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Abstract—This paper presents a solution technique for large scale road network equilibrium assignment and related
flow problems with nonlinear costs. It is shown that this nonlinear network problem can be solved without explicitly
considering any of the constraints—they are satisfied automatically in the procedure developed—and without storing
all of the individual decision variables. The computational requirements of the aigorithm reported are almost
identical to the requirements of heuristic solution techniques for traffic assignment. A solution time of nine seconds
on the CDC 6400 was obtained for the test problem, which included 76 arcs and 24 nodes, all of which were origins

and destinations.

INTRODUCTION

We consider the following multi-commodity network flow
problem. Given a network with n nodes, let nodes I,
2,...,p, p =n be a set of nodes which are either supply
points or demand points or both. Typically, p = n, i.e.
every node is a supply point and/or a demand point. In
addition, every node in the network will be considered a
transhipment point. Let A denote the set of arcs in the
network and D be a p xp matrix whose (i, ) entry
indicates the number of units which must flow between
nodes i and j. To write the conservation of flow equations
insuring that D(j, 5) units flow from node j to node s, we
introduce the following notation:

xj~flow along arc (i, j) with destination s
xi—total flow along arc (i, j).

We then must have

j=1..,n
DGos)+ D xi=> xk s=1,...p
' * j#s.

These constraints state that for every node j, for every
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destination s, the flow which originates at node j destined
for node s plus the transiting flow destined for s must
equal the total flow which leaves node j destined for s.
Thus, for each destination node s we have a system of
conservation of flow equations: one equation for all nodes
j in the network, j # s. We may omit the equation for j = s,
since it is generally true that if we require the correct
amount of flow to leave each supply point, and if flow is
conserved at every intermediate node, then the equation
requiring the flow to arrive at the demand point is
redundant. Let the cost of shipping x;; units along arc (i, J)
be f;(x;). The cost function f;(-) is a function of the total
flow along the arc, i.e. the sum of all the commodities
flowing along the arc. The multi-commodity transship-
ment problem which we address, expressed in its most
general form, is then

P
(NLP) Min S , (3 ) M
j=1,..,n
st. DG,s)+>xi=2 xik s=1...p (2
' * j#s
x5=0(, j)eA, s=1,...,p. ?3)

As will be described below, various forms of the f;()
function yield a model corresponding to different prob-
lems.

A more intuitive (although computationally more
difficult) form for the conservation of flow equations. is as
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follows: Define

xij—flow along arc (i, j) which originates at nodc r and
is destined for node s

xy—total flow on arc (i, j), x; =2 Xj.

Our problem is then

Min 3 1,(3 x7) )
(iLj)eA rs
=-D(r,s) j=r j=L..,n
> xi-Dxji= 0 jZns ns=1,...p
' ) D(rs) j=s  r#s
)
xiz0(,j)eA, r,s=1,...,p, r#s 3"

Constraints (2') state that the flow into node j traveling
from node r to node s equals the flow out of node j
traveling from r to s (unless j =s5). For any specified
network, the constraints (2') are clearly much greater in
number than the constraints (2).

THE ROAD NETWORK EQUILBRIUM
ASSIGNMENT PROBLEM

The equilibrium traffic assignment problem may be
stated as follows: We are given a set of roads and zones
representing a particular urban area, and we have
estimates of the total demand for travel via road between
each pair of zones. We wish to determine how this traffic
will distribute itself over the roads of the area. Typically,
we have projections of the traffic between each zone pair
in some future period, and we wish to determine if the
existing or various proposed road networks can handle
the increased traffic, what the associated user costs or
travel time will be, etc.

A system of streets and expressways may be modeled
by a network in which the nodes are used to represent
intersections (or interchanges). Nodes are connected by
directed arcs so that a two-way street is modeled by two
arcs in opposite directions. The network is generaily used
to represent only the major streets of an urban area. while
minor roads such as side streets in residential areas are
usually not included.

Nodes also are used as the places at which traffic enters
and leaves the system (i.e. places where it is generated). It
is assumed in this model that the origin to destination
demands are fixed. In general, of course, it is known
empirically and from a priori economic theory that the
quantity of travel between two points is a function of the
overall cost of that travel and the cost to alternative
destinations where the same trip purpose might be
satisfied. In traffic assignment. this interdependence is
treated exogenously. In principle, after each assignment
of a fixed demand, that demand would be checked against
the user costs, and if they were not in correspondence, the
assignment would be performed again with a revised
demand estimate, and so on.

One of the most common behavioral assumptions made

in traffic assignment modeling is that each user of the
urban network will take the path of least perceived cost
from his origin to his destination. It is known that travel
time is a significant factor to the majority of travelers
when they choose their routes between their respective
origins and destinations, and most applications of traffic
assignment utilize travel time as the basic measure of
travel cost (Comsis, 1972). However, research over the
past decade indicates that other factors are important,
such as distance and the tension of driving on various
streets. For example, after considerable behavioral
research, Michaels (1960, 1962, 1965) has concluded that it
is the net impedance or total disutility—a composite
measure of travel time, tension and other factors—that
drivers seek to minimize. Thus, if a traveler is faced with a
choice between two routes of roughly equal travel time,
he may prefer not to choose the one which is
characterized by heavy stop-and-go traffic. It is far
beyond the scope of this paper to attempt to resolve
differences in the factors included in drivers' choice of
routes. In the remainder of this paper, the term travel cost
will be used to mean some scalar measure of cost upon
which users’ select their routes, perhaps including time,
tension, distance, dollars or some weighted combination
of these. 3

The travel time experienced by the user of any road or
arc, called the average travel time function or the volume
delay curve, is a known function of the total volume of
flow along the road. While various functional forms are in
use in different nations, all seem to be nonlinear and
strictly increasing with flow on the arc. The parameters of
these travel time functions are determined by its length,
speed limit, geometric design, number of lanes, number of
traffic lights and other road characteristics. If there is a
significant delay in making a left turn at an intersection
(node), then turn penalties can be incorporated by using
dummy arcs to represent the delay in making the turn. The
other components of user cost are not well researched.
although tension probably increases with volume of
traffic. However, it probably can be reasonably assumed
that a measure of overall traveiler disutility is an
increasing function of volume, and it probably is
nonlinear.

The assumption that each driver takes the path of least
cost between his origin and destination gives rise to the
concept of network equilibrium. A set of flows along the
arcs of the network is said to be at equilibrium if the
following two conditions are satisfied for every origin-
destination pair, r ~ s. (i) If two or more routes between
node r and node s are actually traveled, then the cost to
each traveler between r and s must be the same for each of
these routes. (i) There does not exist an alternative unused
route between nodes r and s with less cost than that of the
routes which are traveled.

