QUAST-CONJUGATE +:NCTIONS AND
SURROGATE TUALITY

-~

Harvey J. CR.cn TRG™ and Willlem P. PLERSXALLA

1. Introduction

The results in ccnjugate function theary [ 1, 3, 10}, particularly the

work of Rockafellar, have had a orofound effect on our uncerstanding the

structure of many optimization models as well as othsr aspects in functional

-analysis. The basic results stem from the convexity structure invelved in

the extremum problems. (We assume familiarity with [ 10}, and we use his ro-
tation.)

This paper dsvelops an analogous, though less ambitious, theary of

guasi-conjugate functionrs based upcn quasi-convexity structure. Whereas

conjugates ralate to epigrach supports, guasi-conjugates relate to leval

set supports; whers conjugates provide a tSasis for Lagrangian duality,

quasi-conjugates provide a basis for surrogate duality.

In the next section we bsgin with some fundamental dafinitiors and

slementary properties of gquasi-conjugates. Section three introduces quasi-

subdifferential theary, and section 4 applies our results to describs sur-

rogate duaiity as developed by the authers | 7).

2.

Dedinitions and fundamental propertics

V

Throughout  our discussicn, we considsr a function f : R = R, Z [ -=.=].

The epigraph and c-level sgt of f are given respectively oy

n*l, 2

epi £ = {(z, x) e R 3 f(x)}

ch' = {xer"] ¢ fix1} .

Stm————to——

2
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Definition : The z-quasi-conjugate of f is a fﬁpctioﬁ f: :R" R, . where

£0y) = z - Inf (£x)] xy 3 2} .

g

Note : The infimum of a function on the empty set @ is defined ta be += ,

Although geometric proparties of the z-quasi-conjugate function ares
not a readily apparent as thoss of the conjugate function, these two func-
éions have strong ties. This is not surprising since (as we shall demonstrate)
the z-guasi-conjugate function relates to quasi-convexity in much the same
manner as the conjugate function relates to convexity. Of course, the theo-
rems do hot assume any special structure unless so stated.

Letting f¥ denote the (convex) conjugate of f, the following theorem

lists some elsmentary properties.

Theorem 1 : The following statements are true :

(1) #'ty) 3 £3ly) for all (z, y) € ™1
(1) #'ty) = swp {(£3(y)] z e R} . )
(111) f 5 g implies 13 g] forall z € R,

1

X (y/A) for all A €R> : A >0 .

2/}

(1v) OFI1Jy) = A f
(v) f: is quasi-convex for each z € ng that is, y € [yi. y2] implies

¥ x % : x
fz(y) £.Sup {fz(yl]. fz(yzl} (equivalently, chz is gonvex for
all c).

{vi) {ylf:(y) = +=} is convex, but the effective domain of f: need not

be convex.

Thus, we sse that the z-quasi-convex function provides a lower bound
for the conjugate function, and indeed the conjugate is the supremum over
z of the z-quasi-conjugate (ref., properties (i) and (11)). All of the
above elementary propertiss will prove useful in our study. Although we -
omit a complete proof of Theorem 1. we shall substantiats property {v)
since it describes a strongz tie to quasi-convexity structure to which we

alluded earlier.
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. Ifwy >zandy € [yl. yzl. then wy, 2 z or wy, 2 Z. Therafore,
wy 2 2 => f{w) 2 Inf {z - f:(yll. 2 - f:(yz)} for all w., This implies

- x x
z - Inf {(flw)|lwy 3 2} Sup {fz(yl). fz(yzl}.'
But the left hand side 1s f:(y). so property {v) follows.

Now let us congider the second’z-quasi-cohjquts of f and & nor~
malization having an important impact on our analysis. We have (by defi-
nition)

%, X %
(fz)z(x) =z - Inf {fz[y)[xy >z},
and it is easy to show that this can be written as

(f:):(x) = Sup {Inf {f(x)]|wy » z}| xy 3 z} .
, y w
. Dafine the mormmalized second quasi*conjugate.of f as
% (x) = sup (£ %)

2 z'z

Theorem 2 : The following statements ares true :

(1) £*%(x) = Sup Inf {fiw)|wy 3 xy} .
y
(11) % 49 quasi-convex.

