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This paper presents an approach, similar to penalty functions, for solving
arbitrary mathematical programs. The surrogate mathematical program
is a lesser constrained problem that, in some cases, may be solved with
dynamic programming. The paper deals with the theoretical development
of this surrogate approach.

ONSIDER A mathematical program given by (the bar below z indi-
dicating a row vector, the bar above a column vector, so that the
transpose of z is Z):

P: Maximize f(z): g(,:c) <b’ and zeX,

where f maps E” into the reals; g maps E" into E™; X is a closed subset of

E"; z is a decision vector; and b° is a given ‘resource’ vector in E”. We
postulate that P has a solution and that X is compact.

Everert'® has developed a Lagrangian penalty-function approach.
His generalized-Lagrange-multiplier (GLM) method solves a succession of
problems given by:

E: max f(z)—7j(z): zeX.

The m-dimensional vector, }, is selected from E,™=[A: A=0]. A solution
to P is at hand when the solution to E satisfies the complementary slack-
ness condition given by: A*§(z*) =21*5° and g(:p*) <b°, where z* solves E
for A=2\*

Brooks aNp GeorrrioN' have related this to the classical work of
Kunn anp Tucker’s"™ saddle-point equivalence by showing that, if A*
exists, then (z*, \*) is a saddle point of the Lagrangian:

L(z, \) =f(z) —Mj(z)+2b".

It is possible for no value of A to exist to satisfy the complementary slack-
ness required for termination. The values of b for which no such A exists
are termed ‘gaps.’ BELLMORE, GREENBERG, AND Jarvis™ have elaborated
upon this and proved some theorems regarding the gap problem. More-
over, the gap problem can be related to the conjugate function of the opti-
mal response f*(b), which is defined by
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() =f(z"), where z* solves P.

This is discussed in GreENBERG,"™ and further analyzed geometrically by
Gourp."”
In this paper we use the conceptual framework of GLM to construct
a different approach having less of a gap problem. A surrogate problem
is defined by
S: max f(z): M(z) X" and  zeX,

where ) is selected from E.,™ A surrogate gap exists if there does not
exist a A=0 such that S solves P. ‘

Without loss of generality, we consider AeA={A:AZ=0, D 7 N=1}.
The advantage of using A instead of E,™ lies in the fact that A is a bounded
as well as a closed convex set of points, and one of the multipliers is de-
termined. Henceforth we shall consider the S problem to be defined for
AeA.

Grover' first introduced this approach for 0-1 integer programming.
The constraint given by Aj(z) S\b is called a surrogate constraint to P.
The use of surrogate constraints in 0-1 programming has been further
analyzed by Baras,’” Grorrrion,”™ and Grover.™ Our approach will
generalize their results and unify them with other approaches taken in
mathematical programming (viz., Everett’s GLM).

BASIC THEORY

In THIS sECTION We shall describe some of the many relations among E, S,
and P problems. Clearly f(zs*) =f(zr") for all AeA, where z5* solves S,
and 2" solves P. Hence, if z" is feasible in P, it solves P. One question
is existence: Does A contain a point, say A*, such that zs* solves P? This
is similar to the gap question in E, which asks: Does E,™ contain a point,
A*, such that zz* solves P?
LemMa 1. If there exists \*#0 such that zz* solves P, then z5" solves S for
A=Q%/ 2N,

Note that, when \* =0, then zz* solves S for any \eA, since this means
that the unconstrained maximum of f is feasible in P (and hence S).

Lemma 1 says that, if Everett’s GLM can solve P, then the surrogate
approach can also solve P. The converse is not true, as we shall see shortly.

Proof. If zz" solves P for A=\* then f(zz")—N*6"2f(z) —\*G(z)
for all zeX. Therefore, f(zz")=f(z)+2* [6°—g(z)] for zeX. Hence,
f(zx") =f(z) for all zeX such that \*G(z) £A*B° or, equivalently, such that
/2020 AHa(z) (VY 0IEr MF)B'. Therefore, zz* solves S, and the
proof is complete.

It will be convenient to define the optimal Lagrangian for P (and S) as
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H(y, )) =supsex {f(z) —v2j(z) +770"}
over the set

{(v,2) 1720, heA and  supsex {f(2) —7AG(2) +N0°} <+ .

It is well known that this set is convex. The scale factor v in the Lagran-
gian is necessary, since the Lagrange multipliers must be chosen from the
nonnegative orthant, whereas our \’s belong to the compact set A. Thus,
it is apparent that S has one less multiplier than E. Further, we define

F(}) =sup.cx f(2): Mi(z) S2°
over the set
A'={A1 e, SuPzex [f(2): M(2) SN <+ ).

