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This paper extends the results of Evans and Gould for stability in mathe-
matical programming. In particular, it shows that their conditions apply to
functional perturbation, to equality constraints, and to policy stability under
certain conditions. Further, it shows that strictly monotonic programs and
positively homogeneous programs possess the closure property needed for
stability. Finally, some necessary and sufficient conditions are presented for
lower and upper semicontinuity of certain point-to-set mappings.

WE ARE concerned with the mathematical program given by
P: Maximize f(z):§(x)<b, zeE",

where f(-) is a continuous real-valued function, § is a continuous, real-valued,
vector function §: E"—E™, and b is a given vector in E”. We assume that P has a
solution.

Evans aANp Gourp™ have recently developed stability theorems for P. Since
many of the results of this paper are extensions of their work, we shall use notation
consistent with their paper. Let a class of feasibility regions be given by S;=
{z:§(z)<b}. Thus, S;is the feasibility region of P. Further, the ‘strict interior’
is given by I,={z:§(z) <b}. Let int S, denote the interior of S;. Since § is con-
tinuous, we have I,CintS;. To illustrate that I, is not equal to intSs, consider the
curve in Fig. 1; we have I,={(0, 1)}U{(1, 2)} and intS;={(0, 2)}.

We define the set of ‘feasible right-hand sides’ as B= {b: S0}, where @ is the
empty set. We then define a point-to-set map S from B to the power set of E”
with the rule S(b) =S, for beB. In our subsequent developments, we assume Sp
is compact, but S, may not be compact for b5=b.

) The supremum function is defined to be fo.p(b) =supf(z) :zeS,. Thus, fsu,:B—

We use the notions of distance as:
p(z, y) =[2250 (zi—y)T"  for zyeE".

p(z, A) =miny, p(z, y) for zeE", ACE™, and A closed.

p(A4, D) =min,p p(z, A) for A, DCE", A closed, and D compact.
Finally, an e-neighborhood of a point z is the sphere given by N(z) = {y:p(z,¥) <

e}, and for a closed set A we have n.(4)={y:p(y, 4) <e}. Further notation will
be introduced as needed.
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g(x)

Figure 1

Evans and Gould approached the stability question of P with the concepts of
upper and lower semicontinuity of S at b as found in BErGE™; namely, given
b"—b, where {b"} CB and S; is compact, and given any >0, then (1) S is usc at
b if there exists n’ such that, for n>n°, SpCn.(Ss), and (2) S is lsc at b if there
exists n’ such that, for n>n’, SsC7e(Sen).

If S is both usc and lsc at b, we shall say S is continuous at 6. Evans and Gould
elaborate upon this and distinguish the above definitions from the semicontinuity of
a function at a point. We shall say S is stable™ at b if (1) I8, (2) S;is compact
for some b>b, and (3) closure I5=S;.

Two of the Evans-Gould theorems are: Suppose Si s compact, then:

(1) Sisusc at b if and only if there exist b>b such that S; is compact.

(2) If Is58, then S is Isc at b if and only if closure I5=S;.

They provide examples and later apply their theorems to establish upper and
lower semicontinuity of f..,(b) at b.

Our forthcoming comments extend their results to (1) allow perturbations of
the functions §;(-), (2) allow equality constraints, (3) consider policy stability,
(4) establish other classes of stable programs, and (5) characterize certain wusc
and lsc point-to-set mappings in an analytically useful manner.

FUNCTIONAL STABILITY

Ler us pEFINE C as the class of real valued continuous m-vector functions defined
on E" and G={geC:{z:g(2)<b}0B and max;sup.es |g:(z) —gi(z)|<»}. Let
the metric on G be given by d(wu, v) =max; supzen |u:(z) —vi(x)|. Further, let us
define o, = {2:9(z) b} for geG. Let o be a point-to-set map from G into the power
set of E” with rule given by ¢(g) =g, for geG.