(111) Flx) 2 £000 2 #7V0x) .

-Note that property (111) means that'f** provides a better quasi-convex

approximation of f from below than does fvv' the seccnd (convex) conjugate.
Of coursa, if f(x) = £V (x) (e.g., f closed and convex), then f{x) = 7% (x)
as well. Later, we shall establish weaker conditions for which this latter

squality holds.
-x2 XX Vv
Example : Let f(x) = -e ~ . Then, f (x) = f(x) and f "(x) = -1 for all
, 1
x € R™, .
A convenient property of conjugates is that odd order conjygates

aqual the first conjugates, and sven order conjugates egual the second.
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" We now prove a similar property hdlds for quasi-caonjugates.

ty) = f:(y) and (£ 5% (x) = #**(x) for all x, y. z.

\

K, R

Theorem 3 f {(f )z

Proof : By property (1i1) in Theorem 1 and (1ii) in Thearem 2, it suffices
to prove (fxx):(y] P3 f:(y) in order to establish the first assertion. This
can be verified by direct substitution as follows :

z - Inf {Sup Inf {f(w)]|wv 3 xv}|xy 2 2z}

(+**1 %ty
z ' X v W

”"n

z - Inf {Inf'{f(wllwv > xy}llxy = z}.

X w ?

z - Inf {(fw) |wy > 2}
. W

x
= §F{y) .
b2 y
The second part follows from the first and by ths definitions. Q.E.D

" Unlike the second caonjugate, YV, the normalized second quasi-conju~
gate, f**. need not close f. For example, let f be the univariate function
given by .

‘0 if x < O
fix) = /a if x = 0
131f x>0

By choice of o we can make f upper or lower semi-continuous or naiths
For a € [Q.,1] we have fxx(x) = f{x) and fvvtx) = 0. This also shows that
chxx need not be closed. The next theorew below demonstrates conditions

under which chxx is closed.

Theorem 4 : chxx is closed if ¥ is upper semi-continuous

and Lc;sf is bounded for some § > O.

Proof : Let {xk} c chx* and xk + x. For any y € R" wa have (cf., property
/ .
(1) of Theorem 2) :

Inf {(Flw)|wy 3 xky}'s c.
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) Fo: any € > O there exists “: such that f(uz) § c+ée and
W Y3 XY

Choose € < §,30 there exists a limit point of (wk}, say w_, ‘
such that uEy xy and because ¥ is upper semi-continucus, f[u;) g c 0’@,

Therefore, .
Inf (flw)|wy 3 xy} g c + €

for any e ¢ (0,8) and hence £*(x) £ ¢, so chx’ is closed. Q.E.D.
One of the important results in conjugate function theory is that epi
fvv © ¢4 conv epl f. We have the following analogy.

Theorem 5 : Assuma ch is compact for all c. Then, Lc'l”‘x = conv ch for
all c.

Proof : In géneral chx* ;:ch. and since Fxx is quasi-convex..ch**
conv L T -

Now suppose x € conv L f. Lat y bs given such that w e conv L f _
implies wy < xy, and let w Xa argmin {f(w)[wy > xy}, existencs guarantead
by the compactness assumption. Clearly, w y xy SO W ﬂ conv L f.

Further, f (x] f(w )>c, so x € L 5% . Q.E.D.

Corollary §.1. : If ¥ 1s quasi-convex and L f 1s compact for all c, then
* . f. Latar we shall alter the hypothasis in corollary 5.1 and still

daduce f = f » which we apply to surrogate duality theary.

3. Quasi-subdifferential theonry.

Analogous to the subgradient, which {s a slope of an epigraph support,
wa introduce the quasi-subgradient, which has an analogous property of lsval
set support.

Definition : A quasi-subgradient of f at x is a vector y € R" such that
flx) f:y(y) = xy.