It is easy to prove that A’ is convex. Moreover, for the results of concern
here it is convenient to assume A’=A. Also, applications of this theory
will assume that ‘sup’ can be replaced by ‘max.” Of course, this may not
be valid, but context dictates the implied assumptions.

It can be shown'® that, every time the E model is solved for some },
a P problem is solved for b: \b=)\j(zz ) and 6= §(zz"). A similar result
holds for the S problem.
Lemma 2. If 25" solves S, then zs* solves P for any b*: b*=g(zs*) and
AD* = AD°.

The proof follows from the fact that zs* solves S for any b* given by the
above relations and that 25" is feasible in P for b*=¢(zs").

This is more general than the above statement regarding the E model
in that we do not require complementary slackness. Note that, if zs"
solves S, then Lemma 2 implies the analogue of the E-model property that
zs" solves P for any b™: b*=g(zs") and M* =2g(zs").

It is also possible to relate the surrogate multiplier to the Lagrange
multiplier.

LemMma 3. If P is Lagrange regular (i.e., the Kuhn-Tucker conditions are
necessary™™), and if \* exists such that S solves P, then v-\* is a Lagrange
multiplier for P for some v=0.

Proof. If P is Lagrange regular, so is S. Hence, 25" satisfies V/—
v 2 isr MVg =0 for somey=0. This completes the proof.

Suppose A\* does exist such that S solves P. How do we find it? To
develop a convergent search scheme, it is important to recognize properties
of A\*. In Everett’s model, we are utilizing saddle-point equivalence.
That is, if A* exists such that E solves P, then (z*, A*) is a saddle-point
of the Lagrangian. This fact leads to classical search schemes for minimi-
zation with respect to A=0. It is also well known that H(y, ) is convex



Surrogate Mathematical Programming 927

over E,™. This is an important property, since the multipliers we seek in
GLM minimize H(y, A).

One of the results of this paper is to show a similar minimizing property
for S.
THEOREM 1. If S solves P for A\=\*, then 2\* minimizes F(\): heA.

Proof. By definition, we have F()\)=max f(z): Aj(z) <b°. Since
S solves P, let their solution be denoted as z*. Now g¢(z*) <b® implies
AG(2*) SAB° for all NeA. Hence, F(A)=f(z*)=F()\*). This completes
the proof. '

Lemma 1 shows that A* exists for S and provides a solution zs* to P
whenever E has no gap (e.g., a convex program). In that case, if P is
Lagrange regular, then

maxaex [f(2) : Mg (2) N8 =maxzex [f(2): 2 *9(2) =270’),

since Lagrange regularity implies the complementary slackness condition:
A*G(z*) =2*B°, where z* is a solution to P. However, for the surrogate
problem in general we have

maXeer [f(2) : Aj(2) SM0"12 maxeex [f(2) : Mg(2) =20,

We will now give an example to show that, when the E problem has a
gap, the corresponding S problem may not have a gap, and, indeed, for the
example, the solution to S solves P.

Consider the integer program P: Maximize x, +z» subject to (1) 2; +2z. =4 =b
(2) 2x) 422 <3 =b2%; 21, 22 20 and integer.

First, consider two E problems:

A. Place (1) in objective. Then, E 4 : Maximize x; +22—A(21 4+2z2) subject to:
21, +22<3; 1, 2220 and integer. For A =14, we obtain two solutions as z'=(1,
1), 22=(0, 8). The values of b, obtained are &' =3 and b,>=6. Thus, the desired
b =b"=4is in a gap.

B. Place (2) in objective. Then, Ep: Maximize &, +22—A(22;+2,) subject to:
21422, =4; 21, 2220 and integer. For A =14, the solutions to Ep are z'=(4, 0),
z2=(0, 2). The corresponding values of b, obtained are bs'=8, b?=2. Thus,
b, =3 is in a gap.

Since A and B yield gaps, placing both constraints in the objective must neces-
sarily yield a gap. [This follows, since, if z* solves P and E, then z* solves max
[f(z) —\gh(z): Jo(z) b2 for any partition of §=(gi, §2).] We thus omit this case.
Let us now consider the surrogate model with A = {A: 0 <X =1} so that \.=X and
)\1 =1-—-X\:

S: Maximize,.x Z1-+2: subject to (L4+Nz+@—N)z: =42,

where 0 <A =1. For X\ =14, then, solutions to S are 2! =(2, 0), 2?=(1, 1), 2*=
(0, 2), and z? and z® are feasible in P. Thus, S solves P for A =14.

