasible direction exists, then y° is optimal in (P) and the procedure
terminates.

Step 3. Determine a step size 6° in the direction 2° by solving the following
one-dimensional restricted version of (P):

maximizeszo X it v (y:%+62:%) subject to oy (y:*+02:0)2b.  (17)

If (17) has unbounded optimal value, then so does (P), and the procedure termi-
nates. Denote y°+6%° by 3’, and recover an optimal solution to each (P,).
Return to Step 2 with y° replaced by y’.

It is implicitly assumed that (P,?) has an optimal solution whenever it
is feasible and v; is not infinite.

Problem (17) at Step 3 involves maximizing a concave function of a
single variable over a closed interval [the general constraints of (17) are
equivalent to a readily computed upper bound on 6]. Perhaps the easiest
way of performing this maximization when parametric programming tech-
niques™*** are available for the parametric subproblems (Plog.0) is
to increase 6 by small increments above 0, all the while maintaining optimal
solutions of the subproblems, until the maximand ceases to increase or the
upper bound for 8 is reached, whichever occurs first. Note that the para-
metric programming techniques are applied to each subproblem inde-
pendently of the others, and that the required optimal solution of (Pir) is
produced with no extra work. If parametric programming techniques are
not available, (17) could be executed using Fibonacei search to economize
on the number of evaluations of v;.

We must now grapple with the central technical difficulty inherent in
this approach, namely how to carry out Step 2. The importance of being
able to find ‘good’ improving feasible directions can hardly be overempha-
sized, for the chosen directions largely determine the sequence of trial re-
source allocations.

4.1 Step 2

An improving feasible direction for (P) at ¢°, of course, is given by any
2 such that y°+6z is feasible in (P) for some 6>0 and Y v:(y.'+62:) >
> vi(y) for all 6>0 sufficiently small. It is easy to see that such a di-
rection fails to exist if and only if ¢° is actually optimal in (P).

It is essential to recognize that we must reckon not only with the prob-
lem of finding an improving feasible direction if one exists, but also with the
problem of choosing one from among the many when more than one exists.
The criterion by which this choice is made is what mainly distinguishes the
various large-step gradient methods referred to above. Similarly, we have
our choice here. We shall work with the following appealing criterion
(cf. reference 41):
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Criterton. Choose the improving feasible direction that maximizes the initial
rate of improvement of the value of the maximand.

The initial rate of improvement is, of course, measured by the direc-
tional derivative 2 =¥ v; (y:";2:) [see (16)]. The direction-finding problem
is therefore

maximize, ZZZ’{ v (y; 2;) subject to
STt 25>0  for j such that D it y2,=bj, (18)
—1<2:;<1 for all z and j.

The first set of linear constraints simply ensures that z is a feasible direc-
tion. The normalization constraint —1<z;;<1 accounts for the fact that
v; is homogeneous of degree one (obviously norms other than Z, could be
used to define the normalization). ‘

Problem (18) is a concave program, for it is easy to see that v, is con-
cave in z; for each fixed y; such that v;(y;) is finite. The optimal value of
(18) is nonnegative, for z=0 is feasible, and equals 0 if and only if no im-
proving feasible direction exists. Any feasible solution with value exceed-
ing 0 provides an improving feasible direction, and conversely. An op-
timal solution of (18), of course, yields (provided its value exceeds 0) an
improving feasible direction that is best according to the chosen criterion.

Variants of the above criterion would lead to variants of (18), many of
which could be handled by the techniques to follow, perhaps combined
with the techniques of Section 3.1. One close variant was treated approxi-
mately in the completely linear case by ZscHAU™ (see also references 1
and 39). We shall see that under mild assumptions (18) can be expressed
as an explicit linear program.

[Since completing this work, it has come to the author’s attention that
G. SiLvERMANG® has extended Zschau’s treatment™ to a concave case
almost as general as the one considered here. His ‘reallocation’ problem
corresponds to our problem (18), but he proposes a solution procedure for
it that seems considerably more complicated. Also of interest is his ex-
tension of the results in reference 20 to obtain a parametric programming
procedure for what corresponds to Step 3.]

4.2 Solving the Direction-Finding Problem

Consider now how one might solve (18). The difficulty, of course, is
that an explicit expression for v; seems to be as elusive as an explicit ex-
pression for v; itself. Fortunately, it turns out that one can indeed express
»; in useful terms. To do this, one must make use of the concavity of v;
(Theorem 2), the theory of subgradients of concave functions, and the
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connection between subgradients of »; and optimal multipliers of (P,).
Fundamental background material can be found in references 16, 23, 32.