The assumption is made that each user of the network
seeks to minimize his own travel cost and that he
experiments with different routes, eventually finding the
least cost one. Although this may not be completely true
in reality, it is assumed that those drivers using more
costly routes constitute a negligible portion of the total. It
is clear that if (i) or (i) were not true, some drivers wouid
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switch to the cheaper routes, congesting them, and
causing a new flow pattern to evolve. An equilibrium is
the aggregate result of individual decisions. At an
equilibrium, no single driver can reduce his own cost by
choosing an aiternative route in the network.

If the travel time of every arc were constant,
independent of the level of flow along the arc, then we
could solve shortest route problems between each
origin-destination pair to find the equilibrium flows.
However, the assumption of constant travel time ignores
the effect that congestion of an arc has on travel time. In
the more realistic case of increasing, nonlinear travel cost
functions, the interaction among drivers makes the
problem of finding the equilibrium very complex. The two
equilibrium conditions above are equivalent to Wardrop’s
first principle, the principle of equal travel times for all

users (Wardrop, 1952). His second principle, that of
" overall minimization, leads to a different assumption of
driver behavior. Wardrop's second principle states that
flows are distributed over the arcs of the network in such
a manner that the sum of the travel times for all users is
minimized. Models based on the assumption of equilib-
rium are often referred to as “‘user-optimal™ models, while
models based on Wardrop’s second principle are referred
to as “system optimal” models. The second behavioral
assumption, which uses the system optimal flows to
approximate the equilibrium flows, typically appears in
urban transportation problems more general than the
traffic assignment problem.

The fundamental difference between the equilibrium
flows and the system optimal flows is that at the system
optimal flows, some users of the network may incur an
unnecessarily high cost, allowing a majority of the users
to have a greatly reduced cost. If this reduces the
company’s total shipping cost, then this would certainly
be optimal. In the urban transportation context, this type
of cost reduction does not occur. Each individual user of
the network chooses his own path, and he wishes only to
minimize his own travel time. In the equilibrium
assignment problem. we must find the pattern of traffic
flows which results from many individuals competing for
transportation between each pair of nodes in the network;
that is, the set of flows satisfying the equilibrium
conditions (i) and (ii). regardless of what the sum of the
individual costs is. However, as is shown in Beckmann
(1956) and will be described shortly. the equilibrium
problem is equivalent to a mathematical programming
problem in the usual sense. Since there is really no central
controller to direct the flows in an urban transportation
road network, the concept of network equilibrium seems
to be an accurate model of the system. and thus the great
majority of existing solution techniques are based on the
assumption of individual user-based equilibrium.

A NONLINEAR PROGRAMMING MODEL OF THE TRAFFIC
ASSIGNMENT PROBLEM

Consider a fixed network with n nodes. and assume that
nodes 1, 2,...,p p=<n are origins and destinations.
Define A to be the set of arcs (i, j) in the network. Let x;;
denote the total flow along arc (i, j), let x} denote the flow
along arc (i, j) with destination s and let X denote the

flow along arc (i,j) with origin r and destination s.

P P
Obviously, x; = >, x and xj= >, x§. Let A;(x;) equal
r=1

rs=1

the travel time experienced by each user of arc (i. j) when
x; units of vehicles flow along the arc. For example, if arc
(i, j) is two miles long, and the speed per vehicle is thirty
miles per hour when the volume of flow is Xj then
A;(%;) = 4 minutes. We call A;(*) the average travel time
function for arc (i,j). Here, A;(*) is an increasing
function; it is taken to be nonlinear because of the effects
of congestion on the travel time for each user of any arc.

Many different mathematical forms of the average
travel time function are in common use throughout the
world. The form used in this paper will be the one used in
the U.S. Federal Highway Administration traffic assign-
ment models, although other forms could be easily
substituted. These functions are shown in Fig. 1; a; and b;
are empirically determined parameters for each arc which
are computed from its length, speed limit, geometric
design including number of lanes, and traffic lights
(Comsis, 1972). The shape of the average cost function
A; () is intuitive. As in the figure, the travel time per user
increases very slowly at first; it remains almost constant
for low levels of flow. However, as the flow begins to
reach the level for which the arc (street) was designed, the
travel time experienced by each user begins to increase
rapidly. We assume that the A;(-) are increasing functions
with continuous derivatives. This assumption is not all
restrictive—the polynomial functions which the Federal
Highway Administration use satisfy these properties.

Now define f.‘j(X.‘,‘) = f(’;‘i Ai,'(f) dt = QiiXij +(bi,-/5)(xi,-)s.
Then the optimal flow values for the problem

(NLP)
Min /() = Min 3 £, (3, x1)
(ij)eA s=t

= Min Z

3
(Lj)eA i

[aij (3 )+ b9 (3 x.’i)’] %)

st. DG S+ xi=2xk j=1..,n
: k
s=1,..,p j#Ss )

x;z0(,eA; s=1,...,p. )

A,(x)=a,+b,x)

A,(x)=Travel time on arc j

0 .y
x,=Flow on arc /

Fig. 1. Travel time functions used in the U.S.F.H.W.A. traffic
assignment model.
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constitute the equilibrium flows. Problem (NLP) s closely
related to the work done by Kirchoff in electrical
networks. The proof is based on the Kuhn-Tucker
conditions; see Beckman (1956), Le Blanc (1973).

The objective function (1) contains many cross
products involving fifth degree terms. There is one
constraint (2) for every node j, for every destination s in
the network, j# s. There is one variable for each arc, for
each destination in the network. Thus if we wish to find
the equilibrium on a 500 node, 2,000 arc grid network in
which each node is an origin and a destination, then
problem (NLP) has 500-499 = 249,500 conservation of
flow constraints and 2000-500 = 1,000,000 variables and
non-negativity constraints. In this paper, we will present
an efficient method for solving such large scale versions of

* (NLP). First we give a lemma which is fundamental to the
remainder of this paper.

Lemma If A;() is a nondecreasing continuously di-
fierentiable function on [0, ), then the objective function
(1) is convex with respect to the x7 (and the x3).

Proof: Itis only necessary to show that each f; is convex
with respect to the x; = > xj = xJ. Then, since x; is a
rs s

linear function of the xj (and the x}), each f; will be
convex with respect to the xj (and the xj). Now
fi(xs) = Aii(xz), and since A; was assumed continuously
differentiable and nondecreasing—the travel time per user
does not get smaller as a road gets more congested—then
A'%(x;) = fi(xy) is non-negative on [0, x). Therefore,
each f; is a convex function of the x; (and the x;). Since
the sum of convex functions is convex, the proof is
completed.

Therefore, any local optimal solution to (1), 2,3 is
also a global optimal solution, and hence is the desired
equilibrium flow. When A;() is strictly increasing, the
objective function (1) is strictly convex with respect to the
Xj but is not strictly convex with respect to the x7.
Although the optimal solution to the NLP problem above
may not be unique, the total flows along each arc at
equilibrium (e.g. the x; = 2 x7) are unique in the strictly
increasing case.