We note that the source of the E-gap was lack of complementary slack-
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ness due to integer constraints, and both models A and B actually obtained
a solution (but could not deduce that it was optimal). The surrogate
model successfully resolved this gap because complementary slackness did
not need to hold.

Moreover, it is possible for S to have a solution, while E is unbounded.

i

For example, consider: maxZ::{‘ z 2, subject to: Zi==1 z;5b; 1+ Za;
z =0, where b>a >0. E has no solution, but S has a solution for A =(1, 0) given
by z;* =b for some i1, n, and z;* =0 for j>=¢. This solves P.

Heuristically, we are trading the gap problem and the number of multi-
pliers for the extra computation of solving a one-constraint mathematical
program rather than an unconstrained mathematical program. To carry
this further, P represents a difficult problem insofar as multiple constraints
tend to reduce the efficiency of methods such as dynamic programming or
gradient projection. Problem E represents the other extreme, where an
entirely different objective is constructed, and may fail to solve P. The
surrogate problem, S, is somewhat between these extremes.

But what can be said about the gap problem in S? The next result
states how to detect a surrogate gap.

Let problem S have a collection ©* of multiple solutions for a given A.
That is, 2* () = {z": f(z*) =max f(z): \j(z) £MB°, zeX}. Define T'(})
as the index set of the elements of (1) [T'(A) may be finite, denumerable
or nondenumerable]. It may be convenient for the reader to consider the
finite case to best understand Theorem 2.

For any solution ,%eQ*(A), veT'(D), let

B,(A)=1{b:bzg(z,") and M=)},

where b° is the original b given in P, ie., by Lemma 2, z,* solves P for
any beB,(A). Let

B(\)=U,am By(d) and B=Ua BQ}).

Thus, if beB, there is a \eA such that a solution to S exists that solves
P for that b. Of course, we would like 5° to be in B, because if 5°¢B there
is no AeA such that S solves P for ° and 5° is in a surrogate gap.

NoTe. B contains all right-hand sides obtained by GLM, but may contain
others failing the complementary slackness conditions. To see this, observe that,
if AB® =Ng(z,*) for some ~veI'(\) and AeA, then B,()\) contains those b with com-
plementary slackness as in GLM. That is, gi(z,*) =b; if \:>0, and g:(z,*) <bs if
\:=0, and z,* is optimal for P.

Denote the convex hull of the points g(:p.,*), veI'(A) by C()); that is,
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beC(N) if, and only if, b is a convex combination of the vectors g(g:.,*)

that are said to span C(}).

THEOREM 2. Suppose there exists NeA such that b°¢C()\). Then, either
there exists veI'(N) such that z.,* solves P, or there exists no AeA such that a
solution to S is a solution to P (i.e., b°is in a gap).

Proof. Let z° be any optimal solution to P. Let AeA be such that
b°eC(A). If 2° solves 8, then z’=z," for some yeI'(}), and, since z° is
feasible in P, 5°B()). If 2" does not solve S, then f(z°) <f(z,*) for all
veB()), since z’ is always feasible in 8. Now assume, to the contrary,
that b°eB; that is, assume there is a multiplier A%A such that S solves P.
By virtue of the inequality f(z°) <f(z,") for all yeI'(A), z,* is not a solu-
tion to P for any yeI'(A), and A°G(z,*) >2%° for all veI'(A). Therefore,
for any point 7eC()), 2’7 > %", since 7 is just a convex combination of the
vectors §(z,°), veI'(A). But 5°%C()\), and hence we obtain the contradic-
tion. A more elaborate description of the argument for Everett gaps
appears in reference 3.

For the case of two constraints (m =2), Fig. 1 gives a geometrical interpretation
of how a gap can be viewed in the resource plane. Since there are only two con-
straints, we use only one surrogate variable Ne[0, 1], i.e., \; =\ and Ag=1—X. As-
sume that for some A*e(0, 1) we obtain the two alternate optima £ and z’ which
correspondingly solve S for g(£) =b and g(z’) =¥, where b=(b;, by) and b’ = (b,
by). Also assume that b is a strict convex combination of b and b’ [thus b° =ab +
(1-a)l’ for some ae(0, 1)]. Now, neither £ nor z’ is feasible for P and f(£) =
f(&") >f(z° (recall 2° is the optimal for P; thus z° is feasible for S).

