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The multidimensional assignment problem is a higher dimensional version
of the standard (two-dimensional) assignment problem in the literature.
The higher dimensions can be thought of as time or space dimensions or
both. An algorithm is proposed for the solution of the multi-index assign-
ment problem. The algorithm is based on a tree search technique of the
branch-and-bound variety. It uses dual subproblems to provide easily
computed bounds for the primal assignment problem.

N RECENT years much interest has concentrated on integer linear program-
ming problems and in particular several papers have focused on the zero-one
integer LP problem. This paper is also concerned with the zero-one integer problem
but particularly in regard to the special case of an optimal ass1gnment in more than
two dimensions.

We begin by describing the three-dimension assignment problem and later
give its multidimensional statements. The three-dimensional assignment problem
is the problem of assigning one item to one job at one point or interval in time in
such a way as to minimize the total costs of the assignment. Mathematically, if
it is assumed that p < ¢ <r then we want to minimize:

iR I DT cin mis M
subject to '
2 Y wipsl for k=1,
Z:::!? Zk=l z;=1 for i=1,--,q 2)
S mip=1 for i=1, .-, p,)
zi#=0,1 for all 17,7, k. 3)

ci;x is the cost of assigning item ¢ to location j at time k. z; =1 means the
1th item is assigned to the jth location at time k. z:j =0 means the ¢th item is
not assigned to location j at time k. Equality holds in the third set of constraints
since it is presumed that a total assignment of the p items is required.

As an example of a three-dimensional assignment problem consider the case
where a company realizes that its distribution system is in need of two new ware-
houses in the next three years and a third new warehouse in about five years. The
company is not only faced with the problem of where to locate the warehouses
but also when should the warehouses be built. FEight different cities are being
considered as possible sites for the three warehouses. The company wishes to
select the combination of warehouse, site, and time so as to minimize the total costs
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associated with this expansion. For example, ¢;; would be the total cost of locat-
ing warehouse % on site j at time k; ¢4z could include discounted construction costs,
future transportation costs for shipping into and out of this location, operating
costs, ete. :

Another example could be the launching of z weather satellites into y direc-
tional orbits at z different atmospheric levels from the earth’s surface. This ex-
ample could include a fourth dimension if we considered the various possible times
of launch.

The general idea behind the multidimensional assignment problem is that there
are often additional scheduling dimensions besides just scheduling men to jobs that
should be taken into consideration in making the optimal allocation. These
additional dimensions may be time, or space, or some other factors perhaps qualita-
tive in nature.

A more general formulation of this problem as a three-dimensional transporta-
tion type problem has been considered by E. ScrrLn!™! and K. B. HaLey®! with
the exception that they do not consider constraint (3) but rather z;; 20. Since
the polyhedron defined by (2) and z;jx =0 has in general a great number of non-
integer extreme points, the approach taken by Schell and Haley will most often
yield a noninteger solution (for large p, ¢, and 7). A similar comment applies to
the simplex method when (3) is replaced by 2 20.

Before proceeding further we will list some standard definitions.

1. A solution z= (z:x) is called feasible if z satisfies (2) and (3).
2. A solution z is called optimal if « is feasible and z minimizes (1).

In the case where p =q =r, we have the three-dimensional assignment problem
where all of the constraints (2) are equality constraints.

METHOD OF SOLUTION

TaE METHOD of solution is merely a form of implicit enumeration of all basic feasi-
ble points. For example, if we let p =38 and ¢=r=4 we can sketch the tree of
feasible solutions (Fig. 1).

Fach node of the tree is characterized by a triple of integers ¢, 7, k. Thus if
we are at node 132 then 1 =1, =3, k=2 and z132=1, 1% =0 for j #3 or/and k2.
Denote by level (t) the set of all nodes of the tree such that the ¢ index has value &.
In Fig. 1 level (1) would be the set of nodes {111, 112, 113, 114, 121, 122, 123, 124,
131, 132, 133, 134, 141, 142, 143, 144}.