AN ALGORITHM FOR THE NETWORK EQUILIBRIUM PROBLEM

Now if x' is a set of flows which satisfies constraints )
and (3), then we can use a first order Taylor’s Expansion
for the objective junction f(-) to write, for any y,

) =fxY+Vf(x'"+8(y = x").(y~x") some 6¢[0, 1].
Here, the gradient of f is being evaluated at some point

between x' and y. A convenient linear approximation to
f(y) is to let @ equat zero

fO=fxY+ V(Y. (y = x"). @
If we solve the linear programming problem in y

(P) MipVf(x"). ¥y +[f(x") - Vf(x"). x")

j=h...n
st. DG,S)+D yi=2 vk s=Loap (5
! “ j#s.

getting y' as the optimal solution, then y' is also a feasible
solution to (NLP), since the constraints are identical for
both problems. Note that the term [f(x') - Vf(x").x']isa
constant, so we may omit it from the linear programming
problem. The direction d'=y'—x' is then a good
direction along which to minimize f (Zangwill, 1969).
Since the feasible region (2), (3) is convex, any point on
the line segment between x' and y' will also satisfy the
constraints. Thus to minimize f in the direction d', we
solve the one dimensional problem

Min f(x'+ ad")

6
ael0, 11. ©
It is well known that a Bolzano search is an efficient
technique for solving this problem (Zangwiil, 1969). After

solving the one dimensional problem, we get a new
feasible point, x>,

Lemma I;_’.LU x" = x* where x* is optimal for (NLP).

See Zangwill (1969) for a proof of this. This algorithm
of iteratively solving one dimensional searches and linear
programming problems which minimize successively
better approximations to f near x* is known as the
Frank-Wolfe algorithm. One nice aspect of this algorithm
is that at every iteration we have a lower bound on the
optimal value of the NLP problem. By convexity, we have

fOty = f(x") +Vf(x"). (x* - x*)

where x* is the. optimal solution, and"x* is the feasible
solution at iteration k. Also, we have that

FERY V). (¥ = x ) = f(x)+VF(M) . (F - 1Y)

since y* minimizes Vf(x*).y for every feasible y.
Therefore f(x*)+ Vf(x*).(y* — x*) is a lower bound on
f(x*),forevery k. One possible stopping criterionis to stop
when the current functional value is within a given epsilon
of this lower bound.

Unfortunately, if we wish to find the equilibrium on the
500 node network mentioned above, then the problem
(NLP), and consequently each subproblem, has a
prohibitively large number of constraints and variables.
Not only are the linear programming subproblems
apparently unsolveable, but also the 1,000,000 variables in
the example present a serious challenge for the one
dimensional search. Even a highly efficient technique such
as the Bolzano search will require a considerable amount
of time, and yet larger networks are not uncemmon in an
urban context.

We will now develop an efficient algorithm for solving
the linear programming subproblem (P) and the one
dimensional searches of the type in (6). After developing
the algorithm, numerical results will be peracnted.
Omitting the constant terms in the objective funciion in
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(P), we have
1 s
MinVf(x'). y = Min 3, 20
ijs if

Now let us look at Vf(x). We see that

3 (x) ) a kzl Jea(xe1)

2 OfiCxn) _ 3fs(xy)  dxy
axj

oxi; axi  oxj

oxj

P
where x; = 2 xi. The second equality is true because all

=i -
of the cost functions except f; are independent of x;. The
third equality is an application of the chain rule. Clearly,
ax;/axij= 1. Therefore, we have that

s

by definition of f; and continuity of the A; Notice that
this is independent of s. Now define

¢ = Ay(x; )Il -

This is the average time or cost on arc (i, j)—the time
experienced by each user of arc (i, j}—when the flow in
the network is equal to the fixed amount x'. The linear
programming subproblem is then

P

P 4
Nyiti(l]'l z 2 C,‘j)’?,-: h’dai‘l;]z 2 C.'jy}} ZZ Mln 2 Ciiy}'j.

(Li)eA 5=1 s=1 (ij)eA s=1 y20 (ij)eA

st(5) 5.t.(5) s.t.(5)

M

The right hand side of (7) constitutes a lower bound on
the optimal value of the linear programming problem
since the minimum of a sum is always greater than or
equal to the sum of the minima. Note that there are no
capacities on the arcs in problem (P). The constraints are
only non-negativity and conservation of flow. It was not

" necessary to introduce capacities into the original NLP
problem because the travel time for each user of any arc
becomes very large when the flow exceeds the tevel for
which the arc was designed. By definition of an
equilibrium, no one will voluntarily accept € higher travel
time than necessary; thus at equilibrium, flows will
necessarily avoid a high state of congestion on any arc
(unless every arc in the network is congested). Since the
optimal solution to (1), (2), (3) is the desired equilibrium,
there is therefore no reason to introduce capacities for
any of the arcs; it is the non-linearity of the travel time
functions which obviates the need for capacities on any
arc.

Since the Frank-Wolfe algorithm is an iterative
procedure, the subproblem (7) will be solved many times.
At each iteration k, the vector of objective function
coefficients is Vf(x*), where x* is the kth feasible

" solution. This changes at every iteration; hence we must
iteratively solve problem (7). For every iteration, the

linear programming subproblem (7) has the very special
form

yi =

h,dzm Z c;;y.!;+"‘+leCi,y.’f+"'+(2 ciy§
ij)e

(iveA i)eA

st. =2 yi+Zya=DGD

j=2,3,..,n
-Z Y-!I+Z)’;k=D(]',S)

i=12...n j#s

—}r‘, y5+§k) yi=D(,p)

i=L2,..,n j#p

where n is the number of nodes in the network. There are
no linking constraints at all in this problem; the variables
within any block do not interact with the variables in any
other block. Therefore the problem reduces to n separate
linear programming problems; by solving each *block”
problem separately from the others, we get a feasible
solution to the linear programming problem. and thus the
lower bound (7) is achieved.

An additional important simplification occurs due to the
structure of each of the above blocks. We can think of the
problem in block s as minimizing total shipping cost from
every node in the network to node s, where c; is the
constant shipping cost of arc (i, j). It is not necessary to
use the simplex method to solve the problem—this is the
simplest of all transportation problems. Using the D(j, s)
as quantities to be shipped from node j to node s and the
c;i as the length of the arc (i, j), we can find the shortest
route between nodes j and s, for all j. Since there are no
capacities on any of the arcs, we send all of the quantity
D(j, s) along this shortest path. Since the shortest route
algorithm due to Dijkstra (Dreyfus, 1969) finds the
shortest route between any given node and all other
nodes, the optimal solution for block s can be found by
solving one shortest route problem. Certainly the above
procedure does not violate the conservation of flow
requirement (5) or the non-negativity requirement. This
procedure is summed up by the following theorem.

Theorem: At each iteration k of the Frank-Wolfe
algorithm the optimal solution to subproblem k, problem
(P), is given by yj= L: yii, where

D(r, 5) if arc (i, j) is on the shortest path between r
and s using the c¢; = A;(x;)|*-. as the lengths of
the arcs (i, j).