In Fig. 1 the dark region represents the points [gi(z), g2(z)] such that g.(z) <
bi® i =1, 2; thus, it is the image in the resource plane of the feasibility region for P.
The vertically lined region represents the points [g1(z), g2(z)] such that Agi(z) +
(1 =N)g2(z) A, +(1 —N)by?; thus, it is the image in the resource plane of the
feasibility region for S. Note that the dark region is contained in the vertically
lined region, since any z feasible in P is also feasible in S. The cross-lined region
(in the upper right corner of the figure) represents the points [g;(z), g2(z)] such that
g"'(a.:) >bs, t=1, 2.

Now, if A* is decreased, the point 2’ remains feasible, since b’ is still in the ver-
tically lined region, so F(A\*—¢) 2F(\*) =f(2’). If A\* is increased, the point &
remains feasible, since b is still in the vertically lined region, so F(A\*+¢) 2F(\*) =
J@).

Thus, no matter whether \* is increased or decreased, either £ or z’ remains
feasible in the new S problem, the new value of f is at least as large as f(£) =f(z'),
and we can never find a A that allows us to solve P by solving S.

We noted that Theorem 2 gives a sufficient condition for gaps to occur.
With a few additional assumptions, it is possible to state sufficient condi-
tions such that no such gap exists. In this regard, we know from refer-
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ences 3, 10, and 11 that, in the E problem, no gap exists for all b such that
P has a strict interior [i.e., there exists an zeX such that g(z) <B] if, and
only if, f*(d) is a coneave function. For the § problem we can weaken the
concavity of f*(b) to say: if f*(b) is a closed quasiconcave function then
S has no gaps. [A function ¥ defined over a convex set A is quasiconvex if
F(ah+(1—a)de) Smax[F (A1), F(Xe)] for all Ay, MeA and ae0, 1]. It is
closed if its epigraph is a closed set.]

CoroLLARY 2.1.  If b°%C(A*), where \* minimizes F()), if ¥ (b) is a closed

b

2

e
siope =
M pe= ¥ N IN S

Fig. 1. Illustration of a surrogate gap in the resource plane (m=2).

quasiconcave function, and if B,()\) 1s a closed (convex) set for all \eA, then
b°eB,(\*) (i.e., S has no such gap).
Proof. Let

v =% ") 2, () forall beB,(A)}NB,(A).

Since f*(b) is a closed quasiconcave function and B,()\) is a closed convex
set for all AeA, then ¥(}) is a closed convex set for all AeA. In p@rticular,
¥(2*) isa closed convex set and g(z,*) e¢(\*) for yeI'(A*). Since 6°C()*),
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b= Z,gl a1g(:§,-*) for a;=0, B i a;=1. Hence, b’ey(\*)cB,(2Y).
The proof is complete.
This corollary may be further weakened if we define

F()) =sup{f(z): Mj(z) SN, zeX},
=sup{f*(b): \b=A6® and §(z)<b for some zeX}.

In addition, we need to assume that, for some \%A, F(A®) <+ « and since
the sets of interest are closed and f*(b) is closed, then, for this \’ [and all
A F(A) SF()\%)], we can replace sup by max. Then in the corollary we
can replace the sets B,(\) by

RA)={b: b=\’ and g§(z)<b for some zeX}.

In LueENBERGER’s paper,"® sufficient conditions for the quasiconcavity
of f*(b) were given, and the conclusions of Corollary 2.1 deduced for his
more restrictive assumptions.

We now proceed to a theorem that yields some bounds on the optimal
value to the objective function in P. The theorem essentially states that
every solution to S yields an upper bound for P. Let Q= U’.‘.‘A Q*( M.
ToeoreM 3. If 2° is an optimal solution to P, then (i) if b'eB, f(z°) <
f(£*) for all z*eQ*, and (ii) if b%¢B, f(2°) <f(z*) for all z* 0",

Proof. Part (i) is obvious from the fact that z° is feasible in S for any
XeA and hence f(zs°) =f(2°). Part (ii) follows directly by contradiction.

We also note, by (ii):

CoRoLLARY 3.1. Ifb%B and if F()) is continuous, then f(z") <minea F(}).
Without the continuity assumption, F may not assume its minimum i A.
All we can say then is f(z°) < infaea F()).  The tnequality is no longer strict.

A comparable result that relates the preceding theorem involving the
S and P problems to the E problem can also be given.