A subgradient of v; at a point §; for which v, is finite is any m-vector p;
with the property v:(y:) <vi(#:) +ps (yi—7:) for all y;. That is, the sub-
gradients of v; at a given point are simply the outer normals of the linear
supports at this point. The essential fact relating subgradients of v; and
optimal multipliers of (P,’) is that they are precisely the negatives of one
another, as the following key theorem shows.

THEOREM 6. Let &; be any optimal solution of (P;%). Then \; is an optimal
multiplier vector associated with the constraints g:(x:) Z§; of (P;") if and only
if —\q s a subgradient of v; at §s; that s, the pair (&, ;) satisfies the Kuhn-
Tucker conditions

(i) Z; maximizes fi(x:) +N\i'lga(x:) — 7] over X,

(il) NTgi(:) =gl =0,

(i) A:=0,
if and only if

vi(y:) <vi(§0) =N (ys—7:)  for all ys. (19)

Proof. We suppress the subseript 7. The ‘only if’ part of the con-
clusion is available from Theorem 3. To demonstrate the ‘if’ part, let
—X be a subgradient of » at 4. We need to show that (Z, \) satisfies (i)-
(iii). To establish (iii), suppose to the contrary that \;<0 for some j.
Then by taking y=g except for the jth component, which we let equal
7;—1, (19) yields a contradiction (since » is obviously a nonincreasing
function). To establish (ii), suppose to the contrary that A;>0 for some
j such that g;(Z) >%; Then by taking y=4 except for the jth component,
which we set equal to g;(Z), (19) yields the contradiction

(7)) =v(y) <o(§) —Ni(yi—F;) <o(F).
To establish (i), we must show [in view of (ii)] that z’eX implies
f(2) <f(&) = Ng(«") —yl.
But this follows from (19) upon letting y=g(z'):
f(&) <olg(2)1<0(g) —Ng(2") —gl=F(2) —Ng(z") —7].

The proof is now complete.

We shall use the concavity of v;, the theory of subgradients, and Theorem
6 to obtain an expression for »;/ under mild hypotheses. Before getting to
the main result, let us illustrate our pattern of reasoning with a preliminary
result. The concavity of »; implies that it is differentiable almost every-

where on any open set on which it is finite, and that it is differentiable at a
point §; at which it is finite if and only if it has a unique subgradient there;
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and, in this case, that v/ (§; 2:;) is given by p:'z;, where ; is the unique
subgradient. Making use of Theorem 6, this result translates as follows:
if (Pg’) has an optimal solution, then v, is differentiable at §; if and only if
(P;") has a unique optimal multiplier X;, and in this case

vi (§i; 20) = —Ni'zs forall 2. (20)

This is a nice result, but is not general enough, because it turns out that
points of nondifferentiability tend to arise often. A sufficiently general
result for our purposes is the following.

THEOREM 7. Let §; be interior to Y, &; be any optimal solution of (P;'),
X be gwen by the concave constraints hi;(x;) >0 (j=1, ---,m;), and the
Sfunctions fi, gi;, and hs; be continuously differentiable. Assume that the con-
straint set {x::hi(x;) =0} admaits a solution that satisfies all nonlinear con-
straints with strict inequality (thes is but one of a number of constraint qualifi-
cations of X; that would suffice here). Then vi (§s; 2:) equals, for all z;, the
optimal value of the linear program

minimizey; »0,.; 20 —M\i'%;  subject to
Nlgi(8:) —7:]=0,  w'hi(E:)=0, (21)
Vfi(Z:) +N'Vgi(8:) 4+ i’ Vhi(£:) =0,

where u; 1s an mq-vector. [Here Vf;(&;) is the gradient of f; at Z; expressed
as a row vector; Vg;(&;) is a matrix whose jth row is the gradient of g;
at Z;; a similar definition holds for VhA;(&;).]

Proof. It follows directly from the concavity of v; and the fact that
FsintY; that v/ (s; 2:) equals (for any z;) the minimum of p.'z; over the
(necessarily nonempty compact convex) set of subgradients at ;. Apply-
ing Theorem 6, therefore, we have

v/ (§i; 2:) =min{ —\;/z::\;  is an optimal multiplier vector of (P;)}.

