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SYMMETRIC MATHEMATICAL PROGRAMS*

HARVEY J. GREENBERG anp WILLIAM P. PIERSKALLA
Computer Sctences Center, Southern Methodist University

Mathematical programs with S-convex and with symmetric objective and feasi-
bility regions are investigated. Optimal solutions and algorithms are presented for
both continuous and discrete optimization problems.

The principal purpose of this note is to show that certain symmetric nonlinear in-
teger programs can be reduced to corresponding extremal problems in just one variable.!
We consider the mathematical program given by:

Maximize f(z): z ¢ X

where f is a real-valued function mapping X — E', and X is a closed subset of E™
We postulate that the above program (and its later modification to integer x) has a
solution.

Our notation uses S to denote a doubly stochastic matrix and more specifically P
to denote a permutation matrix.

We consider the following definitions:

Definition 1. X is a symmetric set if z £ X implies

zP ¢ X for all P.
Definition 2. fis a symmetric function on a symmetric set X if for any P
F@P) = f(x) forall z ¢ X.

Definition 3. X is S-convex if x ¢ X implies z8 ¢ X, for all S.
Defintiion 4. fis an S-concave function on an S-convex set X if for any S

F@S) = f(x) forallze X.

Definition 5. A point x = (z;) is symmetric if z; = zfor< =1, ---, n.
Definition 6. A point z = (z;) is nearly symmetric if |z; — ;| < 1 for<,j = 1,
, N

Berge [2] gives further discussion of S-concave functions and S-convex sets. Sym-
metric convex sets are S-convex, but not necessarily conversely. Further, symmetric,
quasi-concave functions defined over a symmetric convex set X are S-concave, but
not necessarily conversely. Every nonempty S-convex set contains a symmetric point,.

The results of this note are three theorems and some discussion of applications.

TraeoreM 1. If X s a closed, S-convex set and f is S-concave on X, then the set X™* of
points maximizing f over X is a closed S-convexr sei.

Let I denote the set of integer points in E".

TaEOREM 2. If X 7s S-convex and f is S-concave on X, then for any point x e X NI
there is a nearly symmetric point y ¢ X N\ I such that f(y) = f(z).

* Received November 1968; revised March 1969.
1 The authors thank A. F. Veinott, Jr., R. Karp, and A. J. Hoffman for suggesting significant
generalizations and shorter proofs of the results in an earlier version of this paper [4].
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Proor. Since f is S-concave, it is symmetric. We therefore need only consider the
case where 1 = 2, = --- = z.. Let y be the unique nearly symmetric vector in I
satisfying g1 2 12 2 *** 2 Yn, D i ¥i S D it @i, b=1, -+ ,n — 1,and D rm ys =
> i-12;. Then, y is majorized by z so that y = xS (see [5], p. 49). Thus yeXNI
and f(y) = f(z), which completes the proof.

We shall say that y rounds z if y is integer and Max; | z; — y:| < 1. There are 2"
ways of rounding a point, x, with nonintegral coordinates. Under some additional
assumptions we may further specify the solution to the integer problem of Theorem 2.
Let Y denote the set of symmetric points of X.

THEOREM 3. A.ssume X is S-convex, Y 1s convex, f is S-concave on X and f is quast-
concave on Y. Then for every optimal symmetric point zl which maximizes f on X there
exists a point obtained by rounding zl that maximizes f on X N 1.2

Proor. It suffices to show that if z £ X N I is not obtained by rounding 2, then there
is a y € X N I which is obtained by rounding 2l and for which f(y) = f(z). In view of
Theorem 2, we may assume z is nearly symmetric. Let [z] and (z) denote the largest
integer not exceeding z and the smallest integer not less that z, respectively. The mean

¥ =1 [Z:w'] is in X and f(z*) = f(z) by S-concavity of f. Thus, we need only

consider two cases:

i) Max; z; < [7]
and
(ii) Min; z; = ().