TuroreM 4. If z° is an optimal solution to P, then for fixed \*eA and all
zeX:
(i)

f(xo>{§max{f(;v) 1 A*g(2)

N
<max{f(z) —"[§(z) —b"

by
1} for all 20,
and
(ii)  4f zs* is optimal for S for Z\*eA and if 2 g (zs") <\*B°, then
f(2°) £f(zs*) <max{f(z) —7A*[§(z) —b]} forall y>0.
Proof. Let H(vy, \)=max{f(z) —yMg(z) —b']}, zeX. Then part (i)
says that f(z°) SF(\*) £H(y, )*), and part (ii) says that f(2") S F(\*) <

H(y; \*). In both parts the first inequality follows from Theorem 3.
To show F(\*)<H(y, A*), observe that —\*[7(zs")—0’]=0 implies
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fzs*) =f(zs") =¥ [g(2s") —b] S max{f(z) =2 *[g(z) —b"]}, and the in-
equality is strict when —\*[7(zs*)—8%>0 and y>0. The proof is com-
plete.

The essence of the preceding theorem lies in the fact that the surrogate
gap region is always contained in the GLM gap region, and under (ii) the
surrogate gap region is a proper subset of the GLM gap region when com-
plementary slackness \*g(zs*) =A*8° does not hold in the surrogate model.
That is, if we solve E and obtain a gap for A=77¥, where \*eA and v=0,
and, if we then solve S for A* and obtain A*§(zs*) <A*B°, we may have been
able to strictly reduce the gap region. The knapsack example presented
earlier is of this type.

SOME PROPERTIES OF F(\)

IN THE PRECEDING section we noted that, once a minimizing AeA is found,
we either have the optimal solution to P or else we have discovered an S
gap. It is natural therefore to seek a minimizing A=)\*. In attempting
to find A*, it would be helpful to know whether F(\) possesses certain
properties. We now present three theorems pertaining to the structure of
F()).

TaEOREM 5. F()) 7s quasiconvex in \eA.

Proof. Since A is convex for any A, MeA and 0Za=<1, we have A=
N+ (1—a)A? also belongs to A. Let z*()), z°()Y), and z*()*) be any
optimal solutions to F(A), F(A'), and F()®) respectively. Now for any
ad0, 1], either (i) Nglz"(\)I=A'E’, or (i) X'glz®(M)]=2", or both. (If
neither (i) nor (ii) were true then we would have

aA'glz* (M) ]+ (1 —a)Aglz" (A)]> ad B+ (1 — )28,

so that Ag{z*(A)]>\b°, which is a contradiction.) Thus, for any a0, 1],
:p* ()) is feasible for either A* or A* or both, and

FQ) =flz* Q)] = max{flz* Y], flz* "1}
=max[F(\'), F())].

The proof is complete.

Algorithms for solving P with S should capitalize on this quasiconvexity
property of F(A). (See Marros™ for properties of quasiconvex fune-
tions.) The development of such algorithms and their testing will be left
for future work; however, it should be mentioned that, when we have only
two constraints (m=2), then we can consider one multiplier, say \e[0, 1],
and we are searching F (\) over the unit interval. Some efficient techniques
for doing this are Fibonacci search and Fibonacci search modified by certain
a priori knowledge concerning the location of A*¢[0, 1. When F()\) has
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flat regions (so that Fibonacei search does not apply), then a bisection
method always works. Of course, any scheme may be used that only re-
quires quasiconvexity.

Before proceeding, it is interesting to compare the advantages and dis-
advantages of GLM to S. Table I presents five factors; the first two are in
GLM’s favor and the last three favor S. Moreover, suppose m—1 of the
constraints are placed in the objective and GLM is used with m—1 multi-
pliers and one constraint remains. Then factors (1) and (3) are the same
in GLM and S. In general, we cannot compare the tradeoffs of (2), (4),
and (5); however, if we have only two constraints (if m=2), then (2) is
insignificant (by the argument in the preceding paragraph) so that S is
to be preferred for the case of one multiplier. In particular, for state-
reduction dynamic programming, the gap problem is dominant, and S

TABLE 1
ComrarisoN oF GLM anp S
GLM N

(1) | Solves sequence of unconstrained prob- | Solves sequence of 1 constraint prob-

lems lems
(2) | H(y,\) is convex F()\) is quasiconvex
(3) | m multipliers m — 1 multipliers
(4) | Closed, convex, but unbounded region for | Compact, convex region for multipliers

multipliers
(s) | Gaps arise when f*(b) is not concave Reduced gap region and if the condi-

tions of Corollary 2.r hold, no gap
exists

should be used. The authors are presently conducting an empirical com-
parison of GLM and S for two- and three-dimensional knapsack-type
problems.