Now \; is an optimal multiplier vector of (P;*) if and only if it satisfies
conditions (i)-(iii) of Theorem 6. Conditions (ii) and (iii) appear di-
rectly in (21), while condition (i) appears in an equivalent form derived
by applying the Kuhn-Tucker Theorem to the concave program therein
and explicitly introducing the multipliers associated with the constraints

Before using this characterization of v in (18), let us write it in equiva-
lent form. First observe that the first two groups of constraints in (21)
express ‘complementary slackness.” Since ¢:(Z:;)—%:=0 and h(Z;) =0
by the feasibility of Z; in ( P;%), these constraints merely assert the follow-

ing:
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;=0 whenever g¢;;(Z;)—7:;>0, wi;=0 whenever h;(Z;)>0.

Hence (21) can be rewritten as
minimizex,.izo,,,ﬁzoz,- )\ijZij subject to

Vf(&:)+ 205 NigVger(F:) 4+ 25 i Vhii(2:) =0,

where the index j on \; or u; is understood in each case to range over the

corresponding constraints which are taut (rather than amply satisfied).

Now dualize (22), a manipulation justified by the Dual Theorem of linear

programming, since §;eintY’; implies that v, (§; 2;) is finite for all ;. Con-

sequently, the conclusion of Theorem 7 asserts that »; (§:; 2;) equals, for
all z;, the optimal value of the linear program:

(22)

maximize,; Vfi(Z:)w; subject to
Vg,-j(:i:i)w,-Zzij, 7 such that g.,(a?,) —7:;=0, (23)
Vhii(Z:)w;>0, j such that h;;(Z;) =0,

where w; is an n;-dimensional vector of dual variables.

At last we obtain, using (23) in (18) and identifying 3° with 7, the de-
sired linear programming equivalent of (18) under the hypotheses of
Theorem 7: ’

maximize, . Zi:’f Vfi(xio)wi subject to:

Vgii(xd)wi—2,;>0, 4=1,---,k  jsuchthat g (z")=y;
Vhij(z)w:>0,  i=1,---,%  jsuchthat hs(z®)=0;
D iTk2:,;>0,7 suchthat D iZhyl=b;; —1<z;;<1, alliandj.

Note that this linear program is block-diagonal with coupling constraints,
and is therefore amenable to special solution techniques. In addition,
observe that the only essential z;; variables are those appearing in the first
group of constraints; the rest can be fixed at their upper bounds and dropped
from the problem. The remaining z;; variables can be translated by an
obvious substitution so that they satisfy the usual nonnegativity convention
of linear programming, and the upper bounding constraints can be handled
implicitly using special techniques.

It is interesting and perhaps surprising that (24) can be interpreted as
a direction-finding problem addressed to (4). From this viewpoint, w;
is interpreted as an unnormalized displacement away from z,9, and of course
2; is a normalized displacement away from y,°.

Theorem 7, and consequently (24), assumes §;eintY;. To enforce
this assumption, one can restrict y; to the interior of ¥; by starting in the
interior and then always using a step size slightly shorter than the value
6° computed at Step 3 of Procedure 2. If the amount of perturbation

(24)
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approaches 0 as the number of iterations increases, an optimal solution of
(P) can be approached arbitrarily closely even if it should happen to be on
the boundary of some Y.

Using the results of Section 3.2 along with results analogous to the above
for §; on the boundary of Y;, however, it can be shown that (24) is still
equivalent to (18) for any point 4 that could be generated at Step 3, pro-
vided only that the initial 40 is such that each (Pl) has an optimal multi-
plier vector.

5. PIECEWISE APPROACH TO (P)

THE FUNDAMENTAL observation underlying the so-called ‘piecewise’ ap-
proach is that the functions v; usually have a significantly simpler structure
over certain regions of B”. This is because different subsets of the con-
straints of (P,°) are active at different values of y;. The piecewise approach
attempts to capitalize on this fact by implicitly subdividing R™ into the
regions on which all of the »; have a relatively simple structure, and then
seeking an optimal solution of (P) in a piecemeal fashion, each time with y
restricted to one of these regions.

We present two applications of this approach: one for the case in which
(1) is a linear program, and one for the case in which (1) is a quadratic
program. The first case illustrates the fundamental nature of the approach
clearly without any technical clutter, while the second illustrates the
technical methods required for more general application. See reference 22
for additional discussion of this approach.

