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Introduction

We consider the following multi-cormmodity network flow problem. Given
a network with n nodes, let nodes 1, 2, ..., p, P < n be a set of nodes which
are eiﬁher‘suﬁply pointé or dexand poiﬁts or both. Typically, p = n, i.g.,'
every node is a supply point and/or a éemand roint. In addition, every node
in the network will be considered a transshipment point. Let A denote the
set of _arcs in the network and let D be a p x p matrix whose 1, j entry in-
dicates the number of units which must flow between nodes i and j.’ To write -
the conservation of flow equations iasuring that D(j, s) units flow from node
j to node s, we introduce the following notation:

xf’ - flow along arc (i, j) with destination s

xy' - total flow along arc (i, j)
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We then nust have

i=1...,n
D(j,s) + ins_'i = ijsk s = 1:---,1)
i k i#s

Thesé censtraizts state that for every node j, for every destination s, the flow wiich
originates at node j destined for node s plus the ‘trausiting . flow destined
for s nust equal the tptal flow which leaves node j destined for s. Thus,
for each destination node s we have a syétem of conservation of flow equations?
onz equation for all nodes j in the network,.j # s. We may omit the equation
for j = s, since if is generally true that if we require the correct amount of
flow to leave each supply point, and if flow is couserved at every intermediate node,

then the equation requiring the flow ﬁo arrive at the demand point is redundant.

Let the cost of shipping xij units along arc (i, j) be fij(xij)' The cost

function fiﬁ(') is a function of the tot;l flow aléng the arc, i.e., the sum

of all the commodities riowing aliong the a;c. The multi-commod

ment problem which we address is then

(NLP) MIN J £, ( §x.s. .
(1,5)eA 9 =1 1 (1)

) » i=1,...,n
S.t. D ’ + .s. = S = ’ ’
(,s) gxu l{(xjk s =1,...,p (2)
i#s
s PR
xij >0 (i,j)eA s = 1,...,p (3)

The (IILP) problem above is a special case of the multi-commodity minimum
cost flow problem. Each demand point (or destination) in the underlving network

has a set of demands which can oﬁly be satisfied by flow from specified supply



points (or origins). For exarmple, a2t destination j, the demand for goods

from necde i is D(i, j); this demand can be satisfied only bv flow originating
at node i. The total flow into node j is not comingled as is the case in the
classical transship:ént problem. Thus, to provide that each destination re-
ceives the correct amount of flow from the appropriate origins, we label each
unit of flow along the arcs of the network with its.respective ultimate desti-
nation.

OBserve that itvis not uncomron for each node in the network to serve as
an origin, destination and  transshipment peint for flow between other origin-
destination pairs. ‘

A more intuitive{although computationallf more diffitulf}form for the con-

servation of flow equations, is as follows: Define

rs : .
xij - flow along arc (i,j) which originates at node r and is
destined for node s

rs : P//‘

n
xij - total flow of are (i,j); xij = Esxij .
Our problem is then
) ) rs
MIN £, () x..)
(i,50ea 3 r,e B a")
z rs z rs _|-D(r,s) J=r j=1,...,n
X.. - ) x,, = .
iy jk 0 j# 1T, rys =1,...,p
D(r,s) j=s "r#s 2")
TS - '
xij >0 (ij)eA r,s = 1,...,p T # s (3"

Constraints (2') state that the flow into node j traveling from node r to node s

equals the flow out of nmode j traveling from r to s (unless j = s). For any specified



network, the constraints (2') are clearly much greater in number than the con-

straints (2).

An Examnle: The YNetwork Equilibrium Problem

The network eguilibrium problem, or the equilibrium traffic assignment
problen, may be stated as follows: We are given a set‘of streets and zonés.
representing a particular urban area, and we havé estimates of how much traffic
cuss -travsl - betwvezen each pair of zones. We wish to determine how this traffic
will distribute itself over the streets of the city. Typically, we haye pro-
jections of the traffic between each zonelﬁair in some future period, and we
wish to determine if the existing street network can héndle the increased ;raf-'
fic without excessive congestiﬁn. A system of streets and expressways may be
modeled by a network whose nodes représegt major intersections and interchanges.

- Nodes are connected by direct2c arcs so that a two—wa&lstreet is modeied by
two arcs in opposite directions. The network-is generally used to reéresenf
only the major streets of an urban area, while minor roads such as side streets
in housing areas are usually not included.