It is interesting to note one of the generalizations in S over GLM with
reference to factor (5), concerning gaps. For convex programs, where
f(z) is concave, g(z) is convex and X is a closed, convex set, GLM has no
gaps at those b yielding a nonempty strict interior of the feasibility region
of P. This is because of the saddle-point equivalence theorem (or an
alternative proof from the gap theorem in reference 3). In S we may relax
this to where f is quasiconcave and upper semicontinuous along lines."

When A is perturbed one component at a time, GLM has a monotonicity
relation'® between \; and g:(zz"). The principal value of that result is
that since we are minimizing H (v, A) in GLM, we know not to decrease the
multiplier for the infeasible resources. A similar result holds for S.
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TaeEOREM 6. Let €>0 be given and let

J={7:gz*)1>b, ¥ ) Q* (M) }.
Then

F(A—egjtee) ZF()) for any  jeJ,

and k¢J such that X\;—e=0 and M+e=1.
In this theorem, ¢; denotes a vector whose components are all 0 except
the jth one, which is 1.
Proof. Let M—eg;4ea=). Now feA, and (a) Mlg"(\)]=)’, (b)
— gl A)]< —ebs’, and (¢) egalz*(N)]= . Adding (a), (b), and (o),
we obtain
(A—ee;+ea)glz" (V)] < (A —egs+ean) ',

and we note that £*()) is a feasible solution for A. Thus
F(}) =max{f(z): Aj(z) SAB". zeX} 2 F (D).

The proof is complete.
COROLLARY 6.1. Let ¢>0 be given and define A=A+ Z,-u €565 D jes €365
such that \eA. Then F(A)ZF(}).

Theorem 6 and Corollary 6.1 imply that a consideration which might be
useful in searching for the minimizing A\* would be not to decrease the
elements of A that correspond to infeasible inequalities in P and not to
increase the elements that correspond to feasible inequalities in P.

Another helpful result in searching A is the following. Suppose for two
AeA, say A1, e, there is a common optimal solution—i.e., Q(A:) A Q(Ne) #¢.
Then, for all A=a)\+ (1 —a))s, €0, 1], we have Q(A) A QA1) A 2(Q2) # o,
and hence F(A)=F(\)=F()\:). The proof is based on the fact that
F(\) £F(\) by quasiconvexity of F, and F(A) = F(\;) because z*(),) is
feasible for A.

A further result in this section concerning F(A) is an e feasibility
theorem. This theorem parallels Everett’s ¢ theorem and ylelds the same
type of qualitative results. That is, we can answer the question of sta-
bility of the S-problem method for solving P. It will be shown that a
solution z* that nearly solves S also nearly solves the modified P problem
P*, where b° is replaced by g(z*).

TuroREM 7. If f(z¥) = F()) —¢, where €>0 and z* is feasible for S, then
z* is an e solution for P* in the sense that for all z: g(z) Sg(z*), zeX, we
have f(z*) 2 f(z) —«.

Proof. From S we have

f(z*) Zmax{f(z): A\j(z) SN, zeX | —e¢,
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and Aj(z*) =\’ Let £ solve S and z** solve P*. Then f(z*)=f(¢)—
e=f(z"*) —e. Furthermore z* is feasible for P*. Hence, the proof is
complete.

We are now interested in continuity properties of F()) over A.
TuaeoreMm 8. If (1) f is upper semicontinuous, (2) g is continuous, and
(3) X s compact, then F is upper semicontinuous.

Proof. Let Q(\)={z:z solves S for A}. If we consider a sequence
{2}, where \‘—)\’eA, then there exists a subsequence of {z°}, call it {z'},
that converges to a point z*, where z¢Q()\°). Since g(z) is continuous and
since M'g(z") 2\'B° for all ¢, we have \°G(z*) <A%’. Thus, z* is feasible
in 8 for A=2" ‘Then F(\°) =f(z¥). Since f is upper semicontinuous,
f(2*) 2l f(z') =limiw F(A).  Thus, FQA°)zlime. FQAY), as de-
sired.

An algorithm to search over A, particularly when m>2, should take
advantage of the ‘large’ discrete decrease in F()) that can occur when we
are near a point of discontinuity.