In the former case we have
)l = a2l + (1 — a)z*

for some a ¢ [0, 1]. Since f is quasi-concave, we have f(z*) = f(z]l). Thus, y = [¢}l
has the desired property. In the latter case, y = (2)l has the desired property and
hence the proof is complete.

We further remark that in applying Theorem 3 only n + 1 rounding points need be
considered rather than 2". This follows if we define

h(m) = f(lel + 1, .-+, Ll + L [, -+, [e).

m

By the symmetry of f, only the value of m matters in choosing a rounding point and
0=m=n.

It should be noted that Theorem 2 (as well as Theorem 3) reduces the search for an
optimal integer point to a one-dimensional search problem. This is useful to know for
the case when not all of the hypotheses of Theorem 3 are satisfied but when f is S-con-
cave and X is S-convex. To see this observe that for each integer K, f is constant for
all nearly symmetric points of X NI such that > ;= = K. Let g(K) denote the
common value of f on this set. Then it is only necessary to maximize g in order to
maximize f. Obviously this concept of maximizing g can be used when Theorem 3
applies also.

Now let us consider some applications. Bessler and Veinott [3] have applied a

2 2 is a scalar and ! is a vector with each coordinate equal to 1.
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special case of these results to symmetric networks. Kielson [6], [7] has considered a
random walk model. Berge [2] discusses further application to quasi-convex program-
ming and to the theory of inequalities. One may note that E,(z)"" is concave [8]
over z 2 0, where E,(z) is the r** elementary symmetric function given by

E (z) = Zall r-tuples Li; **° Tg, .

That is, E,(z) is the sum of r-tuples. Thus, E, ()" is quasi-concave and symmetric
for k¥ = 0. A symmetric polynomial given by

f(SU) = Z?ﬂl a; H;‘tl Er (x)kri

is S-conecave for a;, k.; = 0, and we may apply Theorem 1 in such cases.
Theorem 3 may be applied by noting if &, (z) is integer maximized by the integer
vector *, then E,(z) isalsofor 1 < ¢ < n. Further, in general we have

Maxf(z) < X fe1a; ][ 7=1 Max E, (z)*.

Equality is obtained at z*. For example, if X = {z:x = 0and X 7 z; < b}, then the
integer maximum of f occurs at

=[b/n] + 1 fori =1,---,b — [b/nln
= [b/n] fori=b—[b/nln +1,---,n

Another application is in the stirring tank problem deseribed by Aris [1]. By a
change of variables given by

x.=Ln[(k+0,)/k], t=1--,n

where we assume (b, — by)/ (b, — v) > 1, we can solve the equivalent problem:

Min D7y €%
D=1 z Lo (be — bo)
ba e 4
zz0.

By Theorem 1 we obtain the symmetric solution

i/n
;" = k{(%: lf;:) - 1} fore =1, .--,n.

As a final example we may consider the problem of congressional redistricting. We
define :

n = number of districts

b = total number of representatives

p = population of each district

z; = number of representatives in district ¢

a=>b/n (one man, one vote)

Let r be an increasing function defined on E' (e.g., r:(2) = z/p) then [r:i(x) — al
is quasi-convex. Consider the problem

Min [max; [r(2:) — a]: Dt z; = b, =0, «zel.

The objective is symmetric and quasi-convex (and hence S-convex). By Theorem 3
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we see that

¥ = [b/n] +1 fori =1, ---,b — np/n]
z;* = [b/n] fori=0b—mnb/Mm]+1,---,n.

I

In closing, observe that Theorems 1, 2, and 3 may be extended. We define a program

to be compatibly symmetric of degree m (1 < m < n) if z can be partitioned into m
subvectors, say 21, -+ , Zm, such that f and X are symmetric for each z; . Degrees of
S-concavity follow similarly. Then, the theorems may be appropriately applied to
reduce the program to m dimensions.

W N =
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