Let {g"}CG be a sequence of functions uniformly converging to §eG' (where
g is the original constraint vector in P). We define, for any ¢>0, (1) ¢ is usc at
g if there exists n° such that for n>n’ onCne(0;), and (2) o is Isc at § if there
exists n° such that for n>n’ 0;Cne(ogn). If ¢ 1s both usc and Isc at §, we will say
o is continuous at § (following the terminology in references 1 and 3).
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It is then easily shown that the following theorem is true.

THEOREM 1. (a) o is usc at § if and only if S is usc at b. (b) Let I3=@. Then o
1s Isc at § if and only if S is lsc at b.

This means that the Evans-Gould results are sufficiently general to allow per-
turbations of the constraint functions g;(-). The proof of Theorem 1, as well as
the proof of all subsequent results, may be found in the appendix. Note that part
(b) assumes I3#@. The following example illustrates why this is needed.

Ezample.

z—1, if 1=z,
g(x)—_- 0, if -1=2<1,
—-z—1, if z=—1.

Let b=0; then So=[—1, 1]and I, =g. Now S is Isc at 0 because, for any sequence {b*}—0
with b*¢B (hence, {b*¥} converges to 0 from above), Spr =[—b*—1, b¥+1]. So for any
€>0 and (in this case) all k, S¢c7n.(Syx). However, consider the sequence of functions

z—1, if 1<z, |

k(I);' (l/k)(z—l), if 0§x§1,
PR Wk e+), i —152s0,

—z-1, if zs-1.

Now g* ¢C for all k and sup, |g*(z) — §(z)| =1/k; hence g* converges uniformly to g. Fur-

thermore, o = {—1}U{1} for all g*¢. Now it is not difficult to see that, for every 1 >e>0,
there is no k such that

[=1, 11=05Cn.(o0x) =n({—1}U{1}).
CoroLLARY 1.1. (a) If there exists b such that b>b and S; is compact, then o is usc
at §g. :
(b) If Is=@ and cl It = S;, then o 1s Isc at §.

The proof of Corollary 1.1 is immediate, and we omit it.
EQUALITY CONSTRAINTS

SuprPosE P has equality constraints of the form
T:={z:h(z)=¢},

where h:E"—E" and h is continuous on E". Define T.'={z:h( z)<e} and T.)=
{x:h(z)=e}. We observe that T,=7,NT
TaeorEM 2. If T' and T? are usc at &, then T is usc at é.

This can easily be extended to consider upper semicontinuity of S,NT at (b, &),
as well as functional perturbation (as in Theorem 1). Berge! (see Chapter 6)
proved Theorem 2.

The lower semicontinuity of T at & is more difficult, and extensions to functional
perturbation need not follow. One of the problems is that the right-hand-side

vector € may not be perturbed arbitrarily.

For example, suppose we have
2$1+Iz=3 = él,

x1+22=2=§2,

142z, =3=¢s.
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The only sequences {e™} for which T,.» #p are of the form
er=(e1®, €™, 362" —er™).
Any other sequence yields inconsistent equations, so that T,s = for all n.

Observe further than we cannot apply the Evans-Gould result directly by using
TiNT3, because it is not possible to have a nonempty strict interior.

To deal with the possibility of T',n =8 for all n, we define (1) for any ¢>0, T is
Isc at & relative to the sequence {e"}—¢ if there exists 7 such that n=7 implies
T:Cn(T.), and (2) {e"}—¢ is a feasible sequence if there exists 7 such that
n=7 implies T..5=0.

A real scalar-valued function 6 is quasiconvex on a convex set XCE" if, for all
ael0, 1] and any z, yeX, 6laz+(1—a)y]< maximum [6(z), 6(y)]. We say 6 is
explicitly quasiconvex on a convex set XCE" if 6 is quasiconvex on X and if, for
0(z) #6(y), blaz+(1—a)y] <maximum[6(z), 6(y)] for all ae(0, 1).