An urban area is typicslly divided intb zones., - We assume that a matrix is

available sﬁecifying the expected number of trips between the various zones
.

during the time pericd being studied. This matrix is usually calleéd a trip

table; the 1i,j entry-equals the number of vehicles Vhich must depart origin i to
arrive at destination j. Each zone is identified with a node or nodes in the
network. A node will not-n;cessarily have any demand for trips associated with
it - the node may simply represent an intersection of two streets. All traffic
which leaves any zone e:argeé into the network through its associated node or

nodes, and traffic entering the zone leaves the network through the associated

rodas. In this wav, origin—destiﬁation estimates based on urban zones are
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transferred into origin-destination estimates ba;ed on nodes in the network.
The model assumes that all traffic enters and leaves tﬁe network through the
nodes.

The travel time experienced by the user of any road or arc, called the
average travel time function or the volume delay curve, is a knownvfunction of
the total volume of flow aloné the road. Almost all recent studies have recog-
nized the effect that congestion of an arc has on travel time and have used
nonlinear increasing travel time functions. The parameters of the travel time

e -
function are determined by {ts length, speed limit, and number of lanes and
traffic lights. If there is a éignificant delay inymaking a left turn at an
intersection (node), then turn penalties can be incorporated by using dummy
ércs to represent the delay in making the turn.

Suppose then that we have a fixed network for an urban area, and a trip
table indicatiﬁg the projected number of‘trips between each origin désfination
pair iu scme
tional arcs be construcied, such as a new expressway of a bridge across a riveF.
The fixed network w;ll include these pfdp;sed arcs; We wish to determine how

many vehicles will use the new arcs to see if their construction is justified.

In general, we wish to determine how the flows will distribute themselves over

P / //
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all of the arecs of the network. Thig is the equilibrium traffic assignment problem,@_:

I’

&iven a trip table and a network for a particular urban area,'determine how many
vehicles will flow along each arc of the network. )

One of the most common behavioral assumptions made in traffic assignment
algorithms is that each user of the urban net&ork will take the path of least
resistance from his origin to his destination. It is known that travel time

is a significant factor to the majority of travelers when they choose their

routes between their respective origins and destinations, and most applications



of traffic assignment utilize travel time as the basic measure of travel
[Comsis, 1972]. Disctance is a less important criterion, but tension also
plavs an important role in the selectién of a route. Michaels [1960, 1962,
l965]»has concluded that it is ﬁhe net impedance or total disutility - a
cqmposite measure of travel time, tension and other factors - that drivers
seek to minimize. TFor example, if 'a traveler is faced with a choice between
two routes of equal travel time, he mav prefer not to choose the one which

is charaéterized by heavy stop-and-go traffic. Tension is primarily caused
by the grade or curvature of the street and variations in street surface, etc.
In the remainder of this paper, the terms travel time and travel cost will be

[ ]
used to mean time, tension, distance, dollars or some weighted combination of these,

The assumption that each driver takes the path of least resistance between
his origin and destination gives rise to the concept of network equilibrium. A
set of flows along the arcs of the network is said to be at equilibrium if the

following two conditions are satisfied for every origin-~destination pair, r - s.

(1) If two or more routes between node r and node s are actually traveled,
then the cost to each traveler between r and s must be same for each
of thesé routes.

(2) There does not exist an altefnative unused route between nodes r and s
with less cost than that of the routes which are traveled.

The assumption is made that each user of the network seeks to minimize his own
travel cost and that he experiments with different routes, eventually finding
the least cost one. Although this may not be completely true in reality, it is
assumed that those drivers using more costly routes constitute a neglﬁgible por-
tion of the total. It is clear that if (1) or'(2) were not true, some drivers
would switch to the-cheaper routes, congesting them, and causing a new flow

[ad
pattern to evolve. An equilibrium is the aggregate result oji individual decisions.



At an equilibrium, no single driver can reduce his own cost by choosing an
alternative route in the network. |

If the travel time of every arc were constant, independent of the level
of flow along the arc, then we could solve shortest route problems between
each origin-destination pair to find the equilibrium flows. However, the
assumption of constant travel time ignores the effect that congestion of an
arc has on travel time. In the more realistic case of increasing, nonlinear
travel time functions, the interaction among drivers makes the problem of
finding the equilibrium very complex. The two equilibrium conditions above
are equivalent to Wardrop's first principle, the principle of equal travel
times for all users [Wardrop, 1952]. His second principle, that of overall
minimization, leads to a diffgrent assumption of driver behavior. Wardrop's
second principle states that flows are distributed over the arcs of the netwbrk
in such a manner thét the sum of the travel times for all users is minimized.
Models based on the assumption of equilibrium are often referred to as
"useg-optimal" models, while models based on Wardrop's second principle are
referred to as "system optimal" models. The second.behavioral assumtion,
which uses the system optimal flows to approximate the equilibrium flows,
typicélly appears in urban trénsportation problems more general than the
traffic assignment problem.