0 if arc (i, j) is not on the shortest path.

Proof: Assume that at the optimal solution to the
subproblem, all the flow does not follow the minimum
path or least cost path between at least one origin-
destination pair; let this pair be r and s. If we change this
flow so that ali of the flow does follow the shortest path,
then we get a smaller cost for this origin-destination pair.
Since all costs are linear in the subproblems, adding
additional flow to any arc has no affect on the cost of
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other users. Their unit cost is ¢;, independent of the level
of flow on the arc, so their total cost remains the same. We
then have a smaller value of the objective function,
contradicting the assumed optimality. Observe that with
this approach to solving the sub-linear programming
problem (7), we do not have to write out any of the tens of
thousands of conservation of flow and non-negativity
constraints. The constraints are implicitly satisfied—we
simply observe that we have the best solution which
satisfies them. Conservation of flow is satisfied by
definition of a path between two nodes; obviously this
procedure does not yield negative flows.

Thus we can solve the NLP problem by a sequence of
shortest route problems and one dimensional searches.
Since the subproblems are linear, all of the existing theory
-of network decomposition (Hu, 1970) can be used to solve
the shortest routes in each subproblem. It is appropriate
to point out at this juncture that the algorithm is similar to
that of Bruynooghe, Gibert and Sakarovitch (1968),
although the means of developing it and the details differ.

An initial set of feasible flows is required to begin the
algorithm. Fortunately, in a problem such as this one, it is
relatively easy to get a good starting solution; we may
estimate the equilibrium flows (i.e. the optimal solution to
(NLP)) by dividing the flow required for each origin-desti-
nation pair among several promising routes between the
origin and destination. In general, the better this initial
estimate of the equilibrium point is, the fewer the number
of iterations required will be. Since we are more
interested in the optimal flows than the optimal value to
the (NLP) problem, the best stopping rule is to stop when
the maximum percentage change between the compo-
nents of two consecutive flow vectors is less than some
specified amount. In summary, the algorithm is as follows;
we begin with the index k =0.

1. Let the current feasible solution be x*.

2. Compute A;(x,)|i-r=cy Set y; =0, all (i,j). Set
s=1

3. Find the shortest route between every node in the
network and node s (i.e. solve one shortest route
problem) using the ¢; as distances.

4. For each origin r in the network, perform the
Fortran operation y; = y; + D(r, 5) for every arc (i, j) on
the shortest route between node r and node s.

5. If s is not equal to the number of destinations, set
s =s5+1 and go to step 3; otherwise go to step 6.

6. Now the y; are the solution to subproblem k. Denote
by y* the vector of the y; Minimize the function f along
the line segment between x* and y*, using a one-dimen-
sional search technique. Let the minimizing point be x**'.

7. Test the stopping criterion, and go to step 2if it fails.

As stated previously, the exceeding large number of
decision variables in this problem can cause computa-
tional difficulty in step 6. The number of variables will
usually number approximately one million on a 500 node

P

network. However, only the variables x; = > xj affect
s=1

the objective function; the objective function is uniquely

.4
determined by Z xi, regardless of the values of the
s=|

individual xj. Obviously, the x; are far fewer in number
than the variables x ;. Each time we solve the subproblem

.4
(7)in y, we can find the optimal y; = >, y} without storing

5=

any of the v} by using counters, y;, to store the cumulative
flow on each arc. We do this in the following manner. First
compute the yj by sending the flow from each node to
node 1 along the shortest paths. Next perform the Fortran
operation y; = y; + vi for all arcs (i, j) in the network. and
then compute the y;. We again increment the counters,
and repeat the process, computing y3, 3. . ., and then y5,
incrementing y; each time. This procedure gives the
optimal y; for (7), although the optimal yj will not be
known. Given these y; the one dimensional search will
yield new values for the flows by solving the problem (6).

After performing this one-dimensional search, we will
not know the values of the x§, but only the values of the
total flow, the x;. But we do not need the xj in
implementing this algorithm, since the x; alone uniquely
determine Vf(x**"), the new vector of arc lengths for
solving (7) again. Using this procedure on the 500 node,
2,000 arc network discussed above, the one dimensional
search need only work with 2,000 variables instead of
1,000,000. This is a significant improvement—a Bolzano
search of a polynomial function of 2,000 variables takes
less than half a second on the CDC 6400.

It is important to realize that solving the NLP (1), (2),
(3) with any straight forward algorithm would certainly
require storing each individual decision variable, xj.
These varjables xj; had to be introduced in the NLP to
assure that the correct number of units flowed between
each origin-destination pair. Multi-commodity conserva-
tion of flow equations require that flow be identified by its
ultimate destination. By exploiting the structure of the
NLP explicit consideration of each decision variable was
obviated. Thus this (NLP) problem can-be solved by the
procedure developed above without ever writing down
any of the tens of thousands of constraints and without
ever storing the values of the individual decision
variables.

DISCUSSION AND COMPARISON OF THE ALGORITHM

A common problem in any algorithm which utilizes
derivatives of a function is the excessive computation
time required to precisely calculate these derivatives. In
this particular model, the problem is non-existent—since
we are minimizing the integral of the average cost
function, the derivatives are explicitly available. In fact,
derivatives are easier to compute than functional values,
since they contain only fourth powers, and the objective
function contains fifth powers. Accuracy is limited only
by the accuracy of the actual parameters, a; and b;, input
to the model.

Another difficulty inherent to feasible direction al-
gorithms such as the Frank-Wolfe occurs when the
objective function assumes a minimum point in the
interior of the feasible region. If x* is an interior minimum
point, then Vf(x*)=0. In a small neighborhood of x*,
the individual components of the gradient, becausc they
are near zero, may oscillate positive and negative. Thus
the geometric direction indicated by the gradient may
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change very rapidly as the sequence of points nears the
optimal solution. This can cause the points to zig zag
around the optimal solution, retarding the speed of
convergence. Fortunately, the gradient of the objective
function (1) will not be zero at the optimal solution. since
the function is strictly increasing and has no stationary
point in-the feasible region. Thus the NLP (1), (2), (3)
appears to be well suited to a feasible directions approach.

In very large linear programming problems. there is
frequently a certain amount of round-off error introduced
into the optimal solution given by the simplex method.
This type of error is primarily caused by muitiplication
and division operations. The error should be almost
non-existent in the solution given by the theorem above,
since shortest route algorithms typically require only
addition and comparison operations.

The most time consuming portion of the algorithm
described above is in finding all shortest paths in the
network, i.e. in solving subproblem (P). We solve
subproblem (P) to determine a direction in which to
minimize the objective function (1). It is intriguing to note
that the computational requirements of (P) are identical
to one iteration of one of the most common simulation
traffic assignment procedures used today. This is the
iterated capacity restraint algorithm (Comsis, 1972;
Hershdorfer, 1966). The rationale behind this simulation
procedure is taken from a game theoretic interpretation of
the network equilibrium problem. Associated with each
origin in the network is a player who tries to choose a set
of routes such that the correct number of vehicles will
travel from his origin to each destination at minimum
travel time for the vehicles associated with his origin.
Since vehicles from the various origins interact, the travel
times as seen by a given player depend on the actions of
the other players. Thus an iterative technique is used to
determine the equilibrium flows in the network. Each
player chooses his routes in turn; after all the players have
made their decisions, the resulting travel times are
revealed to all the players, and they again take turns in
revising their routes (Hershdorfer, 1966).