Actually in level (1) of the figure there are nine branches from each of the
sixteen nodes. Only one complete set of the nine branches has been drawn. Simi-
larly level (2) has four branches from each node and we have only sketched one full
node. Thus for this particular example there are 576 feasible paths. For the
general case p < ¢ <r the total number of paths is given by the product of the permu-
tations P2 P, .

The algorithm proceeds by selecting a feasible solution Z and computing its
objective function value Z=c-Z. We then turn to a dual problem to compute easily
the lower bounds for p primal subproblems. (These p primal subproblems are
defined later in this section.)
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Now each primal subproblem has a dual that we will call its dual subproblem
The solutions to the p dual subproblems provide p lower bounds L, ---, I, for
the possible values of the primal objective function as we proceed down the tree of
feasible solutions. For example, at level (1) of the tree if Z = [;, the first lower
bound, then we know that Z, is an optimal solution, and we may terminate provided
that only one optimal solution is desired.
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Fig. 1. Partial tree graph of the feasible solutions to p=3,
q=4, r=4.

If 2>1; then we proceed systematically down the tree using I; at level () in
order to evaluate whether it might be profitable to continue the search further.

This method of solution is similar to the branch-and-bound method used by
LirrLe, MURTY, SWEENEY, AND KARELI in their approach to the traveling sales-
man problem. At each node of the tree of feasible solutions they have calculated
a lower bound for proceeding further on any of the outgoing branches from that
node. If the lower bound exceeds the lowest value of the known feasible solutions
to the problem then a better solution cannot be obtained by proceeding further from
that node. On the other hand if the lower bound is strictly less than the lowest
value of the known feasible solutions, then a better feasible solution might be found
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by proceeding further from that node. In their algorithm just as in the algorithm
proposed in this paper, the lower bounds are easily calculated but do not represent
optimal solutions to the bounding problems. Thus the lower bounds are not as '
tight as possible but computer time is saved in their speed of calculation. In this
regard the algorithm of Baras[! for the general 0-1 linear integer programming
problem also uses easily calculated but not necessarily tight lower bounds. The
Balas algorithm, however, differs slightly from the algorithm in this paper because
of the fact that all 2" possible solutions are (implicitly) enumerated. This is neces-
sary since he is solving the general 0-1 problem and does not know in advance the
structure of the set of feasible solutions.

Before going further with a more explicit description of the algorithm we will
state some interesting and pertinent results in lemma and theorem form. Proofs
of these results are available in the appendix.

Lemma 1.

(1) Feastble integer solutions to (2) and (3) extst.

(2) Furthermore a vector x is a feasible integer solution lo (2) and (3) if and only
if (a) there are precisely p coordinates of x with value one and the remaining coordinates
have value zero and (b) the p elements with value one constst of z:’s with the property
that the 1 subscripts are a permutation of the inlegers1, -- -, p, the j subscripts are a
permutation of p of the integers 1, - - - , q, and the k subscripts are a permulation of p
of the tnlegers 1, - - - ,r.

For example, the solution:

z;:=1 for all ’I:=1, ree, Py
zijr=0 otherwise,
is a feasible integer solution.

THEOREM 1.
(1) An optimal solution to (1), (2), and (3) exists although not necessarily uniquely.

(2) When t=1 an upper bound on D > D Ciju Tsjk 15 given by

M= Eé:f maxg,j {Cijie} - 4)
(3) When t=1 a lower bound on >, > > cijk T4ji 18 given by
mi= D ent ming,; {Ciju)- (5)

Define the ith primal subproblem as the multi-index assignment problem remain-
ing after the first 4 —1 assignments have been made but without regard as to which
j and k indices have been assigned. For example, in the previous graph, Fig. 1, if
assignment 2121 =1 and all other z1; =0 then the 2nd subproblem would be to con-
sider the assignment problem for p =2, ¢ =4, and r =4 given by

min ics D ict DOkSt Cijh Digh

Zi:ﬁ Z;:f zip=1 for k=1, ---,4,
ZiZZ 1’2:14.’13,'_7'19<1 for j=1,'-',4,

j=4 k=4 .
T Y e map=1 for i=2,3,

subject to
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and 2% =0,1V7=2,3,j and k=1, .-, 4 where c;j are given in the original (Oth
subproblem) problem. '
LEMMma 2.