The network flow problems usually treated in the Operations Research
literature are representative of system optimal models., Typical of these
problems where a‘decision maker chooses the flows on each arc to minimize
the cost incurred by the system (the sum of the individual costs) is the
problem of minimizing the shipping costs between the factories and warehouses

of a company.



The fundamental difference between the equilibrium flows and the system
optimal flows is that at the system optimal flows, some users of the nétwork
may incur an unnecessarily high cost, allowing the majority of the users to
have a greatly reducgd cost. If this reduces the company's total shippiﬁg
cost, then this would certainly be optimal. In the urban transporﬁation
context, this type of cost reduction does not occur. E;ch individual user
of the network chooses his own pathz'and he wishes only to‘minimize his own
travel time. In the equilibrium assignment problem, we must find the pattern
of traffic flows which results from many individuals competing for transporta-
tion between each pair of nodes in the network; that is, the set of flows
satisfying the equilibrium conditions (1) and (2), regardless of what the sum
of the individual costs is, However,.as will be seen shortly, the equilibrium
problem is equivalent to a mathematicai programming problem in the usual sense.
Since there is really no central controller to direct the flows in an urban
ﬁransportation road network, the concept of network equilibrium seems-to be an
accurate model of.the system, and thus the great majority of existing solution

techniques are based on the assumption of equilibrium. .

A Nonlinear Programming Model of the Traffic Assignment Problem

Consider a fixed network with n nodes, and assume that nodes 1, 2, . . .,P
P < B are origins and destinations. Define A to be the set of arcs (i,j) in
’ P
the network. Let X33 denote the total flow along arc (i, j), let %43 denote the

flow along arc (i, j) with destination s and let xii denote the flow along arc

(1, j) with origin r and destination s. Obviously, xi; = E x§§ and
& r,s=1

X,. = 'E x79. Let A,.(x..) equal the travel time experienced by

13 r=1 3 ij i3 :

each user of arc (i; j) when X units of vehicles flow along the arc. For ex-

amplé#, if are (i, j) is one mile long, and the speed per vehicle is thirty

niles per hour when the volume of flow is xij, then Aij(xij) = 2 minutes. We



LAy - R 4 --ijv l» ’

is an increasirg function; it is taken to be nonlinear because of the effects

of congestion on the travel time for each user of any arc..

We assume that the Aij(-) are increasing functions with continuous

-
\'\

derivatives. Tbls assumption is not all restrictive--the U. S. Bureau of

\

< ‘, (

Public Roausfuses pol}nomlal functions which satisfy these properties.

These functions are of ?he form in Figure 1; 353 and bij are empirically deter-
termined paraceters for each arc which are computed from its length, speed limit
and nuxber of lanes and traffic lights [Comsis, 1972]. The shape of the average
cost function.Aij (*) is intuitive. As in the figure, the travel time per user
increases very slowly at first; it remains almost constant for low levels
of fiow. However, as the flow begins to reach the level for which the arc
(street) was designed, the travel time experienced by each user begins to
increase rapidly. The average travel time functions used in this paper will

be those of the U.S.B.P.R., although other functions could be easily substituted.

/

A () = aij +biy ()

Travel Time Functions Used by the U.S.B.P.R.

Figure 1

X]}
Now define fij (xij) = \L A:.(t)dt = aijxij + (by /5) (%5 ) Then the

optimal flow values for the probiem
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NLP)  Min £Gx) =in  § £, () xS)
(i,j)ﬁA 8=

= Min (igj)eA[aij (sglej)ﬂbij/S)(sglej)S] : ¢))
s.t. D(j,s) + g xisj = 1{ xjsk j=1,...,n s = l,:..,p 3 %»s (2)
xi‘} >0 (i,j)€A; s =1,...,p . | (3)

constitute the equilibrium flows. The summaﬁoné in (3) are over 1€ B(3)

and keA(j); we will drop this cumbersome notation. Probiem (NLP) is

closely related to the work done by Kirchoff in electriéal networks. ./_ y,,-;

The proof is based on the Kuhn-Tucker conditions; see [Beckmann, 1956], e% »Jé

[LeBlanc, 1973]. _
The §bjective function (1) contains many cross products involving fifth

degree terms. There is one constraint (2) for every node j, for everybdestination‘_

s in the ﬁetwork, j#s. There is one variable for each arc, for each destination

invthe network. Thus if we wish to find the equilibrium on a 500 node,

2,000 arc grid network in which each node is an origin and a destination, then

problem (NLP) has 500-499 = 249,500 conservation of flow constraints and

. .
e

2000500 = 1,000,000 variéblff and non-negativity constraints. In this paper, ' L
we will present an efficient method for solving such large scale versions of

(NLP). First we give a lemma which is fundamental to the remainder of this

paper.