The function 8 is quasiconcave or explicitly quasiconcave if — 6 is quasiconvex or

explicitly quasiconvex respectively. (When 6 is lower semicontinuous the defini-
tions of explicit quasiconvexity, as given above, and strict quasiconvexity, as given
in reference 5 and used by Evans and Gould,™ are equivalent.) We say that h is
explicitly quasimonotonic if it is both explicitly quasiconvex and explicitly quasi-
concave. For a more complete discussion of explicit quasiconvexity and quasi-
monotonicity, see reference 6 or reference 4. Let us begin with k=1 (one con-
straint). Define I'= {z:h(z) <e} and I} = {2:h(z) >e}.
THEOREM 3. Let g(-) be an m-vector of continuous quasiconvex functions and let
h(-) be any continuous function. If SNT! and SNT? are each lsc at (b, €), then
SNT is Isc at (b, €) relative to any feasible sequence. Moreover, if I5@, then every
sequence [converging to (b, €)] is feasible if and only if IsNI; =B and IsNI;*=0.

In the absence of any inequality constraints, this theorem holds for the single
equality constraint A( - ), where all references to b and I5 are omitted, and Ss=E".

The extension to more than one constraint is not direct. We have found it
necessary to restrict the class of functions further.

Define 7= {z:hi(z) =e; fori=1, - - -, 5}, [i' = {z:ha(z) <&}, and ' = {z:he(2)
>
TeeoREM 4. If (1) Sg is compact, (2) IiNs NI =0 and IiN+E'NIS =4, (3)
g 1is explicitly quasiconvex and continuous for i=1, - - -, m, and (4) h; 18 explicitly
quasimonotonic and continuous for i=1,2, - - -, k, then SN7* is Isc at (b, &) relative
to any feasible sequence. ’

To see why hypothesis (2) is needed, consider
Sp={(z, y):1/z+y/z<1, 22221, 05y=2), Te={(z, y)iy—z=—1}.
The funection g(x, ¥) =1/z +y/z is explicitly quasiconvex on {22z =1,0=y=<2}. Note that

Ignl?; =g.
Consider the sequence where

Sgn={(z, y):1/z+y/z=1+1/2n, 22221, 05y=2}
Ton={(z, y)iy—z=—14+1/n}.

Then Sp=()T.» consists of the single point set {(2, 1+1/a)} for all n>0. However,

SinT;=T;n{2zzx=1 and }O_S_ygl}.
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Therefore
(z, y)=(1, 0)eSpnT;,
but
(1, 0)én(SennT,n)
for e <15.

It should be noted that the hypotheses of Theorem 4, in conjunction with the
work of Evans and Gould, provide sufficient conditions for the two mappings
SNAT'NT,' and SNA7'NT,? to be Isc [where Th® = {z:h(z) £ (2 )ex}]. If one
is willing to assume that these two mappings are lsc to start with, then one can
weaken Theorem 4 to allow precisely one of the equality constraints, say hx(z) =&,
to be continuous but not necessarily quasimonotonic. The proof of this last state-
ment parallels the proofs of Theorems 3 and 4.

POLICY STABILITY

DEerFINE THE optimality region as Q= {2eS;:f(2) =fwp(b)}. Since S; is compact,
and since f is continuous, @ is nonempty and compact.
TrEOREM 5. If S is usc at b and if fuup 18 continuous at b, then Q s usc at b.

In the proof of Theorem 5 we use a lemma which is interesting and perhaps
useful in other respects; for these reasons we state it here.
LemMma. If (i) ACE" and BT E" are closed sets, (i1) Aor B is bounded, and (iii)
ANB3=, then, for all >0, there exists a 5> 0 such that 7:(A) Nys(B) Cn.(ANB).

To illustrate why the continuity of fup at b is needed, consider the following example:
max z: g1(x) £0, x <10 and —x <10, where

(z—1)3, if z=1.