The numbers m, given by (5) are lower bounds for the optimal policy for the t-th
subproblem, t=1, - .-, p.

Many lower bounds of the m, variety can be formed by considering feasible solu-
tions to the dual problem generated by each primal subproblem where we do not
consider the primal integer constraints. However, if an optimal solution to the
dual problems generated by each primal subproblem is found and if we denote these
optimal solutions by d; for ¢=1, -, p then clearly (from the proof of lemma 2)
d¢:=m, and the d, provide the best lower bound that can be achieved by considering
the dual subproblems.

We are now able to state the algorithm for finding the optimal solution to (1),
(2), and (3). In the algorithm we denote the lower bounds for the ¢th subproblem
by l;. In the computer runs given in the last section of this paper the I; are the
m¢of (5); however, if d; is known, we would set l;=d,.

Define the sets J; and K; as the sets of all j and % indices respectively that cor-
respond to the values of j and k at each node visited in levels (1) through and in-
cluding level (). For example, in Fig. 1 if we were at node 232 in level (2) then
J2={2,3} and K»=1{4,2}. Also define 7}, = lower bound on the total cost of pro-
ceeding all the way down the tree through node 7jk. T;:k is composed of the actual
cost down the tree graph following a specific path to node %k plus the lower bound
cost of proceeding from node %5k to the bottom of the tree graph. Specifically

1—1

TiIE=Ti gk yr—bitCiptlivg
where we define 3,k =l Thenotation 1 —1, j;_1, k., denotes the immediately pre-
ceding node visited before arriving at node %k. Thus r5;%, —I; is the actual total
cost of a specific path down to node ¢ —1, 7,1, k;_; but not beyond; c;x is the actual
cost of going tonode %4k from some immediately preceding node such as ¢ —1, 7;_1,
ki—1; and 1;4; is the lower bound on the cost of proceeding from node %jk on to the

end of the tree graph.

ALGORITHM

1. Compute the first lower bound l;; if the solution z that corresponds to the
lower bound [, is feasible, then set Z«x and Z<cZ and terminate; an optimal solu-
tion has been found. If x is not feasible go to 2.

2. Choose a feasible solution Z, say Zsi=1, Tij; =0 otherwise. Set Z«c-Z.
If 2=1I;, then terminate; an optimal solution has been found. If not, compute I;
for 1=2,3, .-+, p, set 1«0 and go to step 3. The algorithm now iterates on £,
then on j, and finally on 7 until the entire tree graph has been (implicitly) searched.

3. Set t—2+1. If 2=p+1 then we had just previously arrived at the bottom
of the tree graph and it is necessary to back up to the node visited just prior to
visiting the last level [level (p)]. This backing up is accomplished by setting
1t —2,jj; and k—¥k;, in that order. Go to step 7. If t <p-+1 then set j«—g+1
and k«r-+1, and go to step.4.

4. Set j—j—1. Go to step 5.
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5. If jeJ;_1, then go to step 4. In this case the j element under consideration
has already been included in the path and cannot be brought in again (see Lemma 1)
If j¢J ;1 and 7 =0. then go to step 6; else go to step 7.

6. Since j =0 then we have exhausted all of the 7 index numbers 1,2, - - -, p for
the given value of 7 hence we must back up to the last previously visited node in
level (1 —1) by setting 1% —1, j«<;, and k<Fk;. = If now =0 then terminate; the
current candidate for optimality Z is the optimal solution since we have exhausted
all paths in the tree graph of feasible solutions. If 7 >0 then go to step 7.

7. Set k—k—1; go to step 8.

8. If keK; ; then go to step 7. If k¢éK;_; and k=0 then set k<41 and go to
step 4; else go to step 9.

9. Since 770, 7 #0, k<0, jéJ ;—1, and k¢K ;1 we have an acceptable node to test.
Form o

TR Tipey kg —bitCirtlin.