Le=ma II.1 If Aij(-) is a nondecreasing continuously differentiable

function on {0,%), then the objective function (1) is convex with

rs
respact to the xij .

Proof: 1It is only necessary to show that each f.. is convex with
- 1j

- rs . .
respect to the x,, = / X.., . Tnen, since x_. is a linear function
ij s 13 1)

TS
of the xij’ each-fij will be convex with respect to the xf?. Now
. 1]
£!o(x,.) = A, (% and si M 'a3 - -t 3 “ ceml
lJ( 1J) lJ( ij)’ nd since dij was assuzed continuousiy differ-
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entiable and nsndecreasing--che travel time per user does nct get
szaller as a road gets rore congested--then A (\ ) = f" (x ij) is
non-negative on [ 0,%), Therefore, each fij is a coavex function of
the xi? . Since the sum of convex functions is convex, the proof is
completed.

Iherefore,'any local optimal solution to (1), (2), (3) is also a
global optimai solution, and hence is the desi{ed equilibrium flow.
¥When Aij(;) is strictly inéreasing, the objective functiop (1) is
strictly convex wi;h respect to the xij’ but is not str;ctly convex

with respect to the x?? . Although the optimal solution to the NLP

problem above may not be unique, the total flqws along each arc at

o A ' oors, . . X s s
equilibrium (e.g., the xij = Z.xij) are unique in the strictly in-
: ' rs

creasi ng cese.

- e - [ER-NEY “ LI eener e e g

An AlQOtlthm for the Vetwork Eaulllbrlum Problem

SV . e oy
‘Now if x~ is a set of flows which satisfies constraints (2) and
(3‘}, then we can use a first order Taylor's Expansion for thé
objective function f(*) to write, for any y,

1 .
£(y) = £(x) + TE(x 4+ 8(y - X)) (y - X') some 8z [0,1]

Here, the gradient of f is being evaluated at scme point between x1
and y. A convenient linear approximation to f(y) is to let 2 equal

Zero .
£(y) ~ £G37) + TEGD) - (y - x) )

If we solve the linear programming problem in y

| (P) Min Vf(xl) cy +E(x1) - Vf(xl) . xlj
= 0 : :
y _ ij=1 .. ., n
s.t. D(j,s) + 2Jv.. Z,ij s=1, ...,p (5)
i j £ s



. 1 . : 1 '
getting v~ as the optizal solution, then y  is also a feasible solution
to - (;L ))since the constraints are identical for both problems.

. - 1 - 1 7 . '
Note that the term {E(x Yy - FE(x )-x‘j is a constant, so we may

A . . . . 1
omit it from the linear programning problem. The direction d° =
1 1 : . ‘ -
y - x* is then a good direction along which to wminimize £ {Zangwill,
1969]. Since the feasible region (2 ), (3 ) is convey,

. . . 1 1 .
any point on the line segment between x  and y will also satisfy"

. s s . s . 1
the constraints. Thus to minimize f in the direction d”, we solve

the one dimensional problem

Min E(x> + add)

a ¢ [0,1] , ' (6)
It is well known that a : Bolzano search is an efficient technique
for solving this problem [Zangwill, 1969).  Arter solving cthe oue

2
dimensional problem, we get a new feasible point, x .

. n w * . .
Lemma Lim x = x , where x 1is optimal for (NLP). .
n— <«

See zangwill [1969] for a proof of this. This algerithm of iter-
atively solving one dimensional searches and linear programming
problems which minimize successively better approximatioms to £

% ' '
near x is known as the Frank-Wolfe algorithm. One nice aspect of
this algorithm is that at every iteration we have a lower bound on

the optimal value of the NLP problem. 3y convexity, we have

£y = 2G5 + 956N - (7 - %)



. * k
where x 1is the opotimal solution, and x is the feasible solution

at iteration k. Also, we have that
£G5y @ TEGES) - - K 2 £ + £y - (" - x5

since yk miniziizes Vf(xg)-y for every feasible y. Therefore

k k k ky . *
f£(x7) L VE(x)*(y - x ) is a lower bound on f(x ), for every k.
One possible stopping criterion is to.stop when the current

functionel value is within a given epsilon of this lower bound.