5.1 The Linear Case

Let (1) be a linear program. Then (P,’) is a linear program parameter-
ized in the ‘right-hand side,” and we know from the theory of linear pro-
gramming that v; is a piecewise-linear function, that the regions of R™ on
which v; is linear are precisely the subsets of R™ on which a given optimal
basis for (P,) remains feasible, and that these subsets are convex poly-
topes. One is thus led to the following procedure for solving (P).

PieceEwise APPROACH (LINEAR CASE)

Step 1. Let a feasible solution »° of (P) be given such that the corresponding
subproblems are feasible. Solve each (Pjo) for an optimal solution by a linear
programming algorithm; if any subproblem has an unbounded optimal value, then
so does (P), and the procedure terminates. Denote by ®.° the (convex polyhedral)
region of R™ on which the current optimal basis for (Pjo) remains feasible, and
denote v;(y;) on this region by 1,°(y;) (I is a linear function).

Step 2. Solve (P) with the additional constraint that y; be restricted to ®,°,
namely,
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maximize, oo 1:%(y:) subject to:

o 25
yie(Rio, 1/=11 Tty k’ Zt:’fy,gb, ( )

by a linear programming algorithm (y° is a feasible solution). Let 3’ be an optimal
solution; if (25) has an unbounded optimal value, then so does (P) and the pro-
cedure terminates.

Step 3. If y’ is optimal in (P), terminate. Otherwise, identify and change to
an alternate optimal basis in some of the subproblems (Pg/) so that y’ is free to
move in an improving feasible direction for (P) without requiring a further basis
change in any of the subproblems. Determine the corresponding new regions
®;’ and functions Z;/, and return to Step 2 with y°, &%, and [,° replaced by y’,
®;’, and 1.

This procedure owes a great debt to Rosen™ /see also references 4, 18,
33, 38), although our use of improving feasible directions to guide the tran-
sition between adjacent regions (see the discussion below) seems novel.

Note that the subproblems are solved from scratch only once, at Step
1. Thereafter a simple parametric linear programming procedure suffices
to maintain an optimal solution as y varies. Post-optimality techniques
can also be used to reoptimize (25) each time Step 2 is executed. It is
also important to recognize that the entities ®; and I; required by (25) are
all explicitly available from the current tableaux associated with the sub-
problems. We shall not take the space to develop the details here.”*!
In practice one could, of course, work with the dual of (25), or with the
duals of the subproblems.

If 4/ is not optimal in (P) at Step 3, then there must exist an improving
feasibledirection (cf. Section4.1). Such a direction can be identified by the
methods of Section 4—or alternatively, by making use of the theory of
linear programming. In either case, as one might expect, the dual varia-
bles of the linear programs (P}) play a central role. Let us suppose that
an improving feasible direction 2’ has been identified. Displacement away
from ¢’ in the direction 2’ is not permissible in (25), for it would lead to a
violation of some ®, i.e., a current optimal basis would become infeasible.
To permit such a displacement one must change to an alternate basis op-
timal at ¢ in one or more of the subproblems according to the dictates of
parametric linear programming theory applied to the parametric problems
(Pir46:), where 6 is a nonnegative parameter. In this way parametric
linear programming theory grides the basic changes necessary to make the
piecewise approach work.

The optimality test in Step 3 can be integrated with the determination
of an improving feasible direction; 5’ is optimal in (P) if and only if such a
direction fails to exist.
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5.2 The Quadratic Case

Let (1) be a strictly concave quadratic program. That is, let each f;
be a negative definite quadratic polynomial and let all constraints be linear.
It will prove convenient to introduce the constraints defining X, explicitly
as hij(x‘-') 207 .7= L., ma

To apply the piecewise approach, it is necessary to take explicit account
of the fact that different subsets of the constraints of (P,’) are ‘active’ for
different values of .. We shall denote a subset of constraint indices for
the 7th subproblem by S;. Assuming that S; coincides with the set of ac-
tive constraints, we shall see that (P,’) is equivalent to

maximize,, f;(x;) subject to (26)
hij(x:) =0, jeSi;  gii(w:) =yij, JeSs

Note that the constraints in S; have been written as equalities rather than

inequalities, and that the constraints not in S; have been dropped entirely.