The computational requirements of this rather colorful
interpretation of the network equilibrium problem are as
follows. At each iteration of the procedure, the length of
each arc is computed as the average travel time function
evaluated at the current flow level on the arc. Next,
shortest routes between each origin and destination are
determined so that each player can direct his vehicles
along the shortest path to their destination. The algorithm
developed in this paper also iteratively computes the
length of each arc as the arc's average travel time function
evaluated at the current flow on that arc and finds all
shortest paths. The fundamental difference between the
two procedures is that our proposed algorithm minimizes
the objective function along this generated direction to
compute a new vector of flows. The simulation procedure
in Hershdorfer (1966) on the other hand, uses this
n-dimensional direction itself as a new vector of flows.
This leads to completely distinct flow vectors. These two
approaches to the network equilibrium problem are
fundamentally different: one is a simulation technique
based on heuristic assumptions about the system: it

frequently does not converge. The other is a rigorous
application of a convergent algorithm to an NLP problem
whose optimal solution is proven to be the equilibrium.
Nevertheless, the only difference in computational
requirements is in the one dimensional search, a negligible
procedure. :

NUMERICAL RESULTS

The algorithm developed above was programmed in
Fortran on a CDC 6400 computer; a small test network of
ten arcs and four nodes was used for debugging purposes.
Each of the four nodes was considered to be an origin and
a destination. The network, trip table, and travel time
functions were chosen so that the equilibrium flows could
be calculated by hand. The (NLP) problem for this
network consisted of 40 variables xj, s =1, 2, 3, 4 for
each of the ten arcs; 4:3=12 conservation of flow
constraints; and 40 non-negativity constraints. Ten
iterations of the procedure were required to yield a vector
of flows with each component accurate to 5% of its true
value. Computing time (central processing unit) was
approximately one second.

The algorithm was then run on the 76 arc, 24 node
network in Fig. 2. The trip table and parameters for the
average travel time functions are given in Table 1. The
(NLP) problem for this network had 1,824 variables: x},
s=1,2,...,24, for each of the 76 arcs, (i, j); 24):(23) =
552 conservation of flow constraints; and 1,824 non-
negativity constraints. Since this is a general nonlinear
programming problem, it is impossible to determine the
exact solution in a finite amount of time. However, Table
2 shows the sequence of flow vectors generated: there are
76 components, one for each arc. After 20 iterations, only
2 variables changed by more than 5%; the majority
changed by less than 2%. Thus the vector x™ appears to
be a highly accurate estimate of the equilibrium solution.
Computing time for twenty iterations, excluding 3
seconds of compilation time, was nine seconds. If the
termination rule had been to stop when the maximum
percentage change in components was less than 8%, the
procedure would have terminated after 16 iterations.

—
N

|

——— @

Fig.2. Testnetwork for the equilibrium problem.
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Table 1. Matrix of trips between each node pair (thousands of vehicles/day) and arc parameters (hours/thousand
vehicles)for the network in Fig. 2

123 4 5 6 7 8 910 11 12 1314 15 16 17 18 19 20 21 22 23 24
1 011 5 23 5 8 5135 253 5 5 4 13 3 1 431
2 1001 2 1 4 2 4 2 6 2 1 3 1 1 42 011 01 00
3110 2 1 3% 1 2133 21112100001 10
4 522 0 5 4 4 7 71214 6 6 5 5 8 5 1 23 2 452
s 211 5 0 2 2 5 810 5 2 212520111210
6 343 4 2 0 4 8 4 8 4 2 21 2 9 5 1 23 1 211
7 521 4 2 4 010 619 5 7 4 2 51410 2 4 5 2 5 21
8 842 7 5 810 0 816 8 6 6 4 622 14 3 7 9 4 5 3 2
9 $21 7 8 4 6 8 02814 6 6 6 914 9 2 4 6 3 7 5 2
10 13 6 3 12 10 8 19 16 28 0 40 20 19 21 40 44 39 7 18 25 12 26 18 8
1M 52315 5 4 5 81439 014 1016 14 14 10 1 4 6 4 11 13 6
2 212 6 2 2 7 6 6214 013 7 7 7 6 2 3 43 7 735
13 531 6 2 2 4 6 6191013 0 6 7 6 5 t 3 6 613 8 8
4 311 5 1 1 2 4 62016 7 6 013 7 7 1 3 5 4121 4
15 511 5 2 2 5 6104 14 7 7 13 012 15 2 811 8 26 10 4
16 S 42 8 S 914 22 14 4 14 7 6 712 028 51316 612 5 3
7 421 5 2 51014 93910 6 5 71528 0 61717 617 6 3
18 100 1 0 t 23 2 7 2 211256 03 413 10
9 310 2 1 2 4 7 418 4 3 3 3 81317 3 012 412 3 1
20 310 3 1 3 5 9 625 6 S 6 511 1617 412 0 12 24 7 4
20100 2 1 1 2 4 312 4 3 6 4 8 6 6 1 412 018 7 5
2 411 4 2 2 5 5 72 11 713122 1217 3 122418 021 11
22 30101 5 1 1. 2 3 51813 7 811w 5 61 3 7 720 0 7
24 100 2 0 1! t 2 2 8 6 5 7 4 43 3 0 1 4 51 70
ARCS PARAMETERS ARCS PARAMETERS
A B A B
(7,18) AND (18,7) 0-02  0-00000001 (13,24) AND (24,13) 004  0-00000893
(10,15) AND (15,100  0-06  0-00000027 (24,21) AND (21,24)  0-03  0-00000790
(34) AND (43) 0-04  0-00000007 (20,21) AND (21,200 0-06  0-00001373
(1,3) AND @3, 0-04  0-00000002 (26) AND (6,2) 0-05  0-00001241
(1,2) AND (2,1) 0-06  0-00000002 (68) AND (86) 0-02  0-0000052t
(3,12) AND (12,3) 0-04  0-00000002 (7.8) AND (87 0-03  0-00000119
(12,13) AND (13,12)  0-03  0-00000001 (5.6) AND (6,3) 0-04  0-00001001
(18,200 AND (20,18) 0:04  0-00000002 (23,24) AND (2423) 002 0-00000451
(10,11) AND (11,10)  0-05  0-00000075 (21,22) AND (22,21) 0-02  0-00000401
(16,18) AND (18,16)  0-03  0-00000003 (14,23) AND (23,14)  0-04  0-00001020
(15,19 AND (19,15  0-03  0-00000010 (22,23) AND (2322) 0-04  0-00000960
(16,17) AND (17,100  0-08  0-00001930 (14,15} AND (15,14) 005  0-00001085
89 AND (9.8) 0-10  0-00002306 (16,17) AND (17,16)  0-02  0-00000401
4,11) AND (11,4) 0-06  0-00001550 (17,190 AND (19,17) 002  0-00000554
(59) AND (9.9 0-05  0-00000075 (19,200 AND (20,19)  0-04  0-00000958
(9,10) AND (10,9 0-03  0-00000012 (11,14) AND (14,11) 004  0-00001061
(15,22) AND (22,15) 003  0-00000053 (20,22) AND (22,200 0-05  0-00001130
(11,12) AND (12,11) 006  0-00001550 8,16) AND (16,8) 0-05  0-00001157
4.5) AND (5.4) 0-02  0-00000003 (10,16) AND (16,10) 004  0-00001080

After sixteen iterations, the maximum percentage change
in the components was 7-7%; computing time was seven
seconds.