Unfortunately, if we wish to find the equilibriﬁm on the 500 node
network mentioned above, then the - problem (NLP) . and conse-
quently each subprcblem, has a prohibitively large nucber of con-
straints and yar;ables. Not only.afe the linear programming sub-
ckloms aprarenrly uncalweable, bhut also the 1.000,000 variables
in ghe example présent a serious challenge for the one dimensional
searéh. Even a highly effiéient technique such as the Golden
Section search will réquire a considerable amount of.time, and yet

networks of this size are ndot uncormon in an urban coatext.

We will now develop an efficient algorithm for solving the linear
programming subproblem (P) and the one diminsional searches (6). After

developing the algorithm, numerical results will be presented. Omitting

the constant terms in the objective function in (P), we have

S
. (=)
Min VE(x )+y = Min T
Y s
' “ijs *ij
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Now let us Iook at Vf(x). We see that

3) £

2E(x) _ KT k1) _ G R0y By
s s s - s

where x x,.. The second equality is true because all of the

cost functions except fij are independent of xz.. The third equality

oxX. . .

is an application of the chain rule. Clearly, ——il = 1. Therefore,
axij

we have that

f(x) A (57 ) |
s

s ij

by definition of fij and continuity of the Aij' Notice that this is

independent of s. Now define

13~ Aij G5 30 |

This is the average time or cost on arc (i,j)--the time exparienced
by each user of arc (i,j)--when the flow in the network is equal to

. 1, L .
the fixed amount X", The linear programming subproblem is then

P
Min Z 5 = Min ‘Z ).S: c..ye.

y=0 (i, J) cA s=1* y 20 s=1 (i,j) cA ij7ij
s t.(%) s.t. (5)

P

2 Z Min E c..yo. ¢p)

s=1 y=>0 (i,j):a 1%
s.t. (5)

The right hand side of (7) constitutes a lower bound on the optimal
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#alue of the linear programuing problen since the nminimum of a sum

is always greater than or equal to the sum of the minima. Note

that there are no capacities on the arecs in problem (P). The constraints
are only non-negativity ana conservation of flow., It was not necessary
to intrcduce capacities into the original NLP problem because the

travel time for each user of any'arc becomes very large when the flow
exceeds the.level for which the arc was designed. By definition of an
equilibrium, no one will voluntarily accept z higher travel time

than necessary; thus at equilibrium, flows will necessarily avoid a

high state of congestion on'any arc (unless every arc in the network

is congested). Since the optimal solution to (1 ), (2 ), (3 ) is the
desired‘equilibrium, there is therefore no reason to introduce capacities
for any of the arcs; it is the non-iinearity of the travel ﬁime

functions which obviates the need for czpacities on any arc.

Since the Frank-Wolfe algorithm is an iterative procedure, the sub-
problem (7) will be solved many times. At each iteration k, the
vector of objective fungtion coefficienfs is Vf(xk), where xk is the
kth feasible solution. This changes at every iteration; hence we must
iteratively sol@e problem (7). For every iteration, the linear

programning subproblem (7) has the very special form
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1, : s x ?

Min z c..y..*F ... + s c..y,.+ ...+ T L Coyl,
y=20 (i,j)ea 171 (i,j)ea H (£,3)eA 1374]
s.t. -% y]: + 5 )'lk = D(j)l)

PERES IR

ji=2,3, ... , n - ' -

“ £ ¥y FT ¥y = DG,
i Mok .

wvhere n is the number of nodes in;the network. There are no linking
constraints at all in this prcblem;'the variables within any block

do not interact with the.variables in any other block. Therefore the
problem reduces.fo n separate linear programaming problems; by solving
each "block" problem sepérately from the- others, we get a feasible
solution to the linear programmning problem, and thus the lower bound

(7) is achieved.

An additional important.simplification occurs due to the structure
of each of the above blocks. We can think of the problem in block s
as ninimizing total shipping cost from evefy node in the network to
node s, where cij is the linear shipping cost of arc (i,j). It is
not necessary to use the simplex method to solve the nroblem-~this

is the simplest of all transportation problems. Using the D(j,s) as
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quanti;ies to be shipped from node j to node s znd the cij-as the
length of the arc (i,j), we can find the shortest route between nodes j
and s, for all j. Since thére are no capacities on any of the arcs,
we send all of the quantity D(j,s) along this shortest path. Since

the shortest route algorithm due to Dijkstra [Dreyfus, 1969] finds

the shortest route betweén any given node and all other nodes, the
optimal solut;on for block s can be found by solving cne shortest
.route problem. Certainly the ébove procedure does not violate the

conservation of flow requirement (5) or the non-negativity require-

ment. This procedure is summed up by the following theorem.

THEOREM II.1 At each iteration k of the Frank-Wolfe algorithm the

optimal solution to subproblem k, problem (P), is given by

s _ rs
yij‘ % yij’ where .
r
. D(r,s) if arc (i,j) is on the shortest path between
r and s using the c,. = A._(x,.)]| _ k as the lengths
rs _ , .. ij ij i Ix=x )
yij = of the arcs (i,j).