If 1-, x 2%, then a better feasible solution cannot be found by going further from node
1jk; hence go to step 7. If T,k <z, then perhaps a better feasible solution can be
found. Set j;«j, kik, and 7%, 7% Denote by 2(j;, k;) the path down to node
1, Ji, k¢ and the path from node 1, 7;, k; suggested by the bound l;ys. If (5, ks) is
a feasible path then set Z+=2(J; k;) and Z =c-Z since we have found a feasible path
with a lower objective function value. Now if Z =1; terminate; an optimal solution
has been found. If either 2> or z(j;, k) is not feasible go to step 10. <

10. Set J;—J;,U{j:} and K;—K;—1U{k;}. Go to step 3% = (”'W" S

The algorithm terminates whenever: 7’ ; ,-
(1) z=0 in which case Z is optimal wherez =c-Z or /é c = ,,6-,4 4
(2) in the case that ¢ =0 there are no more iterations to consider, then Zis optxmaf .

It is obvious that the algorithm is finite since no branch of the tree is searched ¢, Py
more than once and there are a finite number of branches.

It should be noted that the process can be stopped at any time and the current
stored z and its corresponding Z is the best feasible solution found up to that time.

This method systematically searches the tree of feasible paths; however, it
abandons a branch of the tree whenever it becomes obvious that a better solution
cannot be achieved by pursuing that branch further. Thus if the sum of all feasi-
ble ¢;;x’s down to a certain branch point plus the minimum bound /;;1 to proceed
further exceeds the value z of the current candidate Z for optimality then an optimal
path cannot be found by going further down that branch. This last statement is
given in the form of a theorem.

TaEOREM 2. In the aboe algorithm if vk, >Z then an optimal solution to (1), (2),
and (3) cannot be found on the branch of the solution tree where we fix (0, 7o, ko), (1,
jl) kl) cte (tyjh kt)-

Furthermore, it should be noted that all optimal solutions may be found by not
rejecting paths when 74 =2 but only when 7% >2. Also adding or subtracting a
constant amount M from each c;; only changes the value of the optimal solution
by p-M and does not change the optimal solution vector. Therefore, if ¢z >0
for all 7, 7, k the problem could be changed to

min », >, 2 (cije—M)zijr,

“Qx wa\-
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subject to (2) and (3) where we let M =min; ; ; c;s. Such a change would reduce
the values of the ¢;;’s and for hand computations at least makes the problem easier
to handle. '

Moreover, if some assignment z,;, =1 is not possible from physical considera-
tions, the algorithm need not be modified but only set ¢;;» =@ where Q is some very
large positive number. And in the context of the warehouse location example (or
any other example), it is not necessary that the time periods k=1, .- -, r be evenly
spaced periods of equal length. If two warehouses but no more could be built in,
say, the first year, then let k=1 be a period of length 1 week, ¥ =2 a period of
length 51 weeks, and define ;% as the decision to begin construction of warehouse ¢
at location § at the beginning of period k. In this way it would be possible to build
two warehouses in the first year but not more than two warehouses, since period 3
starts after the first year has ended.

Finally, we can say that at each branch of the tree it would be possible to find
a lower bound or set of lower bounds peculiar to that specific branch. Thus the
bounds would most likely be tighter and termination would be achieved sooner.
These bounds could be obtained by considering the dual problem defined by a
tixth primal subproblem where not only the previously assigned 7 indices were re-
moved but also the previously assigned 7 and % indices. We could then generate
lower bounds of the form of lemma 2 for these new subproblems. Unfortunately
this method has the great disadvantage that the bounds would have to be computed
at each node of the tree reached by the algorithm, whereas the bounds in lemma 2
only need to be computed once at the beginning of the problem.

