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Many theorems involving convex functions have appeared in the literature
since the pioneering work of JENSEN. Recently some results have been ob-
tained for a larger class of functions: quasi-convex. This review sum-
marizes in condensed form results known to date, providing some refine-
ments to gain further generality. An additional objective of this review is
to clarify the structure underlying quasi-convex functions by presenting
analogues to properties of convex functions, and by illustrating where ana-
logues do not exist.

HE CONVEX funection, born from the theory of inequalities,"” has

been a subject of much investigation. The usual definition used for
real scalar-valued functions over a convex subset of E”, say X, is:
DerINITION 1. fiS convex if

S+ (1 =N @] S M (@) + (1= M) f(22)

for all Xe[0, 1] and all z;, z.eX.

An equivalent definition, in terms of its epigraph, is given in Table II
(property 1a). Both are communicating the geometric concept that, for
any two points on the curve (surface), the line segment joining the two
points lies entirely above the curve (surface) between the two points.

One should note that a function can be convex over each of its co-
ordinates (taken one at a time), but not be convex over X. For example,
f(z, y) ==zy is convex over z (for y fixed) and over y (for z fixed), but fails
the defining inequality for (z, 1) = (1, 0), (2, y2) =(0, 1), and A=14.

Many theorems have evolved™ that describe interesting properties of
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convex functions. In many cases the defining inequality could have been
weakened to require only fAxi+(1—\)z.] < max[f(x1), f(x2)], or, equiv-
alently, that only the level sets need be convex.' This led to the de-
velopment of a wider class of functions that are given by:

DerFINITION 2. f i8S quasi-convex if

Fz 4 (1—=N)2o] S max[f(x1), f(22)]

for all \e[0, 1] and all z;, z2¢X.

The negative of a (quasi-) convex function is a (quasi-) concave
function.

The prefix ‘quasi’ means ‘as if.” We thus expect quasi-convex functions
to have some special properties similar to those for convex functions.
Moreover, since every convex function is quasi-convex, we expect the con-
vex function to be more highly structured in that certain properties do not
carry over to the more general class of quasi-convex functions.

DeFiNerT1™ was one of the first persons to recognize some of the
characteristics of functions having convex level sets. He did not name this
class, but he did note that it includes all convex functions and some non-
convex functions. FencrEL™ was one of the early pioneers in formalizing,
naming, and developing the class of quasi-convex functions.

One of the early generalizations that recognized the inherent structure
of quasi-convex functions was Nikamo’s® generalization of von NEu-
MANN’S minimax theorem using BROUWER’s fixed-point theorem. Later
theorems by NasH AND Sion are deseribed by Beree™ utilizing Kaxu-
TANI’S theorem.

Srater®  generalized the KumN-Tucker saddle-point equivalence
theorem, and ArrRow AND ENTHOVEN'! presented an important paper
dealing with quasi-concave optimization problems with an application to
consumer demand.

More recently, Marros™ ! has obtained many important results,
particularly for quadratic functions. Of particular importance to mathe-
matical programming is his algorithm for nonconvex quadratic programs
that are quasi-convex.®™ CorrLe anp FerLanD® subsequently added
to the study of quasi-convex quadratics. MANGASARIAN’S recent book (261
has presented several of the key concepts that concern optimization
problems.

Our analysis is intended to organize the key features of quasi-convexity
and, by comparison with convex functions, add some insight into their
structure. Some of the properties we state are slight generalizations of
those found in the references. Later we shall consider ‘explicitly quasi-
convex’ functions and present a new theorem of importance in semi-infinite
nonlinear programming. First, let us complete our list of definitions in
sections 1 and 2.



A Review of Quasi-Convex Functions 1555

We see in property la (Table II) that an equivalent definition of a
convex function is that its epigraph be a convex set. Thus, this cannot
hold for arbitrary quasi-convex functions. However, an analogous equiv-
alence holds for the level sets of f. Before discussing each entry in Tables
II and III we first provide a table of notation (Table I), and we shall dem-
onstrate classes of functions that are, in general, not convex but quasi-

convex. Also, we wish to define the following:

TABLE I
NotaTioN
Term Meaning
X, 1l The epigraph: {(z, x): xeX, f(x) <z} (see Fig. 1)
[Se, 71 A level set: {x: xeX, f(x)=c} (see Fig. 2)
Xo Relative interior of X
X Closure of X
[X, f) or [ X', 1] The conjugate of [X, f]:
X' ={y: supzexlry—f(x)] <+ o}
J'(9) =supzex[xy—f(x)] for yeX’ (see Fig. 3)
E The extreme points of X
@ The empty set
vf The gradient of f:
of of
V= —y e,
4 (axl ’ ax,,)
H The hessian of f assuming f has continuous second derivatives
D The bordered hessian of f assuming f has continuous second deriva-
tives:
| o Vf
| D;| The jth principal minor of D(j=o, ---, n) (note that {Do|=0)
8ij dij=[1if i=j,
oif 155

DeriNITION 3. fis linear (affine) if f is both concave and convex.
DeriNiTION 4. f i1s quasi-monotonic if f is both quasi-concave and quasi-

convex.