Each subproblem for this network decomposed into 24
shortest route problems. Since every node is both an
origin and a destination, all shortest routes in the network
are required, and the multi-terminal shortest route
algorithm of Floyd (Dreyfus, 1969) was used.

A very encouraging result was the extremely small
computing time for solving (NLP). This same problem for
the 76 arc, 24 node network was also solved by linearizing
the objective function (1) and using the OPTIMA linear
programming package for the CDC 6400. Computing time
was significantly higher—11 minutes and 40 seconds.

Equally encouraging was the very small increase in the
number of iterations required by the Frank-Wolfe
algorithm for the two example problems above. In Table 3

we see that there were 12 conservation of flow constraints
and 40 non-negativity constraints for the first network.
The larger network resulted in 552 conservation of flow
equations and 1,824 variables and non-negativity con-
straints. Nevertheless, the required number of iterations
increased from 10 to only 16 or 20. The number of
iterations appears to be related to the number of nodes in
the underlying network rather than the number of
constraints in the NLP problem. Increasing the number of
nodes by a factor of 6 doubled the number of iterations;
this suggests that the algorithm probably would be
efficient for problems as large as several hundred nodes.

CONCLUSION
The primary significance of the solution technique
developed in this paper is that it requires only thc solution
of a sequence of shortest route problems (compuiing time
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Table 2. Sequence of vectors of flow on the 76 arcs of Fig. 2 (computer output)

Norm of X Sub 1 Minus X Sub 0 Equals 49.18 Maximum percentage change of components is 67,8 per cent

17.2 21.5 15.9 9.4 2.9 14,5 14,1 9.4 17.4 14.56 16.1
13.1 8.8 7.1 5.4 11.8 14.6 7.3 10.6 9.4 14.0 13.8
17.2 21.5 15,9 9.4 2.9 14.5 14.2 9.4 17.4 14.6 16.1
13,1 8.8 7.1 5.4 11.8 14,6 7,310.6 9.4 14,0 13.8
Norm of X Sub 2 Minus

21.3 22,2 18,9 8.8 3.4 16.7 14,617.6 18,5 23.6 16.2
12,1 11.8 12.8 6.0 14.6 18.2 10,2 11.7 11.3 11.0 10.4
21,4 22.2 18.9 8.8 3.4 16.7 14.617.6 18.5 23.6 16.2
12,1 11.8 12.8 6.0 14.6 18,2 10.211.7 11.3 11,0 10.4

Norm of X Sub 3 Minus X Sub 2 Equals 15,87 Maximum percentage

21.9
12.2
21.9
12.2

26.4 17.2 9.6

26.4 17.2 9.6

10.4 11.0 6.4 1

10.4 11.0 $.4 1

.4 16,8 15.020.0 20.4 24.1 15.9
8 18.5 10.112.2 11.1 10,4 12.3
.4 16.8 15.020.0 20.4 24.1 15.9
8 18.5 10,1 12.2 11,1 10.4 12.3

Y

Norm of X Sub 4 Minus X Sub 3 Equals 21.05 Maximum percentage

19.9
12.2
19.9
“12.2

25.7
11.8
25.7
11.8

20.011.9
11.8 7.9
20.0 12.0

15.5 16.0

11.5 8.0 15.5 16.0

7.1 19.7 16.3 21.5
9.5 11.6
7.1 19.8 16.3 21.5
9.5 11.5

17.4 20.3 20.8
12.6 10.5 8.9
17.4 20.3 20.8
12.6 10.5 8.9

Norm of X Sub § Minus X Sub 4 Equals 13.71 Maximum percentage

14.9 16,9 12.7 19.4
il.6 19,2 23.7 10.3
14.9 16.9 12.7 19.4
11.6 19,2 23.7 10.3

26.4
12.7
26.4
12.7

25.2 12.
10.6 16.
25.2 12,
10.6 16.

X Sub 1 Equais 30.42 Maximum percentage change of components Is 46.6 per cent

11.2 12.7 9.5 21.6
11.6 20.5 17.9 12.6
11.2 12,7 9.5 21.6
11.6 20,5 17.9 12.6

28.6
10.0
28.6
10.0

21.1 9,
8.0 12.
21.1 9.
8.0 12,

change of components 1s 39.4 per cent
12.3 10.9 9.2 19.8 26.8 25.0 10.
10.2 18.4 15.3 10.7 10.0 13.2 10,
12.3 10.9 9.2 19.8 26.8 25.0 10.
10.2 18.4 15.3 10,7 10,0 13.2 10,

change of components is 50.0 per cent
10.8 8,1 9.4 20.6 28.3 21.7 7
12.0 14.4 13.5 14.3 13.3 8.8 9.
10.8 8.1 9.4 20.6 28.3 21.7 7
12.0 14.4 13.5 14.3 13.3 8.8 9