Luenberger™ proves that if f(z) is quasiconcave and lower semicon-
tinuous along lines, if §(z) are convex constraint functions, and if the con-
straint set has a nonempty interior, then F()\) is quasiconvex and lower
semicontinuous for all A:F () <+ o. Our Theorem 5 shows that F())
is quasiconvex under no restrictions on f and g, and Theorem 8 shows F())
is upper semicontinuous under reasonable assumptions on f, 7, and X.
We thus state:

CoroLLARY 8.1. If (1) f s a continuous quasiconcave function, (2) X 1s
convezr and compact, and (3) g ©s convex and there exists xeX such that g(z) <
b0, then F is continuous. h

The proof is merely an application of the Luenberger lemma and

Theorem 8.

GENERALIZATIONS

THERE ARE several aspects of the preceding results that are subject to
generalization. For example, we can talk about combining the E and S
problems by putting some of the constraints in the objective function and
leaving some of them in the surrogate constraint. This modification might
be useful in resolving an E gap or an S gap. For example, we may wish to
put some or all of the infeasible constraints into the surrogate in an attempt
to resolve the E gap. Clearly more work of both a theoretical and empirical
nature will be required before it can be said definitively whether or not this
type of modification is practical in the general context of solving P.
Another generalization of interest is to define a hierarchy of S problems
say So, Si, Sz, * +, Sk, * * *, Sm where S is the E problem, S,, is the P prob-
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lem, 8, is the previously stated S problem, and S; is a class of problems
given by:
Sk: max f(z) subject to

(1) Mg (2) SN

(k) X7(2) 2T,

(b+1)  2eX, (A, -+, 2) =)eA,
where ) is a partitioned m-vector, [gl(:p),_- -+, §(2)] is a partition of §(z),
and (B, - - -, B*) is the same partition of 5°.

We will occasionally represent the inequalities (1) through (k) by the
mapping Mg(z)] S\(b), where the mapping  is from E™ to EF.

In each problem skeSy there are k surrogate constraints. For example,
for m=4 and k=2 there are seven problems for S,, namely (since the ob-
jective function is the same for all seven problems we only state it once;
also we suppress the argument z for eonciseness) :

82: max;_:ex f

82, Mg = Naby, Aeg2+ Asg3+ Naga = Noba+ Nsbs+ Nibs.
S2,° Aaga = Neby, Aig 14 Aag3+ Nage = i1+ Nsbs+ Ny
825 Nags = Ngbs, g1t Mage+Naga = b1+ Nabe 4 Naby.
8257 Mga= Mby, g1+ Nege+Nggs = Mibi+Nebo =+ Nsbs.
82 AMig1+ Nege = Mibi+Aobo, Nsga+ Aags = Nsbs+ Aabs.
82¢° Mg1tNsgs = Mbi-+Asbs, Ao+ Aags = Nabo+Nobs.
8270 Mag1+Nags S Mbi+ by, Neget+ Nags = Aabat+Ngbs.

Similarly, for m=4, k=3 we can write the six S; problems:
Ss: MaXgex f

83,0 Mgt Nega S Nibi+Nabo;  Nags=Nsbs;  Naga S M.
8350 Mg NagsS NibiHAshs;  Naga= Noba;  Maga = Meba.
351 Mg NagaS NibiFNabas Noga = hobe;  Nsgz = Asbs.
S35 NegotNagas = Nobat+2sbs; MgiShbi; Mga = b
83,0 Mgt Aaga= NebaHNebs; M1 SNiby; Nags = Nsbs.
S3g: M@t NagaS NsbatNags, MgiS by Mg = Aghs.

It will be convenient to define ancestor sets. Form a subset of the set
of Si problems by .
set of all S, problems that can be formedl
from a given & 41 problem by adding together
any two of the k-1 surrogate constraints to|’
form an Sy problem

Ak(§k+1) = (Sk'§k+1) =
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We call Ax(8r+1) the ancestor set of & ;.
In like manner, we form a subset of the set of S;4+: problems by:

set of all Si4: problems that can be formed
from a given §, problem by taking any one of

Diy1(8k) = (8Sk41/8x) =< the k constraints (with two or more \,’s) and ;.
forming two new surrogate constraints from
this single constraint

We call Dy4.1(8) the descendent set of 8. Using the previous S; and S;
sets we illustrate these definitions: Aa(ss) = {ss,, S25, 825}, Ds(s2,) = {s3,,

S35, S3¢ } .
Furthermore, every ancestor and every descendent set have at least one
member for k=2, ---, m and k=1, ---, m—1, respectively.