One might suppose that the term ‘quasi-monotonic’ should be ‘quasi-
linear’ in order to keep the analogue intact. However, the term ‘quasi-

linearization’ has been used (se¢e BECKENBACH AND BELLMAN®). We
follow the definition of Martos.”” An example of a nonlinear quasi-
monotonic function is given by:®! f(z) = (¢"z+¢0) /(d"z+dy) where X is a
convex set that does not contain points such that the denominator vanishes.
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f(x)4 [X,£]

Fig. 1. The epigraph.

1. CLASSES OF FUNCTIONS
Ler E,(z) be the rth elementary symmetric function given by:

Ey(z) =201 25,
Ey(z)= 21 Z;:?-i-l T j,
E.(z)=]]:=t ..

£(x )A

m
N

| |
I
I

c
[s™ , f]
Fig. 2. The level set.
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f(x)A

1 'y
I
|
I
|
0 | 1 > x

Fig. 3a. f(z)=2%, X=]0, 1].

Thus, E,(z) is the sum of distinet r-fold products for 1<r<n. Our domain,
X,is taken to be E." = {x:2=0}.

Marcus aAND Lores™ proved that E,(z)"" is concave over X. By
property 19b of Table II we may conclude that a.E,(z)* is quasi-concave
for a,k, =20 (i.e., a,=<0 and %.<0, or a,=0 and k,=0). Moreover, since

f'(y)A

>y

Fig. 3b. The conjugate of f(z)=x? over [0, 1], X'=(—, »),
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the reciprocal of a positive quasi-concave function is quasi-convex, it
follows that a,E,(x)* is quasi-convex for a,k, <0 and zeE,"~{0}.

Another place where quasi-convexity arises is in surrogate mathematical
programming. LueNBERGER '™ developed this approach for quasi-concave
programs. GREENBERG AND Pierskarra™! developed a theoretical
foundation for arbitrary mathematical programs. A key result of this
approach is the construction of a set X and a rule f(x) as follows. Let u(y)
be a real-valued function mapping E"—E", and let v(y) be real-valued
function mapping E*—E™. We define X and f as follows:

X ={z20: sup, {u(y):z"v(y) S0} <},
f(z) =sup, [u(y):2"v(y) £0] for =zeX.

It can be easily proved™ that X is a convex set and f is quasi-convex over
X.

A third class of quasi-convex functions, which need not be convex, was
recently shown by Martos;*** namely, consider the quadratic function
given by f(z) =14 zQx—+cx, where @ is a symmetric matrix. If X=E",
then f(x) is convex if and only if f(x) is quasi-convex (whence @ is positive
semi-definite). However, if X=FE_,", then f(z) may be quasi-convex, yet
not be convex. For example, f(z1, z:) = —z:x» is quasi-convex over E.°
but is not convex.

Marros ™ proved that f(z) is quasi-convex over E." if and only if for
all veE™ we have v"Qu<0 implies [Qv, ¢"5]20, where the notation %20
means that the vector u is either nonpositive or nonnegative (no two
coordinates have opposite signs).

In reference 31 Martos established conditions by which a homogeneous
quadratic (i.e., ¢=0) is quasi-convex and not convex. This was extended
in reference 32; that is, f(z) is quasi-convex over E." and not convex, if
and only if the following three conditions hold:

1. @ =0 and ¢=0.
2. @Q has exactly one negative eigenvalue.
3. There is some geE™ such that Qg =c and ¢q <0.

One can combine convex, concave and linear functions to form quasi-
convex functions. For example, “**%" let g and f be defined on a convex
set X such that f(x) 0 for all zeX. Then, ¢/f is quasi-convex on X if any
of the following 6 hypotheses holds:

1. g is convex and f(x)>0 for all zeX, or ¢ is concave and f(z) <0 for
all zeX, and:

II. fis linear on X, or f is convex on X and g(z) <0 for all zeX, or f is
concave on X and g(x) =0 for all zeX.
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2. ANALOGOUS PROPERTIES

In TaBLEe IT we have grouped key properties in the categories: set relations,
continuity, differentiability, boundedness, extreme values, inequalities, and
transformations. We shall reference proofs and discuss some of them
briefly to see where the defining inequalities apply. It is assumed that the
domain of f, denoted X, is a convex subset of E".