The sat of subgradients of f at x is the quasi-subdifferential of f at x

and is denotad by 3 X£(x). We say f is quasi-subdifferentiable at x 1f

a* f(x) Fd. -
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Theorem 6 : The following statements are true :

(1) 3%f(x) = (yl&y 2 xy implies f(w) 2 FIx)}.
(11) axf(x) u a*(Xf)(x) - axf(x] for all A € RI A > O,
(114) 3 f(x) C axf(xl. with proper inclusion possibla.

(1v) 2*F(x) 1s convex.

(v} 0 e a%fF(x)<=>x € argmin f.

The proof of Theorem 5 is straightforwa?a, and we omit it. Propert
{1) is a simple restatement of the optimality condition which defines
a*f(xJ. Property (ii). tslls us that the quasi-subdiffarential only cont:
rays, sans the origin; if f {s quasi-subdiffersntiable, then a*f£(x) must
unbounded; this simply reflscts the fact that

{wlwy 3 xy} = {w]awy 3 Axy}

for any A > 0. Thus, we could scale gquasi-subgradients to let only direc
"tions serve_as-repraéenfatives. One placs this is used is to compactify
:  seqUence of quasi-subgradients. '
' Property (iii) is illustratsd by Rockafellar’'s example ([ 10], p.21
namely, ' 1

-1 - [xZ1fF |x] 51
flx) =

+ elsa.

In this case the subdifferential at x = 1, 3f(1) = @, but 3 f(1) = (0, =
Property {iv) follows from the quasi-convexity of f: for any z. Pr
paerty (v) can be interpreted as a minimum-preserving property. Notice th
thess properties apply to any function and do not assume any special str
ture. Of course, f may not be quasi-subdifferentiable anywhsre; howsver,
despite its triviality property (v) will prove ussful later when gstabli
the quasi-subdifferentiability of a function undef certain conditions. .
We now establish certain duality relations that parallel those in
subdifferential theory. This will provide & structural basis for surrogal
duality s&in to the rols of subdifferentials in Lagrangian duality. Oefir
Cix,y) i'érghin {f(w)|wy 2 xy}. We can see that x € Cfx.y) is equivalent
y e a%f(x). As greanberg;s [4,5] analysis of Lagrangian subgradiants- prov
insights to the Lagrangian approach, so shall we find a siﬁilér fruitful
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Thus, we define C*(x) s {y[x e conv C(x, yl}. The first part of Theoresm 7
" below shows that C*(x) contains the quasi-subgradients of f at x.
Additionally, define

-1 ‘ - ‘
3 £lx) = (y]xe 3%F% (y)} .

xy

Recall that an important duality relation for conjugatas of convex funce
tions is

ye 3f(x) <=> xe éfv(y) .

A similar result follows from Theorem 7 below using 3x-1 f(x) and latsr
theorems we shall prove that establish conditions for which f = %,

Theorem 7 : 3%#(x) € c*(x) ¢ argmax {xv = f:v[v)}‘c a*’l. with equality

throughout if F(x) =YF**(x).

Proof : If y € B*f(x). then x € C(x, y) directly. Next we first recall
the definition,

XV = f:v(v) = Inf {flw)|wv 3 xv}.

. n
If y e“c*(x), then there exists {wi}g C C{x,y) such that x = ¢ ciwi,
' .q 1=0
where is in the standard n-simplex. By definition of wi we have wiv 3 xv

for some i (otherwise we would obtain the contrgdiétion‘xv < xv).

Therefors,
X i X
XV = fxv(v) £ f(ﬁ ) = xy fxy[y) .

so the sscond inclusion follows. Now suppose y @ argmax {xv = f:v(v)}.
v .
so

X x
xy = fxy(y) S:p {xv fxv(v)}

= Sup Inf {f{w)]wv 3 xv}
vV w

. #%(x) .

: XX X (X
§y theoram 3 wse hava T  (x) (fxy)xy[x). 80
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f.x
Xy

X . X
(y) (fxy)xy(xl " XY .
x X
Thus, x @ 3 fx (y) as dssired.
Now suppose f(x) = f*x(x).-Then we shall prove a*f(x] ? ax-lf(x).

By the last argumesnt above we can writs
flx) + f* (y) = xy
Xy
x=1 . X
If y e 3 = f(x). But this implies y € 3 f(x) as desired. Q.E.D.