Note ©2(0, 10, 10) = {1}. Consider b* =(—1/k3, 10, 10). Note that f.up is discontinuous at
b=(0, 10, 10) and Q(b*) = { —~1/k} for all k=1. Clearly, @ is not usc at b.

Now let us consider lower semicontinuity. Note that the results of the previous
section do not apply, because the strict interiority assumption cannot be met.
Moreover, it is possible for  to be Isc at b and not be able to extend to functional
perturbation (as in Theorem 1).

3, if z=0,
g1(z)=10, if 0szs1,

For example, consider
max{z+y:z+ysh, z, y20}.
Note that
‘ Q={(z, y)20:2+y=>b}

for all b. Therefore, if b*—b and € >0, then
ancﬂeﬂb
for n sufficiently large. However, consider

max{z+y:z+ey=l, z, y=0}.
Observe that
Qa)={(z, y)20:z+y=1} if a=1,

Qa)={1,0)} if a>1,
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and
Qa)={(0, 1/a)} if a<l.

Therefore, if a™—1, we do not satisfy Q(a) c7Q(a”) for any n if e <14.

CoROLLARY 5.1. If Q is usc at b and if there exists $>0 such that, for all beN (D),
Q, consists of a single point, then Q s lsc at b.

Note that, if fis strictly concave and if g is explicitly quasiconvex, then we have
policy stablhty Theorem 5 is essentially the same as Theorem 12.2 in DANTZIG,
FoLkMAN, AND SHapiro.”? They proved closedness of the mapping @ at b and
we show usc of the mapping Q at b. In general, if a map is usc and if the image
sets are closed, then the map is closed. Conversely, if a map is closed and its range
on a neighborhood is bounded, then it is usc. Furthermore, Berge™ essentially
proves Theorem 5 (he assumes S is continuous for all beB) and Corollary 5.1;
however, we have included the proof of Theorem 5 here for completeness of the
stability presentation.

Mzver'" has considered this question in relation to the convergence of algo-
rithms, thus demonstrating its importance. However, only the usc of Q is con-
sidered in the same manner as ZaNawiLL™ uses the closedness of Q.

STABLE CLASSES OF PROGRAMS

IN THIS SECTION we establish the closure property for several classes of functions.
First, we define a function u(z) to be increasing if 2=y and z>y implies u(z)>
u(y). If —u(z) isincreasing, then we say u(z) is decreasing.
THEOREM 6. If g(x) is increasing (decreasing) and if I5=@, then cl Iy=Ss.

Next we define a function u(z) to be positively homogeneous of degree p if for any
scalar A= 0 we have u(Az) =\"u(z).
THEOREM 7. If gi(zx) is positively homogeneous of degree pi, b>0, and either p;>0
for all © or p:<O0 for all , then It0 and cl I;= S;.

Now we shall consider ‘periodic functions.” Consider the ‘fractional function’
9:E'—[0, 1), where 6(2) =z—[2] ([2] denotes the greatest integer less than or equal

to z). Let {a’JCE". A function u(z) 1s periodic relative to a basis A =[d, -,
a"] if, for all NeE™, we have u( D27 N a’) =u[ 2=} 6();)a’).
2z 0

For example, consider u(r, y) =sinzx+siny. Let 4 = Then, let (z, y) =

0 2n
(A, A)-A=2w(N;, No). We have u(z, y)=sinf(\)2r+sinf(\)2r =u[f(\)a'+0(\;)a?].
The length of the period is defined to be the volume of the parallelepiped given by P(4) =
{z:x=AA,0=sA=1}. Itiswell known that this volume is the value of the determinant of A.

Define I,(A) = {xeP(A):g(x) <b} and Sy(A) = {zeP(A):g(z) <b}.

TuEoREM 8. Let g be continuous on E™ and periodic relative o a basts A for E".
Ifcl Is(A)=83(A), then cl I3=S;s.