We begin our discussion of Table II with properties 1-3. Fenchel"™
proves 1(a,b) and provides further discussion to add geometric insight.
Martos™' introduced quasi-monotonic functions, and property 2b was
half given in the form: if f is quasi-monotonic and if X is polyhedral, then
[S°% f] is polyhedral for all ¢. This is implied by the convexity of [S°, f]
and [8°, —f]. Because of the way Martos stated his theorem, a converse is
not possible, since the fact that [S°, f] is polyhedral is not sufficient to
guarantee that both [S°, f] and [S°, —f] are convex sets for all ¢. An
example is given by X =[—1, 1] and f(x) =|z|. The form given in Table II
is indeed an equivalence theorem in the spirit of Martos’ result and follows
directly from definition 6. Property 3(a,b) follows directly from 2(a,b).
However, continuity is needed for the sufficiency in 3b. To illustrate why
this is 50, consider f(z) =0if 0=52=<1,2if 1<2=<2,11f2<x=<3. ThesetY
is empty for ¢>0, 1, 2 and for ¢=0, Y =0, 1]; for ¢c=1, Y =(2, 3]; for c=2,
Y=(1,2]. Thus, Y is convex for all ¢, but f is not quasi-convex and hence
is not quasi-monotonic. Figure 4 illustrates this.

The proof of sufficiency in 3b proceeds as follows. It is necessary to
show f is both quasi-convex and quasi-concave for all ¢. Since the proof of
quasi-concavity parallels the proof of quasi-convexity, mutatis mutandsis,
we only demonstrate the latter. Consider any zeX, yeX, and ae(0, 1).
Since X is convex, w=az+(1—a)y belongs to X. Let ¢=max[f(x),
f(y)], we must show f(w) Zc¢ for all w on the line segment joining z and y.
Assume, to the contrary, that for some ae(0, 1) we have f(w) >c. Without
loss of generality let max[f(«),f(y)]=f(y). Then f(w)>f(y)=f(x).
Since f is continuous on the compact line segment joining z and y, there
exists % such that Bz+(1—B)w=wu for some Be(0, 1] and f(u)=c. Now
w = az+(1—a)y={a/[B+a(l—B)]}u+{B(1—a)/[B+a(1—B)]}y, and by
letting vy =a/[8+a(1—8)] we see that w=yu+(1—v)y andve(0,1). Since
Y is convex and ueY, yeY we must have weY, which contradicts f(w) > c.

Property 4a is well known and 4b was recently shown by Evans and
Gourp."™ '

The continuity of a convex function over the interior of its domain was
an early result, and a proof appears in VALENTINE.® Drax" proved 5b.

Property 7a has been known for some time, and we have been unable to
find the first source. Arrow and Enthoven' prove 7b in slightly different
form. They prove that (—1)’|D;/=0 for j=1, - -+, n in order that f be
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ANAL0GOUS (OR GENERALIZED) PROPERTIES

Convex

Quasi-convex

I1a

2a.

3a.

4a.

5a.

6a.

7a.

8a.

oa.
10a.

I1a.

12a.
13a.

14a.

f is convex if and only if [X, f] is a con-
vex set.

fislinear if and only if [ X, f] and [X, —f]
are convex sets.

f is linear if and only if {(z, x): xeX,
f(x)=3z} is a convex set.

[S¢, f1is bounded for all ¢ if and only if
there exists a ¢* such that [S<, f]is non-
empty and bounded.

f is continuous over X°.

One-sided partial derivatives exist every-
where in X0,

Suppose f is twice continuously differ-
entiable on E*. Then, fis convex on E®
if and only if its hessian H(-) is posi-
tive semidefinite throughout E=.

Suppose f is once continuously differen-
tiable on E*. Then, f is convex on E= if
and only if f(y)—f(x) ZV/(x)T(y—2).

Sup, .x° f(x)<+ = if X is compact.
Supzex f(x) =supsex f(#) if X is com-
pact.

Every local minimum is a global mini-
mum.

The set of global minima is convex.
The Kuhn-Tucker constraint qualifica-
tion holds for {x:fi(x)=<o for ¢=1, 2,
-+, m} if there exists an x:f;(x) <o for
alli=1,2, -+, m.