Define L:f -'{xlf(x) < c}, and let Hx(y) bs a hyparplans of slope
pgssing through x. Given a set's we say, 'Hx(y] supports S(at x® 1if
x @ ¢t S and w € S implies wy g xy. We now demonstrate a level set supp
.propérty of guasi-subgradients to which we alludsd earlier. This is fal
by an important theorem that establishes the equivalance between quasi-
' subdifferentiability and the equality s f = f ‘e This is, in fact, our
bas}s for surrogate duality; for we then concentrate upon quasi-subdiff
rentiability with Theorem 10 and its three corollaries.

Theorem 8 : Assume L° f 4 3.
. f(x)
. .
(1) If c2 Lf( ) f Lf[x)f and v € 37f(x), then Hx(y) supporﬁs
f at x.

f( )
{41) If ¢ is lowsr semi=continuous at x and if H (y) suppnrts

Lf( )f at x, theny € 3 f(x).

L

Proof @

(1) Since y € 3 f[x). flw) < f{x) »> wy < xy .
Thaerefore,

O

f( )
so (1) fcllows by taking the closure,

fc {wlwy < xy},

(11) If f(x) < f(x), then by lower semi=continuity, w € int L
Since H_({y) supports L
sox

f(x)f

f(x)f at x, it follows that wy < xy, sc.uy 3 xy =

flu) 3 flx), Hence, v € B‘f(k). R.E.D,

Theorem 9 : 3 F(x) # B <=>f(x) = £5(x) .
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P?oof :

If y € 3%f(x), then £(x) = Inf {flw)|wy 3 xy}, so f(x) = £ %(x),
Conversely, let fix) = f”(xl. Then, 3 {yk) 3 Inf {1’(w)lwyk 3 xyk} - :F(x)-
Ifl[yku = 0 for all but a finite number of k, then O € 3 *f(x). Uthenwfgé.
let {y "} C {yk}. whera ]ykJ” /O vy Define v = ykJ/HykJH and nots

Inf {F[w)]wyk 3 xykj} = Inf {f(w)le] 3 xv}
far all j. Thus, Inf'{f(w)]qu 3 xvj} + f(x). Further, since {vJ} lies
in a compact set, there exists a limit v. Without locss in generality we

shall suppose vj + v, Since f(x) 3 Inf‘{f(w)lwvj,; va} for all j, it
follows for any @ > O there exists N(€) such that j > N(€) implies -

#(x) - e ¢ Inf (£ |wd 3 xv} ¢ FOx).
This implies Inf {f(w)|wv 3 xv} = f(x), so v & a%f(x).  0.E.D.
Using Theoram 9 we can now alter corollary 5.1 by establishiﬁg conditions

under which axf(x} f£a.

Theorem 10 : If ¥ is quasi-~convex and lowsr semi-continuous at x, and if

x
‘Proof :
If Lz(x f#0@, then 0 ¢ 3% (x) by property “{v) in Theorsm 6.
Suppose now Lf(x)f ¥ 3. There exists y such that Hx(y) supports Lf(*)f at

x, 80 flw) < f(x) implies wy < xy. Equivalently, wy 3 xy implias
f(w) 3 f(x), soy € 2%f(x).  0.E.O.

Corollary 10,1 : If f is lower semi-continuous and explicitly quasi-convex,
then a*ffx) ¥ @ for all x.

Proof :

/_‘ We need only consider L°

f(x)f ¥ d. In tﬁat casg ct L
(see [2]), and we shall use this to show x € bd Lf(x]
contrary that there exists & > 0 such that Ne(x) c Lf(x)f' Considar r > O
such that ['x-r, x+r] C N_(x). Then, : :

o
st " Lrsaf
f. Assume to ths

f{x) g Sup {fix=r), fix+*r)} g fix) ,
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so equality holds throughout. Since'f is explicitly quasihconvai,
Flx=r) = flx+1r) so flw] » fix). far~w e N (x) for some § > 0. This
yialds the, ccntradiction, x € co.Lﬂ )f 0 E.D. ‘“

Now to sstah;ish snme 1mportant cases for monotonic functions. we

sotonic. then

(x);w‘sup Inf (f(w)]wy ‘xy}.f'
R y>0 I : ’
and y e 3 f(x) implies y e 3 f(x), whera y1 z Max {0, yi}-
Proof : .
The second part follows from our proof of the firét; Consider am

y e Rn, we shall prove
. .
Inf {flw)|wy 3 xy} g Inf {flwllwy 3 xy }.