The preceding paragraphs discussed the closure property needed to establish
the lsc of the map whose images are level sets for certain classes of functions. It is
possible to obtain converse statements that emphasize the problem with flat regions
of the constraint functions, as the following result shows. '

THEOREM 9. If g 18 continuous and quasiconvex and if S is lsc at each beB, then g s
explicitly quasiconvex.
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As is well known, stability of mathematical programs involves both the Isc and
the usc of S. Now the usc of S at b can be deduced if we redefine Sy = {zeX :g(z) <
b}, where X ={z:a=z=c}; a and c are (finite) n-vectors. Clearly, without intro-
ducing X (or some such set), it is not possible for S; to be compact when g is, say,
increasing (decreasing).

USC AND LSC POINT-TO-SET MAPPINGS

Evans AND GouLb point out the fact that a monotonic increasing function is an
upper semicontinuous (lower semicontinuous) function at b if and only if it is right-
continuous (left-continuous) at b. A similar result holds for usc and Isc point-to-
set mappings.

Let I be a mapping of XC E™ into the power set of E”. We define:

(1) T is a monotonic increasing mapping if, for every z2y, x, yeX, I'(z) DI(y).

(2) T 1isa right-continuous mapping at y if, for any >0, there exists a §>0 such
that, whenever p(z,y) <é and r=y, then I'(z) C{T(y)].

(3) T isa left-continuous mapping at y if, for any €>0, there exists a §>0 such
that, whenever p(z, ¥) <6 and z=y, I'(y) Cn{I'(z)]

It should be noted that the mapping S defined earlier is 2 monotonic increasing
mapping since, for any b= b, Sy S;.

The following theorem characterizes usc and Isc monotonic increasing mappings.
It should be pointed out that, in the definition of usc and Isc mappmgs the restric-
tion to compact image spaces is not needed for this theorem.
TaEOREM 10. Let T be a monotonic increasing mapping. T is an usc (Isc) mapping
at y if and only if T is a right-continuous (left-continuous) mapping at y.

One can define a monotonic decreasing mapping similarly, and this theorem
will again hold, mutatis mutandis. '

APPENDIX

Proof of Theorem 1. Note that ¢; =83 is a compact set by assumption and that n.(c3) =
7¢(S5). Let heG be given such that max; d(g;, h:) <6, and let A be the m-vector whose ele-
ments are §. Thus —A <h(z) —g(x) <A for all z.

First it will be shown that Ss_aCo,CSsia. Choose any zeSs_a:g(x) b—A. Then
since h(z) <§(x) +A b, we have zeos. Now choose zesy:h(x) £b. Then g(z) —A <h(z) <b
implies §(x) £b+A. Thus zeSs,a.

The necessity is obvious; only the sufficiency will be demonstrated. Given S is usc
(Isc). That is, given any e>0, there is a § >0 such that |b—b| <8 implies Sy C.(S5)[Ss
7¢(Sy)]. Choose b2 =b;+6/2n/m. Then |b—b% =8/2 and Sy Cn.(St)[Ss Cne(Spo)]. Also
choose any heG such that max; d(§s, hi) <8/24/m. By the preceding result, o is usc at g,
since we have

ahC S rar20/m=Se0C1(Ss) =n(07)-

[For Isc choose b;® =b;~8/24/m. For & sufficiently small, b%B, since I3>¢ and 7 is con-
tinuous. Thus o7=S85C7(S0) =né(Ss—A/2\/E) cnelon), since Ss_ajan/m) Cop.]
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Proof of Theorem 2. See Berge.lll

Proof of Theorem 8. Let us suppose (b*, €*) —(b, &) and Sp={1T.n =@ for n 2. Consider
an zeSs{1T; and define for n2n: '

p(ur, z)=inf, {p(u, z):g(u)<b* and h(u)Sen},

p(v", z)=inf, {p(v, 2):g(v)<b" and h(v)2e~}.