Let X, Y be compact subsets of E* and
Em, respectively, and let f:XXV—E!,
such that for each ye¥V, f(z, -) is concave
and for each xeX, f(-, ¥) is convex. Fur-
ther, let f(x, y) be continuous. Then,
f(x, 9) has a saddie point, say

(x*, y*)eX X7Y.

1b.

2b.

4b.

5b.
6b.

7b.

8b.

ob.
10b.

11b.

12b.
13b.

14b.

f is quasi-convex if and only if [S¢, f]
is a convex set for all c.

f is quasi-monotoni¢ if and only if
[S¢, f1 and [S¢, —f] are convex sets for
all c.

. Let V={xeX:f(x)=c}. If f is quasi-

monotonic, then ¥ is a convex set for
all¢. If ¥V is a convex set for all ¢ and if
f is continuous, then f is quasi-
monotonic.

If [S¢, f1is nonempty and bounded, then
there exists a ¢*>¢ such that [S¢*, f] is
bounded.

f is continuous almost everywhere over
Xo.

One-sided partial derivatives exist al-
most everywhere in X°.

Suppose f is twice continuously differ-
entiable on E*. If f is quasi-convex on
E4n, then |Dj|<o for j=1, ---,n. If
|Dj|<oforj=1, - - -, n, then f is quasi-
convex on E4».

Suppose f is once continuously differen-
tiable on E®. Then f is quasi-convex
on E* if and only if f(y)<f(x) implies
Vf(@)T(y—x)=o.

Sup,.x? fx) <+ if X is compact.
Supzex f(x) =supzeg f(x) if X is com-
pact.

Every local minimum is a global mini-
mum or f is constant in a neighborhood
of the local minimum.

The set of global minima is convex.
The Kuhn-Tucker constraint qualifica-
tion holds for {x:f;(x)<o for i=1, 2,
---, m} i Vfi(x)s#o0 for 7 such that
fi(x)=o0,i=1, 2, -+, m.

Let X, Y be compact subsets of E* and
Em, respectively, and let f: XX Y—El,
such that for each yeV, f(x, -) is quasi-
concave and upper semi-continuous,
and for each xeX, f(-, ¥) is quasi-con-
vex and lower semi-continuous. Then,
there exists a saddle point of f(x.y), say
(x*, y*)eXXY.
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TABLE II—Continued

Convex Quasi-convex

15a. f(Ax) ENf(x) for Aelo, 1] if f(0)=Zo0. 15b. f(Ax) =< f(x) for Aelo, 1] if f(x)=f(0).

16a. g(\)=f(Ax)/A is monotone increasing | 16b. g(A\)=f(Ax) is monotone increasing for
for A\>o if f(o) =0, AeEL Ao if f(x) = (o), NeEL.

17a. gla)=flax+(1—a)y] is convex, over | 17b. g(a)=flax+(1—a)y] is quasi-convex
aelo, 1] for any x, yeX if and only if f is over aelo, 1] for any x, yeX if and only
convex. if f is quasi-convex.

18a. g(x) =supy.rfy(x) is convex, where r is | 18b. g(x)=sup 4o fy(x) is quasi-convex,
any index set. where T is any index set.

19a. g(x)=F[f(x)]is convex if F is convex and | 1gb. g(x) =F[f(x)] is quasi-convex if F is
nondecreasing. nondecreasing.

quasi-concave. The corresponding statement for the quasi-convex func-
tion is given in 7b.

Property 8a is well known™ (and implies property 7a). For a uni-
variate function it is equivalent to saying that the first derivative is mono-
tone nondecreasing. Property 8b was discovered more recently™ and its
converse is used to define the class of ‘pseudo-convex’ functions. **’

Let us look at Fenchel’s™ proof of 9a. For any zeX, we may write
z= D 1 a;z’, where 27¢E and Q1 a;j=1, «=0. Further f(z)=<
> 1t aif(2’). Therefore, we have our result. Now we observe that we
only need the weaker inequality given by f(z) <max;f(z’). Therefore, 9b
follows directly.

f(x)

I

-
I
I
I
|
|
1
1

1
I
!
L
I
I

1
2

w ’_. —— —g
Y
b

o

Fig. 4. Illustration of 3b, where f(z) is not continuous.
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The same argument proves 10(a,b). JerisoN™ first proved 10a in
slightly different form, and Martos 1 extended the convexity result to
quasi-convexity for polyhedral sets. The further extension to convex sets
is immediate. Clearly, when E is finite (as in polyhedral sets), we may use
‘max’ instead of ‘sup.” Moreover, we may use the Krein-Milman s
theorem to prove the corresponding result for any compact subset (need not
be convex) of X.