change of components is 32,1 per cent

20.4 25.8 18.112.1 6.% 19.7 17.3 22.9 20.7 22.6 19.7 10.5 8.3 9.0 19.2 26.2 22.1 10.
12,6 9.9 9.4 7.3 13.7 16.0 8.3 11.8 12,1 9.7 10.9 10.8 13.9 11.8 11.8 11.6 11.7 8.
20,5 25.8 18.1 12.2 6.9 19.7 17.3 22.9 20.7 22.6 19.7 10.5 8.3 9.0 19.2 26.2 22.0 10.
12.6 9.9 9.5 7,3 13,7 16.0 8.3 11.8 12,1 9,7 10.9 10.8 13,9 11.8 11.7 11.6 11,7 8.
Norm of X Sub 6 Minus X Sub 5 Equals 21.28 Maximum percentage change of components is 100.0 per cent
16.4 26.4 23.410,1 6.0 22.0 17.521.7 17.0 18.7 19.2 9.3 8.5 8.6 20.4 28.7 18,4 5
2.3 12.3 8.9 7.0 1S5.5 15.0 11.610.4 11.4 10.2 7.1 11,2 14,5 11.7 8,3 8.9 8.6 10
16.4 26.4 23.410.1 6.0 22.1 17,521.7 17.0 18,7 19.2 9.3 8.6 8.6 20.5 28.7 18.4 5.
12.3 12.3 8.9 7.0 15.5 15.0 11.610.4 11.4 10.2 7.1 11.2 14.5 11.? 8.3 8.9 8.6 10
Norm of S Sub 7 Minus X Sub 6 Equals 12.44 Maximum percentage change of components is 41.1 per cent
17.2 25.9 20.7 10.3 6.4 21.2 16.9 22.0 20.5 19.9 18.8 9.3 8.6 8.6 18.5 27.1 18.4 9.0
11.4 10.7 8.1 7.0 14.1 15.1 9.9 10.3 10.6 10.7 9.6 9.9 13.2 11.3 8.7 9.9 9.0 9.1
17.2 25.9 20.7 10.9 6.4 21.2 16.9 22.1 20.5 19.9 18.8 9.3 8.6 8,6 18.5 27.1 18,4 9.0
i1.4 10,7 8.1 7.1 14.1 1S.1 9.9 10.2 10.6 0.7 9.6 9.9 13,2 11.3 8.7 9.9 9.0 9.1
Norm of X Sub 8 Minus X Sub 7 Equals $.04 Maximum percentage change of components is 21.6 per cent
17.4 26.0 19.3 11.3 6.9 19.1 17,2 23,2 18.9 18.8 20.5 9.2 9.0 7.9 18.5 25.9 19.4 9.4
12,3 10.1 8.2 7,2 13.3 14.6 8.5 10.5 9.9 9.2 11.0 10.7 11.9 10.8 11.! 10.6 8.7 9.2
17.4 25.4 19,3 t1.3 6.9 19.1 17.2 23.3 19.5 18,8 20.5 9.2 9.0 7.9 18,5 25.9 19.4 9.4
12.3 10.1 2 7.3 13.4 14.5 8.5 10.5 9.9 9.1 11.0 il,2 11.9 10.8 1t.1 11.1 8.7 9.2
Norm of X Sub 9 Minus X Sub 8 Equals 9.68 Maximum per change of com s is 35.4 per cent
16,7 24.5 18.4 10.3 6.3 16.9 16.5 22.8 20.6 19.1 18.8 8.9 7,2 7.6 17,2 25.0 20.6 9.6
12,2 11.3 7.9 7.1 14.7 13.7 10.2 9.3 10.S 8.7 10.4 10.0 12,9 1.1 8.2 11.2 9.6 9.5
16.7 25.8 18.3 10.3 6.3 17,1 16.7 22.8 19,3 19.1 18.8 8.9 7.2 7.3 17.2 25,1 20.8 9.6
12.3 11.1 7.9 7,1 14.7 13.7 10.2 8.9 10,3 8.4 10 8.8 12.9 11.1 8.2 9.7 9.6 9.5
Norm of X Sub 10 Minus X Sub 9 Equals 6.10 Maximum percentage change of components is 16.3 per cent
17.6 25.1 19.3 10.6 6.1 17.0 16.7 22.8 19.3 19,6 19.0 8.9 8.5 7.3 1B.8 25.6 19.9 9.3
12.1 10.6 7.8 6.7 13.3 15.0 9.5 9.4 9.9 9.0 10.2 9.8 12.3 10.9 9.0 10.6 9.4 8.6
17,6 24.8 19.0 10.7 6.1 17.3 16.7 22.6 19.4 19.5 19.3 8.9 8.6 7.4 18.4 25.3 20.1 8.9
12.1 10.6 7.8 6.8 13.8 15.1 9.5 9.4 9,9 8.8 10.4 10.5 12.3 10.9 9.2 11.2 9.4 8.6
Norm of X Sub 11 Minus X Sub 10 Equals 9.42 Maximum percentage change of components is 25,0 per cent
17.6 25.9 17.2 11,9 7.6 1S.1 16.1 23.3 20.8 19.1 19.7 8.8 7.3 6.8 17.4 24.8 19.6 9.6
i1.9 11.1 8.1 7.8 14.6 14.4 8,7 8.6 9.5 8.3 10.1 10.8 11.3 9.4 11.0 10.5 8.8 8,7
17.6 26.7 16.8 11.9 7.6 15.5 16.7 23.2 19.8 19,0 19.7 8.8 7.3 6.7 17.2 24.6 18.0 9.7
12,4 11,5 7.3 7.9 4.6 14.4 8.7 8.4 9.7 9.6 8,7 8.4 11.3 9.4 11.0 9,3 8.8 8.7
Norm of X Sub 12 Minus X Sub 11 Equals 5.42 Maximum percentage change of components Is 16,0 per cent
17,3 25.7 18.1 11,9 7.2 15.8 16.3 22.8 19.6 19.) 19.4 8.8 8,2 7.3 18,5 24.7 19.1 8.8
12,0 10.3 7.8 7.4 13.8 14.2 8.3 8.6 9.3 9,0 9.9 10.! 11,7 9.8 10.1 10.4 8.9 9.0
17.4 25.8 18.2 12.0 7.2 15.8 16.4 22.8 19.4 19.0 19.6 8,7 8.2 7.5 18.3 24.5 18.9 8.9
12,1 10,8 7.6 7.4 13.8 14.2 8.3 9.0 9.5 9.2 10,2 10,0 I1.6 9.7 10.2 10.4 9.2 9.0
Norm of X Sub 13 Minus X Sub 12 Equals 4.62 Maximum percentage change of components is 13.9 per cent
17.3 24,5 17,9 11,4 6.7 15.1 16.2 22.9 19.3 18,9 19.4 8.8 7.5 7.2 17.8 24.3 19.2 9.2
12,1 11.4 7,7 7,2 14,2 13,8 9,1 9.7 10,! 8.8 11,5 9.7 11,8 9.9 9.3 I1.1 8.7 9.0
17.1 24,7 17.8 11.4 6.8 15.2 16.2 22.5 19,2 18.7 19.4 8,7 7.7 7.1 17.7 24.3 19.2 9.1
12.2 9.9 7.7 7.2 14.3 14.0 9.2 8,2 8,7 8.8 10.0 9,6 12,2 10.2 9.7 11,0 8,6 9.2
Norm of X Sub 14 Minus X Sub 13 Equals 3.93 Maximum percentage change of components is 9,6 per cent
17.9 25.1 18.4 11.3 6 15,3 16,1 22.6 18.8 19.3 19.6 8.8 8.3 7.0 18.9 24,9 19.1 8.7
12,0 10.9 7.7 7.1 13.7 14.8 8.6 9,3 9.7 8.9 10,6 9.5 11.8 9.9 9.4 10.7 8.4 8.3
17.9 25,1 18.3 11.3 6.8 1S5.5 16.2 22,3 18.8 19.0 19,7 8,7 8.3 7.0 18.6 24.6 19.4 8.7
12.2 10,6 7.6 7.2 13,9 14.9 8.7 8.9 9.3 8,5 10,5 9,9 12,1 10.2 9,7 10.7 8,5 8.5
Norm of X Sub 15 Minus X Sub 14 Equals 4.48 Maximum percentage change of components {s 11.4 per cent
17,6 25.4 18,2 11,0 6.4 14.6 16.0 22,4 19.2 19.0 19,5 8,7 7.8 7.9 17,2 23.4 19,0 9.2
11,8 10,7 7.5 6.9 14,1 14,6 9.3 8.6 9.5 8,9 9,710.4 12,2 10.4 9.0 10.2 8.3 8.9
17,8 25.4 17.8 10,9 6.5 14.9 16.2 22,5 20.2 18.8 19.6 8.7 8.0 6.9 18,1 24,5 18,7 9.0
12,0 11,0 7.5 7.0 14.1 14.4 9.1 8,7 9,7 9.0 9,610.3 12.1 10,2 9.0 10.2 8.4 8.4
Norm of X Sub 16 Mtnus X Sub 15 Equals 3.21 Maximum percentage change of components is 7.7 per cent
17.5 25.2 18,6 11.0 6,4 14,9 16.0 22.5 18,9 18,9 19,7 8.7 8.4 7.7 18.4 23.8 19,1 8.7
11.9 10.4 7.5 6.8 13,6 14,5 8,8 8.8 9.4 8.7 10.510.1 11.8 10.1! 9.5 10.4 8,3 9.0
17.8 25.4 18.3 10,9 6.6 15.1 16.0 22.4 19.3 18,5 19,8 8,7 8.5 7.1 19,0 24.5 18.9 8.6
12,0 10,8 7,4 7,0 13,6 14,3 8.6 9,0 9.4 8.9 10.4 9.8 11,9 10.1 9.5 10.4 8.3 8.6