0 if are (i,j) is not on the shortest path

Proof: Assume that at the optimal solution to the subproblem, all‘the
flow does not follow the minimum.paﬁh or least cost path between at
least one origin-destination pair; let this pair be r and s. If

we change this flow so that all of the flow does follow the shortesﬁ
path, then we get a smaller cost for this origin-distination pair.
Since all costs are linear in the subproblems, adding additional

flow to any arcAhas no ‘affect on the cost of other users. Their

unit cost is cij’ independent of the level of flow on the arc, so



their total ceost remains the saze. We then have s smaller value of

the objective function, contrzdicting the assuzed optimality.

Observe that with this féfroach to solving the sub-linear programming
problen (7), we do not ha&e to vrite out any of the tens of thousands

of conservation of flow and ndn-;egativity constraints. The constraints
are implicitly satisfied--we sicply observe that we have the best
solution which satisfies them. Consérvation‘ofvflow is satisfied by
definition of a path between two nodes; obviously this procedure does

not yield negative flows.

Thus we can solve the NLP problem by a scquence of shortest route

problems and one dicensionzl searches. Since the subproblems are
linesar, all of the existing theory of network decomposition [Hu, 1970]
can be used to solve the shortest routes in each subproblerm. Numerical

results are given in the next section.

An initial set of feasible flows is required to begin the algorithm.
Fortunately, in.a problem suéh as this one, it is relatively easy to
get a good starting solution; we may estimate the equilibrium flows (i.e.,
the optimal solution to (NLP)) by dividing the flow required for each origin—
destination pair among several promising routes between the origin and
destination. .In general, the bettef this initial estiﬁate of the
equilibrium point is, the fewer the number of iterations required will be.
Since we are more interested in the optimal flows than the optimal value fo
the (NLP) problem, the best stopping rule is to stop when the maximum
percentage change betwezen the comp;nents of two consecutive flow vectors
is less than some specified ambunt. In summary, the algorithm is as
1

k = 0. .

follows; we begin with the index
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A

1. Let the current feasible solution be xk.
2. Compute Aij(xij)lx=xk = ¢y Set Yij = 0, all (i,j).
Set s = 1.

3. TFind the shortest route between every node in the network

and node s (i.e., solve one shortest route problem) using

the c_ ., as distances.
1]
4, For each origin r in the network, perform the Fortran
operation yij = yij + D(r,s) for every arc (i,j) on the

shortest route between node r and node s.

5. If S'is.no; equal to the nuﬁber of destinations, set
s =s ; 1 and go to step 3; otherwise go to step 6.

67 Now the yij are~t§e éolution to subproblem k. . Denote by'
yk the vector of the yij' Minimize the function f along

L L+ L s
the iine segment between x and y , using a one-dimensional

. : . k+1
search technicue. Let the minimizing point be x .

7. Test the stopping criterion, and go to step 2 if it fails.

As stated previously, the exceeding large number of decision
variables in this problem can cause computational difficulty in
step 6. The number of variables will usually nucber approximately one

million on a 500 node network. However, only the variables

"
Il
"

affect the objective function; the objective function
P

)
s=]

individual xij. Obviously, the xij are far fewer in number than the

i
s uniquely determined By Y xzj, regarcdless of the values of the

variables xzj' Each timg we solve the subproblem (7) in-y, we can

find the optinal y,. = Y y?. without storing any of the y?. by
13 4, 7] ij

using counters, yij’ to store the cumulative flow on each arc. We
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do this in the following manner. First compute the yij by sending
the flow from each ncde to node 1 along the ;hortest paths. Next
perform the Fortran operation yij = yij + yij for éll ar?s (i,j) in
the network, and then compute the yij. We again. increzent the
counters,  and repeat the process, cowputxng yij, ya., ... , and then
. y.., incrementing y.j each time. This prqcedure gives thé cptimal

Y. . for (7), 2lthough the oPtlual ) will not be known. Given

these y.., the one dimensional search will vield new values for

the flows by solv1n° the problem (6) After performing this one-
dlren51onal search we wxll not know the values of the x , but only
sthe values of the total flow, the x.J But we do not need the xij

in implementing this axnorlthm, since the X5s alone uniquely

k+1
determine Vf(x ), the new vector of arc lengths for solving (7) again.