Property 11a says that f cannot have any ‘flat regions’ that are not global
minima. This fails to be exactly true for quasi-convex functions due to the
allowance of nonconvex epigraphs. PonsteEIN"® observed the corre-
sponding statement in 11b. We shall return to this point in section 4.
Properties 12a and 12b follow from the convexity of level sets as follows.
The optimality region is given by:

(X f(z*)Sf(z) for all zeX}=(Aax {z* f(&%)Sf(2)HAX.

Since the intersection of convex sets is a convex set, the desired properties
follow.

Slater®® proved 13a, and 13b follows from a theorem by ARRoOw,
Hurwicz, AND Uzawa.® It should be observed that in 13a the existence
of a strict interior solution implies Vf:(z) 0 for any z such that fi(x)=0
(assuming differentiability). This follows from the fact that Vfi(z)=0
implies z minimizes (globally) fi. Therefore, if fi(z) =0, there would not
exist a strict interior. The stronger assumptions in 13b are needed, and
Arrow et al.”! proved that, when the feasibility region is convex, then their
constraint qualification fails only if Vf;=0 for some ¢ such that fi(xz)=0.
Their proof shows that the same statement applies to the Kuhn-Tucker
constraint qualification because the cone of differentials they discuss is then
convleﬁc. Further discussion with examples is given in Arrow and Entho-
ven.

Property 14a is the classical saddle-point existence theorem by von
Neumann. The generalization in 14b is due to Sion and is proven and
further discussed by Berge.™

Property 15a is sometimes called a contraction property. It follows
directly as f(Az) =fA\z+(1—N)0]SM(z)+(1—=N)f(0) =Nf(x). The ana-
logue emphasizes that the inequality for quasi-convex functions is a weaker
upper bound, since f(z)>N(z) for A<1 and f(x)>0. Thus, all we can
say is that f(Ar) Sf(x), but contraction does not hold in that f(Ar) may
be equal to f(x) for Ae(0, 1). The proof of 15b is equally direct.

A similar relation holds in 16(a,b). A proof of 16a appears in Becken-
bach and Bellman,® and 16b may be proven as an extension.

Property 17a has been known for some time, but we are unable to
determine priority; property 17b is proven in Arrow and Enthoven. i
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Properties 18a and 18b appear in Fenchel." They follow from the
defining inequality of quasi-convex functions and the ‘triangle inequality’
given by:

sup, {f(z)+g(x)} =sup, {f(z)}+sup, {g(z)}.

Properties 19a and 19b also appear in Fenchel, ™

note that 19b does not require F to be convex.

In summary, the properties of Table II are founded upon the inequality
definitions or the equivalent set definitions. By analyzing a proof that
assumes convexity, it is possible in the cases cited to obtain a direct exten-
sion or an analogue for quasi-convexity.

Marcus™ considered certain ‘matrix functions’ and established conse-

quences of convexity. We shall briefly examine two of his results and
provide analogous theorems for quasi-convex matrix funections.
TaeoreM (Marcus®, p. 323). Let H, be a Sfamily of m-square complex
Hermatian matrices that is convex in the n’ unitary space. Let f(t, - -, &)
be concave on the k-cube generated by the k-fold Cartesian product of I with
tself, where I is an open interval containing the field of every AeH,. Define
¥r on Hy by

and it is important to

Yr(A) =min{f(z"Azy, - -+, ;" Aze) |2 "2;=08;; for 4,j=1, -+, n}.

Then, ¥y 1is concave on H,.

Upon examination of Marcus’s proof, we can easily establish the anal-
ogous result: if f is quasi-conecave on the k-cube, then ¢, is quasi-concave on
H,. _
A second result due to Marcus is the following:

TaroreEM (Marcus™, pp. 321-2). Consider {4 ;};*CH, and define the
etgenvalues of A; as the n-vector \. Let I; be the interval gwen by I;=

[min, \{, max, (’)] and define R=I,X---XI.. Suppose f is convez on R,

and let o be a 1-1 function on the integers 1, - - -, k to the integers 1, ---,n
Then, .
max{f(z, Az, - -+, ;" Awms) |2 2; =65 for 4,5=1,---,n}
=max, f(A iy, < *5 Nl )-

This theorem can be generalized to allow f to be quasi-convex on E.

3. PROPERTIES WITH NO ANALOGUES

By conTrAST to section 2, Table IIT shows some properties that do not
extend, and for which no analogue is apparent.