2 3
9 1
.2 23.3
9 1

3
.7
3
7

8 21,
0 11
8 21
0 11,

—oc =0

7 24,
1 16,
7 24.
1 16,

—w

8 22.
3 13,
8 22.
3 13.

® W oW

23.
11.

i1,

6 21.0
1 13.0
6 21.0
2 13.0

21.8
12.9
12.8
12.9

11.3

20.9
11.5
20.7
11.3

20,7
11,9
20.7

11,9

21.4
11,7
21.2
11,5

20.4
11,8
21,0
12,0

21.1
11.6
21.4
11.7
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Table2 (Contd)
Norm of X Sub 17 Minus X Sub 16 Taquals 4.15 Maximum percentage change of components is 11,2 per cent
17,5 25,2 17.6 10.7 6.8 14.4 16.0 22.7 20,1 18.8 19.5 8,7 8.1 7.4 17,9 23.7 18.4 9.1 20.5
12,0 10,9 7,5 7.3 14.0 14.3 8.7 8.4 9.6 9.2 9.6 9.3 11,9 10,0 9.1 10.2 8.2 8.9 12,0.
17,8 25.2 18,1 11,2 6.3 14.4 15.8 22.7 19.6 18,5 19.6 8.7 7,9 8.0 17.4 23.0 19.3 8.9 20.5
11,9 10.9 7.5 6.7 13.9 14,1 9,2 8,5 9.5 8.4 10.510.3 12.0 10.0 9.2 10.4 8.3 8,8 11.8
Norm of X Sub 18 Minus X Sub 17 Equals 2.73 Maximum percentage change of components is 7.9 per cent
17,5 25.2 18.0 10.7 6.6 14.6 15.9 22.5 19.4 18.3 19,7 8,7 8.5 7.3 18.6 24.0 18.8 8.7 20.9
11,9 10,9 7.5 7.1 13.6 14.3 8.5 8.6 9.6 8.9 10.410.1 12,0 10.1 9.2 10.4 8.3 9.0 11.7
17,5 25.2 18,3 11.0 6.3 14.5 15.9 22,5 18.9 18.2 19,7 8.7 8.5 7.8 18.1 23.5 18.8 8.7 20.8
12,0 10.6 7.4 6.8 13.6 14,2 8.8 8.3 9,3 8,9 10.110,! l2.0 0.0 9,2 10.4 8,2 8,9 11,7
Norm of X Sub 19 Minus X Sub 18 Equals 3.00 Maximum percentage change of components is 8.2 per cent
17.5 25.5 18.0 10.5 6.3 14.z 18.8 22.8 19.3 18.3 19.5 8.7 7.9 7,1 18,1 23.8 19,2 8.9 21.0
11.8 10.1 7.5 6.9 14.0 14,1 9.2 8.1 9.0 8.4 10.2 9.4 12,0 10.0 8.9 9.9 8.2 8.9 12.0
12.5 25.0 18.1 10.7 6.2 14.3 16.1 22.6 19.6 18.2 19.5 8.7 8,0 7.4 17%7 23.5 19,2 9.1 20.8
1z.1 1.1 7.4 6.8 14.0 14.2 9,3 8.8 9.8 8.3 11.0 9.9 12,1 16,0 6.9 10.3 8.1 8.9 12.0
Norm of X Sub 20 Minus X Sub 19 Esuals 3.38 Maximum percentage change of components Is 6,9 per cent
17.4 24,9 18.1 10,5 6.3 14.5 15,9 22.7 19.1 18.1 19,6 8.7 8,3 7.2 18.4 23.8 18,9 8.6 21.1
11,9 10,5 7.5 6.8 13.7 14.1 8.8 8.4 9.1 8,5 10.3 10,1 11,7 10.0 9.4 10.6 8.2 9.0 11.8
17.5 25.1 18.4 10.7 6.2 14.4 16.0 22.6 19.0 18.0 19,6 8,7 8.3 7.3 18,4 23.8 18.9 8.9 21.2
12.0 10.8 7.6 6.7 13.7 14.1 9.0 8.5 9.5 8,5 10.5 9.9 11,8 10.0 9.4 10.4 8.0 9.0 11.8
Table 3. Test problem characteristics and solution times
Conservation Variables (non- Iterations  Computing
of Flow negativity for 5% Time
Nodes Arcs Constraints Constraints Accuracy (Seconds)
1 4 10 12 40 10 1
Problem
2 24 76 552 1824 20 9

for the one dimensional searches being insignificant). The
computing time for finding an approximate solution to the
equilibrium problem was less than that required by the
simplex method by orders of magnitude even on a fairly
small network. For larger problems the savings would be
even greater, since for muiti-commodity network prob-
lems the number of constraints grows as the square of the
number of nodes in a network. At no time are any of the
conservation of flow and non-negativity constraints used
explicitly in this technique. It is well known that shortest
route problems on networks with several hundred nodes
can be efficiently solved. Also, preliminary computational
results indicate that the number of shortest route
subproblems (i.e. the number of iterations) for a network
equilibrium problem with several hundred nodes will not
be excessive. Thus the solution approach appears very
promising for large network equilibrium problems.
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