Consider w such that wy’ > xy’. We shall prove there exists v such that
vy 2 vx and flv) ¢ flwl. Witnout lose in generality partion y so that
y = (jl. yz), where ¥y 3 > 0 (so y = {yl. 0)}. Then, similarly partition

and w and note
WYy 3 XY e

Define v = {vl. vzl, whare v1 z wl and

(vz)‘1 = Qin {(wz)i, (xz]i}'. Then, v g w so flv) ¢ f(w)}, Further,
vy WYyt VoY,

3 XYy T XYy T XY .

Q.E.D.

i .
Le™Mrition ¢ f is strongly isotonic at x i7 n > 0 implio f(x+h) > fix).

- Nocte that strong isotoaicity is dafined .L-ally. 82 = nee- nst be isoton

« Further, we allow x 3 w, x ¥ w anc¢ {ix) » f{w), so ¥ necd not e strictl

isotonic' even though it be stronyly 1sozoricat every x (e.g., 1lrt £(x]

xlxz 2 0 and <= orheruisa then, ¥ s strongly isotonic on the ran-negat
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-grthant but not strictly isotonic].

Corollary 10.2 : 1If + 15'qhasi-convex. lower semi~continuous and strongly
isotonic at x, then 3 f(x) # @.

| - He.have only.to §h9w g e bd Lf(x)f' If x & lnt;f[x)f, then 3 h>0

such that x ¢ he L. ,f, so flx¢h) ¢ fix), a contradiction. Q.E.D.
"CorDZZazy 10.3 : Suppose ¥ is quasi-convex, isotonic, lower semi-continuous
' at x and strongly isotonic at x ¢ h for some h 3 O. Then,
a¥f(x) ¥ 2.

 Proof :

From Corcllary 10.2, a*f(x+h) ¥ @. Now let y & a*f[x¢h), where y 3 O
{cf. Lemma above). We have

'f(x4h3 = Inf {f(w)|wy 2 xy + hyl.

Since hy 3 0, we note wy 2 xy + by => wy 3 xy, so

fix+h) ¢ Inf {Flw)]wy 3 xy} & flx) .
However, since ¥ 1s siotonic, f{x+h) 3 f(x}, so equality holds throughout,
implying y € 2*F(x).  Q.E.D. ‘ '

4. Swwwoaate duality,

Define

£{b) = Inf {f(x)|glx) 3 b, x € S},
where f:S -+ R, giS+R" and b € R".
The surrogate dual is defined to be

D) = Sup Inf {f(x)|ag(x) 3 Ab, x € S},
axC

whare A € R*. This is equivalent to (sese [ﬁ]] 3

O(b) = Sup Inf {F(8YI1a8 3 Ab}.
A20

Since F is isotonic, we havs

O(b) = Fx£(b14.
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Many of the results in [ 7] are now immediate from the foregoing theory.
notable instance is the gap thsory (Theoraﬁ 2 and corollary 2.1 in {7]]
and our corollary 10.3. When g is bounded, F(b) = *= for b sufficiently
‘large, so the strong isotonicity condition holds. Therefore, we can con=
clude that F({b) = D(b) when, in addition, F is guasi-convex. and lower
semi=-continuous. The assumptions in [ 7] ensure these conditions are met.
In that case, each maximizing multiplier A, is a quasi-subgradient of F
at b. More generally, if the range of (F g) is compact, then: Theorem 7
tells us that

b € conv argmin {F(B}]|28 3 lb}

if and only if X € B’F*x[b}. So even in the presence of a surrogate dual

gap we can interpret the optimal multiplier and ensure gap detection,
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