The additive property (1) is an important property that does not extend
to general quasi-convex functions. To the authors’ knowledge, no non-
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trivial subclass of quasi-convex functions containing nonconvex functions
has been identified as having the additive property.

The conjugate statement in (2) is well known and appears in Fenchel ™
and BrgnpsTED."® RockarerLar®®! provides further discussion. The
second conjugate of [X,f] is the closed convex hull of [X, f] that equals
[X, f1if and only if [X, f] is a closed convex set (hence, f is a closed convex
function). One may note that the minimum of f over X, if it exists, is
preserved in that it equals the minimum of f over X"’

The boundedness property in (3) is proven by Fenchel." To illustrate
where this does not hold, consider f(z) =1/(x—1) for z¢[0, 1) and f(1)=0.
Note that f(z) is quasi-convex, but inf,xo f(z) = — .

The transposition theorem (4) was proven two ways by Fan, GLicks-

TABLE III
ProrErTIES OF CONVEX FuncrioNs wrim No ANALOGUE FOR Quasi-CONVEX FUNCTIONS
1. af (x)+Bg(x) is convex if @, =0
2. [X, f1"=[X, f] if [X, f] is closed
3. Inf, x?f(x)>— if X is bounded
4. Let F(x)=[fi(x), -, fm(x)], where f;(») has domain X for each j=1, ---, m. Then,

there exists xeX such that F(x) <o if and only if there exists no AeE+™ and As%o, such that
NF(x)>o0 for all xeX.

BERG, AND Horrman.™

analogue is apparent.

In the spirit of Table III there are results that hold for quasi-convex
functions, and the prefix ‘quasi’ may not be removed. One of these (re-
lated to property 3 of Table III) was observed by Martos:®!  If, for each
compact convex subset of X, the global maximum of f is achieved and occurs at
one of its extreme points, then f is quasi-convex.

Neither of their proofs generalizes, and no

4. EXPLICITLY AND STRICTLY QUASI-CONVEX FUNCTIONS

THE LITERATURE ON quasi-convex functions contains two definitions: (1)
explicitly quasi-convex and (2) strictly quasi-convex functions. The fol-
lowing paragraphs state these definitions and specify when they coincide
and when they do not coincide. The discussion is then followed by some
results illustrating the strong properties of explicitly quasi-convex functions.
DerINITION 5. A function f with convex domain X is explicitly quasi-con-
vex™ if it is quasi-convex and if f(z)#f(z2), implies fAz+(1—\) 22 <
max[f(x1), f(x2)] for all Xe(0, 1).

DErFiNITION 6. A function f with convex domain X is strictly quasi-con-
vex™ if f(x)#=f(2:) implies fAzi+(1—\) o] <max[f(2), f(z.)] for all
Ae(0, 1).
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Note that a strictly quasi-convex function need not be quasi-convex.
Karamarp1aN® provided the following example: f(z) =1if 2=0, 0if 2=0.
The level set {z:f(x) <0} is not convex, but f is strictly quasi-convex.
Karamardian then proceeded to prove that a strictly quasi-convex function
Is quasi-convex if it is lower semicontinuous over S. Thus for functions
that are lower semicontinuous on X the two definitions, explicitly quasi-
convex and strictly quasi-convex, coincide.

We observe that every convex function is explicitly quasi-convex. To
see this, observe that for any 2, z,eX such that f(z1) <f(x:) and for any
Ae(0, 1) we have fIzzi+(1—N)z] S M (1) + (1= N)f(22) <f(22). Now let
us consider what properties may'be strengthened.

Property 11b in Table IT may then be extended to the following state-
ment: If f(x) is explicitly quasi-convex, then every local minimum is a global
mintmum. We caution the reader not to draw the inference that every
stationary point is a minimum. For example, f(z) =2’ is explicitly quasi-
convex but has an inflection point at the origin.

Second, the ‘quasi-contraction’ property in 15b (Table II) may be
strengthened to: f(Ax) <f(z) for all \e(0, 1) 4f f(z) >f(0). This is still not
as strong as the contraction property in 15a but it is stronger than 15b.