Many of the lemmas and theorems of the preceding sections can be
generalized to the S, class of problems. In order to accomplish these
generalizations it is convenient to define:

Fs]g(l‘) =max{f(:_x): SkGSk, Z\éA}, ]GZO, L -- s, m,
and
Flc(z_\) zminskesk Fak(l‘)

Tueorem4’. If z° isoptimal for P, then for all k=0, 1, - - -, m—1 and \eA,
(2) f(2°) F, (M), and (@) Frpa(A) SFL Q) SF, (M),

Proof. Part (i) follows immediately, since 2’ is feasible in every s
problem for all k. Part (ii): The case k=0 is proved in Theorem 4.
Hence, we only consider the case k>0. Take any problem sceS; and
consider any $y..eDpi1(sx). Let £(A) be any optimal solution to 8.
Now sreAr(8r11), so £(7) is feasible for s,. Therefore, F,,(A) Zf[£(M)]=
F;i...()). Since every s; has a nonempty descendent set, then

F“‘k(z\) é minskesk Fsk(b) %min8k+1ebk+l(sk).skesk Fsk.f.l(é)

_Z_minsk.,.lesk.,.l F3k+l()—\) =Fk+l(h)'
The proof is complete.

This extension of Theorem 4 is important in that each class of problems
successively reduces the gap problem encountered in the preceding class.
Computationally, this reduction may not be useful beyond S;, since the
sets S, become factorially large. However, we may be able to use S,
(which for small m is not large) to resolve gaps. More will be said about
this in a later paper.

In addition to generalizing Theorem 4 as shown above, it is possible
to generalize many of the lemmas and theorems in the preceding section.
Lemma 1. Let zi* solve s for \*. Itz solves P, then z" solves Fry;(N)
for all 7=0.

Proof. By Theorem 4, f(z:*) £Fis:(N*) SFo () =f(2:").
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Lemma 2'.  If 2" solves sy for N, then z.* solves P for any b*: b*=g(z:*)
and the k-vector \*(b*) <N\*(B°). B

Proof. z:" solves s, for any b* such that N*(p*) £2\*(8°), since )\*[g(:_vk*)]
<A*(b*). Furthermore, z,* is feasible in P for b*; hence, z;* is optimal
in P for b*.

Lemma 3. If P is Lagrange regular and if \* exists such that s solves P,
then v-\* is a Lagrange multiplier for P for some v=0.

Proof. The proof is the same as for Lemma 3.

TuroreMm 1.  If some problem sieS solves P for \* and any k=1, - -+, m—1,
then \* minimizes F,,(\) for all heA.

The proof of Theorem 1" is essentially the same as that of Theorem 1,
and is omitted.

The final generalization to be considered in this section is the extension
of the S problem to a nonlinear surrogate-constraint function . Gould™”
introduced the notion that \-§(z) is a special case of considering the func-
tional Ag(z)], where \ is selected from the class of separable monotone

nondecreasing functions mapping E™ into the extended nonnegative real
numbers with A(b°) <+ ». The modified Lagrangian is thus

Lz, \) =f(z) — 2570 Mlgi(2)1+ 22070 2,0,

where \;: E'—>E'U{+ « }, \; is monotone nondecreasing, and \;(b,;°) <+ .
Gould proved that when the linear form yields gaps, a more general func-
tional still exists to resolve it. From a theoretical view, there are no gaps.
Further, Gould showed that for the functional L that solves P there is a
saddle-point corresponding to the solution in that L(z, MY L(z*, N\ <
L(zs", \) for all zeX and \ in the above mentioned class.

From a computational view, nonlinear Lagrangians cause difficulty,
and the unconstrained maximization in GLM becomes more complicated.

A similar extension of Gould’s results holds true for the surrogate
program. Consider the problem given by

S':max f(z): 2000 Mga(2)1S 2T M), zeX.

When A is a monotone increasing function, then Theorem 1 applies. More-
over, Gould’s theorem and Lemma 1 (extended slightly) show that there
always exists a surrogate program to solve P so that no gaps arise. How-
ever, the same computational disadvantages oceur when Alg(z)] is a non-

linear functional form.

SUMMARY AND CONCLUSIONS

IN THIS PAPER, We have organized a unified theory of surrogate mathe-
matical programming. Theorems pertaining to the properties of A* and
F()\) were presented, and S was related to P and GLM. For the case of
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one multiplier, bisection is an efficient search scheme, and when P is
separable, dynamic programming may be used to solve S.

It is our belief that useful algorithms may evolve from this study, and
we are currently studying this aspect. One of the goals is to develop an
algorithm that minimizes a quasiconvex function over the well struc-
tured set A, even when the function has discontinuities. One obvious use
of surrogate programs is for gap reduction in GLM.
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