Since ST is Isc at (b, &), p(u, ) —0 as (b, e) —(b, &). Similarly p(v*, )—0, so there
exists an n* 27 such that, for n=n* we have p(u", ) <e and p(v*, z) <¢, where ¢>0. Let
w* =au™+(1—a)v” for ae0, 1]. Then, p(w", z)<e for all @ and all n2n*. We have
g(u™) <b”, h(u™) <e®, g(v™) <b™ and h(v") Ze*. Since & is continuous, for each n there exists
an a,e0, 1] such that k(w™) =e*; furthermore, since g(-) is quasiconvex, g(w") <b®. There-
fore, zen(Spn(1T.»). This implies SsMNT: . (Syn[1Ten) for n=n*, so SNT is Isc at (b, &).

To prove the second part of Theorem 3, consider the feasibility of an arbitrary sequence
{(b™, e®)}. Let 1/n be an m-vector with each component equal to 1/n.

Necessity. Since Spn[1T.» g for all n =% and all sequences {(b", €*)} converging to
(b, @), let b»=b—1/n and e"=é—1/n. For any zeSpn[1T.n, g(z) =b—1/n<b and h(z) =
—1/n<é. Therefore, zels(1I;1. Now let b* =b—1/n and e*=é+1/n; then (b, e")—
(b, &) and for any zeSyn1T.s, g(x) <b—1/n <b and h(z) =é+1/n>é. Hence, zelsN1:2

Sufficiency. Let {(", e®)} be any sequence converging to (b, €. Since Spn 1T s =
(Spn T2 N(Spn(1T2), we will establish the theorem by first showing Sy Tin ¢ for all
n=n, t=1, 2, and then show that the intersection is not empty. Since I 573 =p and
IsNI:2 g, there are u and v such that g(u) <b, h(u) >&, g(v) <b, h(v) <é. Define B and v
as Ef—gi(v) =B:>0, i=1,---,m; é'—h(l’) =Bﬂl+x >0; B;-—-gi(U) =v:>0, i1=1,--.,m; h(u) -
&=Ym41>0. Let B=minigicmi1 {Bi, vi} >0 and choose any & such that 8>8>0. Then,
since (b*, e) —(b, &), there exists numbers n;, i =1, - - -, m+1, such that: |b;—b;* <6 for all
nzn;, t=1, ---,m;|é—e" <6 for all n2nmyi.

Let 7 =maxigigmi1 {ns}. Then gi(v) —b; =gi(v) — bi+(Bi—bi") = —Bs+(bi—b:") < —f¢
+6<0 for all n=7, gi(u) —b*<—v;+8<0 for all n2n, h(u) —e®>ymp—06>0 for all

nzn, and h(v) —e® < —Bny1+6 <0 for all n27. Thus, veSpe[1Ton and ueSpr T2 for all
nZn.

We now show there exists an z* such that h(z") =e” and g(z") <b" for each n =7, and
the sequence {(b", ")} is then a feasible sequence. Consider any n =% and choose ureSyn
T? and v"eSps[1Ti. Define [u*, v"] = {z:z =au™+(1 —a)v™ for some ael0, 1]}. Clearly,
[ur, »"]cSy» because g(-) is quasiconvex. Since h(u") 2e® and A(v") Se®, there exists
z"e[u”, v"] such that h(z") =e*. Hence, z"eSy»[ 1T s, and our proof is complete.

Proof of Theorem 4. We shall proceed by induction. First consider k =1. We must
prove that, for n sufficiently large, we have Sz(r: Cne(Senrsin), where € >0 is specified.

Since I5(1I,1 =g and IsMNI25p and g(-) and h(-) are explicitly quasiconvex, then by a
theorem and a lemma of Evans and Gould, SNT! and SNT? are each Isc at (b, &). Thus
by Theorem 3 the mapping SNT=S8M+! is Isc at (B, &) relative to any feasible sequence.