Let us consider property 18b. If f,(z) is explicitly quasi-convex over
X for each yeT', then g(z) =sup,.r f,(2) need not be explicitly quasi-convex.
For example, consider the following:

x3+'y(x——10) if —1=2=<0,
Jy(z) =47(2—10) if0<z=1,
(x—1)*4y(2—10) if 122,

X={2:—1=22¢52}, TI'={y:0<v}.
Observe that
z if —1=2=0,
g9(z) =sup,5o f(x) =40 if 021,
(z—1)® if 1522,

which is not explicitly quasi-convex. To see this, let z;=—1, z,=1, and
A=14. Theng(—1)=—1<g(1)=0, but g(0) =0« max[g(—1), g(1)]=0.
It is obvious, however, that, if there exists y*¢I' such that g(z) = Sor(z)
for all zeX, then g(x) is explicitly quasi-convex because f,«(2) is assumed to
be so. (Note that v* is independent of z.)
More generally we can establish the following:
THEOREM. Let {f,(x), veT'} be a collection of explicitly quasi-convexr func-
tions with common domain X, where T is an index set, and define g(zx) =
sup, {fy(z) :vel'} for each xeX. Then if, for each zeX, there exists at least
one veT', say v*(z), such that g(z) = fyr (), then g(x) 1s explicitly quasi-
convex on X.
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Proof. By 18b, g(2) is quasi-convex, so it remains to establish the strict
inequality given by glazi+ (1—a)z]<max[g(z:), g(z.)] for all ae(0, 1) if
g(21) #g(x2).

Suppose, to the contrary, that g(2;)>g¢(2:) and for some z=az;+
(1—a)2,, we have g(z) =g(z1).

By our hypothesis, there exists v*(z), v*(21) and ¥ *(2,) €T such that
9(z) =frx(2), g(z1) —fwm)(zx) and (@)= ~Jen(z2). For notational
convenience, let v*(z) =v*, v*(2;) =v,* and v *(22) =v2". Then, we have,
by our supposition, f,.(2)=g(z)=g(21)=fy*(21). Since f,(z) is ex-
plicitly quasi-convex, we have f,«(2) Smax[f,s(21), fy(22)]. If fou(a1) 5
Jy+(22), then this inequality is strict. Further, by definition, we have
fye(2) =f>1(21) and foe(22) Sfy3(22). Therefore, if fos(a1) =f4e(22), We
have

g(x) =fye(z) <max[f (1), fy(22)]
S max[fy3(a1), fr3(22)] =maxg(z1), g(z2)],

so that g(z)<g(2), which is a contradiction. On the other hand, if
Sy (@) =f(22), then g(z) Sfri(22) =g(2:) <g(m), and we again have a
contradiction. Hence, the proof is complete. Martos® established an-
other interesting property of importance in nonlinear programming. A
fundamental question is, ‘What class of functions has the properties that it
achieves its minimum at a vertex and that every local minimum is a global
minimum?’ The importance of this rests with the application of adjacent-
vertex methods. In the previous section we quoted a theorem of Martos
with regard to the vertex property. Martos™! also established the follow-
ing proposition:

Let X be a convex set with at least two points, and let f be lower semi-con-
tinuous on S. Suppose P 1is the class of compact, convex subsets of X contain-
ing at least 2 points. If, for each SeP, every local mintmum of f on S is a
global minimum of f on S, then f is explicitly quasi-convex.

A property of explicitly quasi-convex functions that need not hold for
other quasi- convex functions occurs in E'; namely, if there exists a global
minimum z*, then let 7 be an interval where f(x)=f(z*) for zel. An ex-
plicitly qua51 convex function has the property that, for z to the left of I,
f(z) strictly decreases and, for x to the right of I, f(z) strictly increases.
This property allows certain sequential search schemes, such as Fibonaceci
search, to reduce successively a given interval [e,b] to a subinterval contain-
ing an optimum point in I.

Finally, let us consider a property of exphc1t1y quasi-convex functions
that need not hold for quasi-convex functions in general. Namely, EvaNs
AND Gourp™ showed that, if F(z)=[fi(x), -+, fu(z)] is a vector of m
explicitly quasi-convex continuous functions with domain E", and if the
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strict interior of the level set given by I'={z:F(z) <0} is not empty, then
its closure has the property I={z:F(z)=<0}. This need not hold for a
quasi-convex function in general as illustrated by the function™ j(z) =4’ if
2<0,0if 0=2=<1, (z—1)%if z=1.

The importance of this property was developed by Evans and Gould, ™
where they established sufficient conditions for the continuity of the func-
tion given by f*(b) =sup, {fo(z)|F(z) <b, zeEr} for beB={b:F(z)<b for
some zeE"}.