Using this procedure on the 500 node, 2,000 arc network discussed above,
the one dimensional search meed only workﬁwith 2,000 variables instead of
1,000,000, Thic ic a gignificant improvement—-a hicerting search of a

polynomial function of 2,000 variables takes less than half a second on

the CDC 6400.
It is important to realize that solving the NLP (1 ), (2 ), (3

with any straight forward algorlthm would certainly require storing
each individual decision variable, xij. These variables xij haé to
be introduéed in the NLP to assure that the correct number of units
flowed between ezch origin-destination pair. Multi-commodity
conservation of flow equationsirequire that flow be identified by
its ultimate destination. Only by exploiting the structuré pf the

NLP was explicit consideration of each decision varizble obviated.

We thus have the semerkabie conclusion that thi:(S{LP)orobiem can be
solved by the procedure developed above without ever writing down

any of the tens of thousands of constraints and without aver storing

the values of the individual decision variables.
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Discussion and Comoarison of the Alcorithm

A common problem in any algorithm which utilizes derivatives of a
function is the excessive corputation time fequired ﬁo precisely -
calculate these derivatives. In this particular wedel, the problem
is non-existent--since we are minimiziﬁg_the integral of the‘average

cost function, the derivatives are explicitly available. In fact,

derivatives are easier to compute than functional values, since they

contain 6n1y fourth powers, and the objective function contains fifth

)

powvers. " Accuracy is limited only by the accuracy of the actual

parameters, ayj and bij’ input to the model.

Another difficulﬁy inherent to feasible direction algdrithms.such'as
the frank‘Wolfe occurs when the objective function assumes a ninimum
point inlthe interior of the feasible-region.. If x* is an interior
minimum point; then VEx*) = 0. In a small ﬁeighborhood of x*, the
indiﬁidual.components of the gradient; because they are near zero,
may o;cillate positive and negative. Thus the geometric direction
indicated by the gradient may change very rapidly as the sequence of
points nears the‘optimal solution. This can caﬁse the points to zig

zag around the optimg}_solution, retarding the speed of convergence. ' *+ ocv -

- * —

'*f-i.'-‘/ o R S Y Jff-"‘”"“' Wi g /N_{;\““ e RO /\."ML:‘/'J*‘\; /rw:.;':/r‘: P A-r‘u-evl,_ Rt K
Fortunatelyf‘the gradient of the objective function (1) will not be ! = '—
. R N Tland I OB ;/
zero at the optimal solution, since the function is strictly in- i v

crezsing and has no stationzary point in the feasible region., Thus
the NLP (1 ), (2 ), (3 ) 2ppears to be well suited to a feasible'

directions zpproach.

In very large linear prograrming problens, there is frequently a

certain amunt of round-ofi error introduced into the optimal solution
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given by the sirplex method. This type of error is primarily caused
by multiplication and division operations. The error should—he- almost (v
non-existent in the solution given by Theorem II.1l, since shortest
route algorithms typically require oﬁly addition and comparison
operatiops.

The mosb»timg consuning portion of the élgorithm described above
is in finding all shortest paths in the network, i.e., in solving sub-
problem (P). Ve solve subproblem (P) to determine a direction in which
to minimize the objective function (i). It is intriguing to note that
the computational requirements of (P) are identical to one iteration
of one of the most commoﬁ‘simulation traffic assignment procedures
used today. This is the iterated capacity restraint algorithm
[Comsis, 1962];1Her§4pdorfeg 1966]. "The rationale behind this simulation
procedure is taken from a game theoretic interpretation of the network
equiiibriﬁm problem. Associated with each origin in the network is a
player who tries to choose a.set of routes such that the correct number
of vehicles will travel from his origin to é;ch destination at minimum
travel time for the vehicles associated with his origin. Since vehicles

from the various origins interact, the travel times as seen by a given

. player depend on the actions of the other players. Thus an iterative

technique is used to determine the equilibrium flows in the network.
Each player chooses his routes in turn; after all the players have

made their decisions, the resulting travel times are revealed to all

the players, and they again take turns in revising their routes [Hersvpdorfer,

1966].

The computaticnal requirements of this rather colorful interpretation of the

network equiliprium. problen arc zs follows. At each iceration of the p:ocedure,
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the length of each arc is computed as the average travel time function
evaluated at the current flow level on the érc. Next, shortest routes
"between each origin and destinétion are determined so that each player
can direct his vehicles along the shortest path to their destinationm.