Assume the theorem is true for k—1 equations (and any finite collection of inequalities
satisfying the hypotheses). Let zeSs(Vr:* and define

p(un, z)=inf, {o(u, z):g(u)<b®, hi(u)Zer*, hi(u)=e» for i=1,---, k—1}
and
p(v*, z)=inf, {p(v, 2):g(W)Sb", hr(v)Ser*, hi(w)=e =1, ---, k—1}.

By the induction hypothesis, p(u", ) —0 and p(v*, z) ~0 as n—, since there are only k—1
equations in each case. Thus, for any >0 there exists an 7 such that, for all n 24, p(u", %)
<e and p(v*, ) <e. Define 2" =au™+(1 —a)v™. Observe that, for any a0, 1], g(z*) =b"
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and hi(z") =e¢;" for t=1, - .., k—1, since g(-) and h;(-) are quasiconvex and quasimonotonic,
respectively. But the continuity of A; and the facts that hr(u™) Zex™ and hg(v™) <er™ imply
that there is an ™ =a,u"+(1 —a,)v* for some a,e[0, 1] such that hi(z") =e®. Thus, ze
7e(SpnNrkn), so SsNreE cne(Senl75s).  Hence, SM7* is Isc at (b, &) relative to any feasible
sequence.

Proof of Theorem 5. Since S is usc at b, there exists b >b such that Si is compact’
Therefore, if b®—b, Syn is compact for n27 and QncS;ncS;. Define ¥, = {zeS5:f(z) =
feup(®)}. Note that Qn=Sen(lyun for n2A. Further, ¢ is usc at b, since {zeSi:f(z) 2
Joup(B) —B} is compact for any 8>0. Since f,yup is continuous at b, foup(®") —feup(b). There-
fore, for any v >0 there exists n* such that for n 2n*, Sy» cn,(Ss) and ¥s»Cny(¥5). Hence
Qn c(1485) ((n5). By the Lemma (proved below), for any >0 there exists ¥ >0 such
that (1,85)N(n,¥5) 1.(Ssys). This then implies Qun Cn(Q), as desired.

Proof of the Lemma. Assume that, for all §>0, 7s(4)ns(B) En.(ANB). Let zsens(4)(1
ns(B) and zs¢n.(ANB). Let (5;} be any positive sequence converging monotonically to zero.
Then there is a subsequence of {zs;}, say {zs;,}, such that {zs; }—z, since any infinite se-
quence on a bounded set has a limit point. Now, since 4 is closed, B is closed, and 15,(4) D
M5:41(4) and  75,(B) D1, (B), then Mims(4) =4, Nins(B) =B, M (ns,(4)ns(B)) =
ANB, which is compact. Since AMNB is nonempty and compact, we have zed NB.

Thus, there exists jo such that, for all 7>, 5, ;€N o(2) Ny(ANB) cn(4NB), which
yields the desired contradiction. '

Proof of Theorem 6. Clearly cl I5cSs, so consider zeS;. Our task is to construct a
sequence {z*¥} s such that {z*¥} —z. Let 2%/ and assume each g;(z) is increasing. (If
each g; is descreasing, a similar proof follows.) Define z;*=min{z;° z;} for =1, ---, n.
Then, g(z*) <g(z°) <b, so r*els. If z*=z, then zeclls. Otherwise, define z*=6*z*
(1—-6%z, 6%(0, 1]. Note z* <z and, since z;>z;* for at least one j, z;* <z; for at least one .
Therefore, g(zx) <g(zr) <b. Hence, {z*}cIs as long as 6*>0. Let 6*—0, so z*—z; and
our proof is complete.