This has to do with stability in ‘value space,” and GREENBERG AND
Pierskarna ™ extended some of their results to perturbations of the funec-
tions f;(z) (rather than only allowing perturbations of b). A conclusion is
that, if F(z) is explicitly quasi-concave and lower semicontinuous and if
fo(z) is lower semicontinuous, then f*(b) is lower semicontinuous at each
beB. (The upper semicontinuity follows from the compactness of the
feasibility region. ™" 1)

In summary, the stronger inequality defining explicitly quasi-convex
functions provides the needed stability properties not generally held by
other quasi-convex functions. It still admits a larger class of functions
than convex, and allows discontinuities.

5. CONCLUSIONS

IT wouLp BE an unnecessarily monumental task to gather each and every
result for convex functions to see if it could be extended to quasi-convex
functions. What we have done in this review is present some of the princi-
pal developments in the categories given by:

1. Relation to convex sets.

Continuity, boundedness, and differentiability.
Extreme values.

Inequalities.

Transforms.

ob e

We have drawn analogues in Table II to indicate how the weaker in-
equality of quasi-convexity may be sufficient to obtain a property possessed
in related form by convex functions. Table III is included to illustrate
where the stronger defining inequality is needed. Martos observed one
case where the weaker inequality is needed to draw the given conclusion.

Berge'™ describes an interesting key to the relation of convex and quasi-
convex functions. Let ® be a class of functions satisfying

¢1(21) <¢p2(22)
¢1(z2) <gpo(2)

¢1(21) = a(11)
d1(22) =¢a(T2)

}=>¢1(x) <¢o(z) for all x=am+(1—a)xs, a0, 1]. (1)

}=>¢1(:c) =¢o(z) for all z=am+ (1—a)xs, a€f0,1]. (2)
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Then, fis a sub—® function (with respect to ¢ed) if

(@) So(11)
f(22) Sp(22)

We see that linear affine functions are in ®, i.e., ¢(z) =az+b. Then, if
f(x) =¢(x;1) and f(x2) =¢(x2), we require (for f to be sub—®)

flazi+ (1—a) 5] S plaz+ (1 —a) xa] =
ap(21) +(1—)p(@2) =af (21) +(1—a)f(22).

Thus, the linear affine functions generate convex functions.

}:,A,f(a;) <¢(z) for z=azi+(1—a)z,, a0, 1].

Further, constant functions are in &, i.e., ¢(2)=b. Then, if ¢(x;)=
¢(z2) =b and b=max{f(z1), f(x:)} we require flaxi+ (1—a)z.] <¢laz+
(1—a)zg] =b=max[f(21), f(x:)] in order that f be sub—®. Thus, the con-
stant functions generate quasi-convex functions.

One may carry this further to generate further classes of functions with
certain properties. For example, consider property 15 in Table II. Sup-
pose ¢ is positively homogeneous of degree p(=0), i.e., ¢(Azx) =\"¢(x) for
all A=20. Then, we generate functions of the form f(Az) <M\*f(z). For
p=0, we obtain a result related to property 15b, and for p=1, we obtain a
result related to 15a.

Also, if X=E,", then Berge" reports a result of Bourbaki that states:
If f(z) >0 for all 220 (and zeE "), and if f(Azx) =\f(z) for all A\=0, then
f is convex if and only if f is quasi-convex. Thus, positively homogeneous
(of degree 1) positive functions (for z30), which are quasi-convex, are
necessarily convex and hence possess all the properties of convex functions.

In reviewing this paper, Bela Martos kindly pointed out another possi-
bility that yields a continuous-parameter transition from convex to quasi-
convex functions. Furthermore, he proved the following theorems.

Let f be a numerical function defined on a convex set Sin E”; then fis a
w-conver function (w>0) on X if, for any z;, z.eX and any ae0, 1], it
follows that

flazi+ (1 —a) 2]  (1/w)In[ae™ P 4 (1—a)e™ 7).
Let C* be the class of w-convex functions on X and let C° be the class of
functions given by: feC® if and only if
flazi+(1—a) 25) £ limy.o (1/w)Infee™ 4+ (1—a)e™ ).
Similarly, let C* be the class of functions satisfying
flazi+ (1 —a) 25) £ limysw (1/w)Infee™ 4+ (1—a)e™ 2],

TueoreM. C° is the class of convex functions on X and C” is the class of
quast-convex functions on X.
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Further, let f and ¢ be defined on X and consider
h(x) = ( l/w)ln[ﬁewﬂx)—l—‘yew”(z)],

wherey, 8=0. Call A a nonnegative w-combination of f and g. Property 1
of Table ITI (w=0) is analogous to property 18b in Table II (w= ») by
noting the following:

THEOREM. Nonnegative w-combinations of w-convex functions are w-convex.
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