The algorithm developed in this paper also iteratively computes the
length of each arc as the arc's average travel time function evaluated

at the current flow on that arc and finds all sﬁortest paths. The
fundamental‘difference bétween the two procedures is that our proposed
algorithm minimizes the objective function aloﬁg this generated direction
to compute a new vector of flows. The simulation procedure in [Hershdor-
fer, 1966] on the other hand, uses this n-dimensional direction itself

as a new vector of flows. This leads to completely distinct flow vectors.
These two approaches to the network eéﬁilibrium problem are fundamentally
different: one is a simulation technique based on heurisiic assumptions
about the system; it frequén;ly does not converge. The other is a
rigorous application of a convergent algorithm to an NLP problem whose
optimal solution is proven to be the equilibrium. Nevertheless, the only
difference in computational requirements.is in the one dimensional search,

‘a negligible procedure.
Numerical Results

The algorithm developed above was programmed in Fortran on a CDC
6400 computer; a small test network éf ten arcs and four ﬁodes was
used for debugging purposes. Each of the four nodes was considered to be an origin
and a destination. The network, trip table, and travel time functions
were chosen so that the:;;uilibriUﬂlflows éould be claculated by hand.
The (NLP)problem . for this network consisted of 40 variables xi},
s =1,2,3,4 fbr each of the ten arcs; 4.3 = 12 conservation of flow

constraints; and 40 non-negativity constraints. Approximately ten

iterations of the procedure were required for a reasonable degree of
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of accuracy - about 5% of the flow variables. Computing time (central
processing unit) was approximately one second.

The algorithm was then run on the 76 arc, 24 node network_in
Figure 2. The trip table and parameters for the average travel time
functions are given in Table 1. The(NLP) problem for this network had
1824 variables: x;}, s =1,2,..., 24, for each of the 76 arcs, (i,j);
(24)-(23) = 552 conservation of flow constraints; and %824 non-negativity |
éonstrainté. Since this is a genefal nonlinear programming problem, it
isvimpossible to determine the exactvsolution in a finite amount of
time. However, Table 2 shows the sequence of floﬁ vectors generated: .
there are 76 components, one for each arc. After 20 iterationms, only
2 variables changed by more than 5%; the majority changed by less than
2%. Thus the vector xZO appears to bé a highly accurate estimate of the
equi;ibrium solution. Computing time for twenty iterations, excluding
3 seconds of compilation time, was nine §econds. If the termination
rule had been to stop when the maximum percentage change in components.
was less than 87, the procedure woﬁld‘have terﬁinated affér 16 iterations.
After sixteen iterations, the maximum percentage change in the components
was 7.7%; computing time was seven seconds.

Each subproblem for this network decomposed into 24 shortest route
problems. Since every node is both an origin and a destination, all
shortest routes in the network ére réquired, and the multi—terminalv

.
shortest route algorithm of Floyd [Dreyfus, 1969] was used. .
A very encouraging result was the extremely small computing time

for solving (NLP). This same problem for the 76 arc, 24 node network

was also solved by linearizing the objective function (1) and using
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the OPTIMA linear programﬁing package for the CDC 6400. Computing time was significantl:
higher-~11 minutes and 40 seconds. Equally encouraging was the very small
increase in the number of iterations required by the Frank-Wolfe algorithm
for the‘two example problems above. 1In Table 3 below, we see that there
were 12 conservation of flow constraints and 40 non-negativity constraints
for the first network. The larger network resulted in-552 conservation
of flow equations and 1,824 variables and non-negativity constraints.
Nevertheless, the required numbe¥ of iterations’increased from 10 to
only 16 or 20. The number 6f iterations appears to be relafed to the
nuﬁber of nodes in the underlying network rather than the number of
constraints in the NLP probigm. Increasing the _number‘of nodes by a
factor of 6 doubled the number of ite;ationé; this indicates that the

algorithm will be efficient for problems as large as several hundred

nodes.
Conservation Variaﬁles (Non-|Iterations Computing -
of Flow negativity for 5% Time
des !Arcs | Constraints constraints accuracv (Seconds)
Problem 1 4 10 12 ‘ - 40 10 1
2 24 76 552 - 1824 20 9
Table 3
Conclusion

. -
The primary significance of the solution technique developed in this
o
paper is that it requires only the solution of a sequence of shortest
route problems (computing time for the one dimensional searches was

insignificant). The computing time for finding an approximate solution

was less than that required by the simplex method by orders of magnitude
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even on a fairly small networkf For larger'problems the savings would
be even greater, since for multi-commodity network problems the number
“of constrainté grows as the square of the number of nodés in a network.
At no time are any of the conservation of flow and non-negativity
constraints used explicitly in the technique of this paper. It is well
known tha; problems on networks with several hundred nodes can be
efficiently solved. Also, preliminary computational results.indicate
that the number of ;hortest foute subproblems (i.e., the number of
‘iterations) for a network equilibrium problem with several hundred
nodes will not be excessive. Thus the solution approach appears very

promising for large network equilibrium problems.
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