It turns out that it is sufficient to consider only index sets that are al-
lowable. We say that S;is allowable at y; if (26) has a feasible solution and
if the constraints indexed by it have linearly independent normals (remem-
ber that all constraints are linear). It is easy to see that (26) admits a
unique optimal solution z,;’(y:) when S, is allowable at y;, and furthermore
that corresponding Lagrange multipliers A\;"(y:) and u.’(y:) must exist and
be unique (A;; is associated with g.;, and u;; with h;;). The triple [z:'(y:),
N (y:), mi'(y:)] is the unique solution to the usual Lagrange multiplier
equations associated with (26).

The relation between (26) and (P,’), when S; is allowable at ¥, can be
deduced from the standard optimality conditions for (P,?) and a funda-
mental theorem of linear programming stating that any set of linear equa-
tions with a nonnegative solution also has a basic nonnegative solution
(e.g., reference 12). Let us call S; optemal at y, if z:°(y;) is feasible in
(P," (i.e., satisfies the constraints not indexed by S.), and \:(y:;) and
ui (y;) are both nonnegative. The central fact about optimal index sets is
that .°(y;) must be optimal in (P,°) if S; is optimal at y;; and, moreover,
to every y; such that (P,°) admits a feasible solution, there corresponds at
least one optimal index set. Thus (P,*) can be replaced by (26) so long
as S; is an index set optimal at y..

Let us define ®;(S) as the set of values for y; at which a given index
set S; is optimal:

R:(S) A {y:eR™:8; isallowableaty;, hylzs(y:)]>0 for jeS;

. ) . s (27)
giiled (y)l >y for  jéS,, N(y:) 20, and u:(y:)=0}.
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If a particular ®:(S) is not empty, then from the linearity of the Lagrange
multiplier equations associated with (26) and the consequent linearity of
the funetions z.°(- ), A\i’(+), and u’( - ), we see that ®;(S) is a convex poly-
tope. Furthermore, v; must be quadratic on ®(S) {since v;(y.) =
filz(y:)] holds}. Let us therefore denote v;(y:) on ®:(S) by ¢q:(y:).

At last we are ready to detail the piecewise approach for the quadratic
case. Any available quadratic programming algorithm (e.g., the one in
reference 40) can be used in Steps 1 and 2.

PiecEwIiSE APProACH (QUADRATIC CASE)

Step 1. Let a feasible solution y° of (P) be given such that the corresponding
subproblems are feasible. Solve each (PJ) for an optimal solution by a quadratic
programming algorithm. Determine an index set S% that is optimal at y.°, and
determine the corresponding convex polytopes ®:(S% and the quadratic functions

q:°.
Step 2. Solve (P) with the additional constraint that y; be restricted to

®:(S%, namely
maximize, Zi:’f ¢:°(y:) subject to:

. 28
yie(R,-(So), i=17 “')k; Z::Ifylgbr ( )

by a quadratic programming algorithm (y° is an initial feasible solution). Let y’
be an optimal solution.

Step 3. If y' is optimal in (P), terminate. Otherwise, identify and change to
an alternate optimal index set S;’ in some of the subproblems so that y’ is free to
move in an improving feasible direction for (P) while still being feasible in the cor-
responding version of (28). Determine the corresponding new regions ®;(S’)
and functions ¢/, and return to Step 2 with y° ®;(S%, and ¢,° replaced by ',
®Ri(S"), and g4".

As before, parametric and postoptimality techniques (this time for
quadratic programming) can be used to reoptimize the subproblems and
(28). The constraints specifying ®;(S) and the functions ¢; required by
(28) are all explicitly available from the unique solution to the (linear)
Lagrange multiplier equations associated with (26), and optimal index
sets for (P,’) are easily determined from its optimal solution. The op-
timality test in Step 3 can be posed as the question of the nonexistence of
an improving feasible direction, and the search for such a direction can be
carried out by the methods of Section 4 or by the theory of quadratic pro-
gramming. Parametric programming theory™ ! can be used to guide the
determination of appropriate new optimal index sets in Step 3.

6. DISCUSSION

WE cLosE wiTH a brief discussion of price-directive approaches to (1)
and some opportunities for further research.
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6.1 Price-Directive Approaches

The tangential approximation, large-step subgradient, and piecewise
approaches can all be applied so as to yield price-directive rather than
resource-directive procedures for solving (1). The essential difference is
that, instead of projecting (1) onto the space of its subsystem resources to
obtain (P), one dualizes (1) with respect to the system constraints to obtain
the dual problem '

minimizes o )it wi(A) —A\'D, (D)

where w;(\) is defined as the supremal value of the parameterized sub-

problem A
maximize,,ex, fi(2:) +\gi(xs). (D\")

Note that we have not introduced multipliers associated with the con-
straints defining X;. The only difference between (D,‘) and (3) is that
here the same vector of ‘prices’ (or ‘incentives’) is used by all subsystems.
Under a mild assumption, from the duality theory of nonlinear program-
ming232 it can be shown that (D) must have an optimal solution, and
that an optimal solution of (1) can be recovered by solving the correspond-
ing subproblems (Dy’). Thus we may address ourselves to (D) rather than
to (1) or (P). (D) is a convex program since w; is convex (it is the su-
premum of a collection of linear functions).