Proof of Theorem 7. Clearly I's=¢ since g(0) =0 <b. As before, our task is to construct
{z*¥} <I5 such that {z*}—z, where z is an arbitrary point specified from Ss. Consider
z* =a*z. If gi(z) <b;, then there exists e >0 such that gi(z¥) <b. for |aF—1]| <e. If gi(z) =bs,
then gi(z*) = (a*)?ig.i(z) = (a*)?*b;. If p;>0 for all 7, choose a* =1—1/k, and, if p; <0 for
all 7, choose a* =1+41/k. In either case, since >0, we have g(z*) <b for k sufficiently large.
Therefore, {z*¥} cIs and {z*} —z as k— .

Proof of Theorem 8. Since cl I3 CSs, it suffices to prove that, for any zeSs, there exists a
sequence {r*]—r such that {zF}cI5. Let zeSs be given by z=NA. Define y=
Z’,."_"l 8(\j)a’, so yeP(A). Moreover, since g(y) =g(x) <b, we have yeSi(4). Therefore,
there exists a sequence {y*} CI5(4) such that {y*}—y. Let y*=2 ' afuw’, 0=af =l
Observe {a*} —>8(\;) foreachj=1, ---, n, since the representation of a vector in terms of a
given basis is unique. Now define A\* =\;—0(\;) +a;* and z* = Z’;.'_"l \Fai. Since {af}—
6(\;) for allj=1, - - -, n, {A\*} =\, and hence {z*¥} —z. Moreover,

ON*)=0\i—0(\))+a*)=0(\;)—0(\)+tar=ak

Therefore, g(z*) =g(y*) <b. Hence, {z*} CI}, as required.

Proof of Theorem 9. Let g(-) be quasiconvex and consider any z!s<z?, such that, for
some t (=1, ---, m), g:(2') <g:(x?). We will show g;(\zx!+ (1 —A)2?) <g.(2?) for all Ne(0, 1).
Choose b;=max{g;(z"), g;j(z®} for j=1, --.,m. Observe beB and consider b”=b—
(1/m)e;, where e; is the ith column of the identity matrix. For n sufficiently large, b™eB,

since gi(z?) >gi(z?). Since S is Isc at b, Sy cn(Sp") for n sufficiently large. In particular,
there must exist z* such that p(22 z¢) <e and g(z¢) <b—(1/n)e;.
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Consider y¢=(1 —N)z*+Az!. Observe that gi(y%) sb;—(1/n) <b;, since g is quasicon-
vex. Moreover, as e—0, we obtain a sequence {z¢} such that {z*}—z? since p(z?, 2¢)—0.
Therefore,

ye=Azl4 (1=N)z24 (1—2) (z—z2)—Azl+ (1—=N)x2,
We have, for all >0,
gi(y*) <bi=gi(2?).
Therefore, .
gz (1—=N)z2+ (1—=A) (z—=z?) ) < g:s (z?).
Choose any v¢>0 such that y* <g:(y). Since g; is continuous and since p(z*, z%) <€, we have,
for some ¢,
gi Azt 4 (1=2)z2) < g: Azl (1= N)a?+ (1-2) (2t~ 22) )+ < gi (z?).
Therefore,
g: Azt (1—N)z?) < gi (22),

and, since Ae(O, 1) was arbitrary, the proof is complete.
Proof of Theorem 10. The necessity is obvious from the definition of usc of T' at y.

(Sufficiency.) For any €>0, let >0 define N;(y) such that T' is right-continuous at y
for all 22y, reNs(y). Consider any zeNs(y) and define

5._{‘”57 if z;2y;,
yi+ (yi—=zi), i zi<y;.

Then Z2z and Z2=y and ZeNs(y). Since Z 2y, then by right-continuity of T at y,
I'(Z)Cne(T(y)),
and, since I' is monotonically increasing,
r(z)cr(z).
Thus the sufficiency is proved for usc. For lsc, define
ii={$h if z;2vi
yit(yi—=z;), if z;>y,.
Then Z <z, Z Sy, and TeN;(y), and

M'(y)Ca [T @)]Cn T (@)].
since I'(Z) cTI'(z).
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