Application of these three approaches to (D) is quite analogous to their
application to (P). Some simplification even arises for the tangential
approximation approach, since (i) the analog of Y, namely {XeR™:w.(\) <
« }, is simply all of R™ under the additional assumption A1 (see Section 3),
and (ii) a linear support to w;, namely w;(X\)4g:'(&:)(A—X), where &, is
optimal in (D), is an immediate by-product of its evaluation at a point X.
The tangential approximation approach to (D) generalizes the ‘global
approach’ discussed by TaAxanAsHIP® and also, it can be shown, the
Dantzig-Wolfe Decomposition approach to (1).

The closest relatives of the large-step subgradient approach to (D)
found in the literature appear to be what are sometimes known as Lagran-
gean decomposition methods [see references 8 (Sec. 3.2), 15, 25 (Sec. III),
29, 36 (‘local approach’), and 37]. These methods typically work with
just the immediate subgradient implicit in (ii) above, and sometimes take
steps of nonoptimal length.

The piecewise approach to (D) has not yet appeared in the literature
except by dual interpretation in the completely linear case.

6.2 Research Opportunities

There are numerous opportunities for research into computational,
economic, and theoretical aspects.
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From the computational viewpoint, the central unresolved issue is the
relative efficiency of the three approaches developed here (or six approaches,
if we include the price-directive ones too). It seems quite plausible to
expect tangential approximation to be most efficient when the v; functions
have little curvature and the sets ¥'; can be handled more or less directly;
the large-step subgradient approach to be most efficient when the para-
meterized subproblems (Pjo,s0) can be handled effectively; and the piece-
wise approach to be most efficient when (1) is a quadratic program. But
only extensive computational experience will tell. One important object
should be to establish broad classes of problems for which a particular
approach is superior in some sense. This would help practitioners choose
an effective algorithm and guide further theoretical development. In
pursuing this goal, one should pay special attention to the growth of solu-
tion time as a function of problem size and difficulty parameters such as
k, m, and D izt n; within various given classes of problems. In large-
scale programming it is primarily this kind of behavior, rather than com-
parative absolute solution times for a given problem, that distinguishes the
durable algorithms from the transitory ones. Of course, studies of con-
vergence rate and numerical stability are also required. Of particular
interest is stability with respect to e-optimal solutions of the subproblems
when they are not linear or quadratic programs (cf. reference 17 and Sec.
7 of reference 23).

Another aim of computational studies should concern how to make the
most effective use of the parallel-processing opportunities presented by the
essentially uncoupled nature of the subproblems (P,°) and (D,?). Com-
puters with substantial parallel processing capabilities are already available.
The Control Data 6600, for example, has ten peripheral processors (each
with a separate magnetic core memory) in addition to the central processor;
thus up to ten subsystems could be optimized simultaneously at the ap-
propriate steps in each of the suggested procedures.

Many aspects of the resource-directive and price-directive approaches
mentioned here have as yet to be systematically studied from the economic
viewpoint. The economic interpretations and implications of information
flows and the resource- and price-adjusting mechanisms are quite interest-
ing from the point of view of the decentralized organization or the planned
economy.[2'3'8‘28'30'43]

Finally, we mention a few theoretical questions that deserve further
study. At the head of the list is the general subject of convergence,
especially the rate of convergence. It would also be useful to explore direct
means of dealing with the boundary of ¥, in Sections 3 and 4, and to devise
specialized solution-recovery techniques for the problems and subproblems
that must be solved repeatedly. And there are a number of potentially
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useful extensions that could be pursued, having to do with certain kinds of
nonseparability in the system criterion function or constraints; the pres-
ence of ‘system’ as well as subsystem variables in (1); the piecewise
approach for more general classes of problems; and choice criteria for an
improving feasible direction other than the one of Subsection 4.1 (compu-
tational studies would be especially helpful here).
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