The multi-index formulation of the problem is: if p; £ps < - - - <p. then we wish
to minimize

Zil. cor, dig Ciy, .‘.._ in Liy, «+«, iny
subject to
Dir, s inet Ty, o, a1, Vi=1, 00y,

Z“l. ig, -+, in Tiy, -, inéli Vil:l: try Py
Z‘i2. ey in Tig, e, =1, Vil:l, Ty Py
Tiy, o, .‘n—_—O, 1, V?:l, "',’I:n.
The foregoing lemmas and theorems as well as the algorithm for solving the
multi-index problem generalize in the obvious way. However, the dimensionality
of the problem increases extremely fast, namely by products of factorials, and it is

very doubtful that even small multidimensional problems (dimension =5) could be
solved in any reasonable amount of time.

COMPUTATIONAL EXPERIENCE WITH THE ALGORITHM

Using A Univac 1107 we applied the algorithm to several small three-dimensional
problems. The values of ¢;;x were obtained from a pseudorandom number gener-
ator where the random numbers were all rounded to integers between 00 and 99.
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. Machine run-
poblemno.| g ¢ | Tollnesl | Approrimatenc of | g
I 4 4 4 64 576 I
2 5 5 5 123 14,400 3
3 6 6 6 216 5.2 X 108 9
4 8 8 8 512 1.6 X 10° 173
5 8 8 8 5I2 1.6 X 10° 151
6 A 5 6 120 4.3 X 10t 2
7 6 7 8 336 1.0 X 108 9
8 4 8 8 256 2.8 X 10% 3
0 3 7 9 189 1.0 X 10° ®
10 8 1o 12 960 3.6 X 108 128

@ Does not include the compilation time of approximately 1o sec.
® In this problem the lower bound provided a feasible (hence optimal) solution.

Unfortunately, as in branch-and-bound techniques in general, the algorithm is
slow if the bounds are very loose, if the current candidates for the optimal policy
at each step decrease the objective function slowly, and the optimal policy occurs
near the end of the search. In this case the suboptimal method presented in refer-
ence 10 yields a faster program.

APPENDIX
PROOFS

Lemma I part (1) is obvious. Part (2) (—). Let x be a feasible solution to (2)

and (3).
Since Y; Yk zijx=1¥i=1, - -+, p then upon adding these p equality constraints

D I S wik=p
But zi;x=0, 1Y%, j, k— there are exactly p of the z;;4’s equal to one. Now assume
that the zi;’s that equal one do not satisfy part (b). Thus there is at least one
z:jr=1 with at least one common index element with another x,,k—l 8aY Tigjoke==
Tijie=1. But by (2) we must have SiTP 3T 2k <1 since x is feasible; thus we
have a contradiction since D7 9 it Tijro=2. (+) Now (a) and (b) are given.
Clearly (3) is satisfied and since each inequality of (2) can contain at most one
zi;x=1 and each equality must contain one z;;x=1 because of the permuting of the
indices then (2) holds. Hence by definition z is feasible.
TuarorEM 1. We first prove part (3):

- e o e o

Part (3). ZM Z;J Zk=; C’i;‘kxijkézz=lp min;,r CiJ’kZZ‘J Zk=f Zijk
:Z::f min,-,k Cijk =11,

Part (1). This part is obvious from part (3) above and lemma 1.

Part (2). This proof is mutatis mutandis the same as part (3) above.
LemMma 2. The tth subproblem ts given by:

Ez:f 7=q Ek-l Cijk ik, (G)
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subjest to
2 YR easl V=1, 1))
2T i eapsl =1, g, @
S ria=1 Yi=t, .-+, p,
zie=0, 1. (8)
The dual of this subproblem where we omit (8) and use instead z:7#=0 is given by
max ) i=f yi— 2 it i, 9)
subject to: —~ Y45t Ui—Yp+a+6SCijhy (10)
for all t=ti, -+, P,
j=1, -, q,
. k=1,---,r,
ys unconstrained for <=t¢, .-, p,} 1)
¥i=0 for i=p+1, .-, ptq+r.

In (10) if we set y;=0 for all t=p-+1, ---, p+q+r and set y;=min; i {c:jz} for
i=t, -+-, p then both (10) and (11) are satisfied and from (9)

Z:::f Yi=m:.

Hence this solution is feasible for this dual problem. Now by the standard results
of linear programming if z* is optimal for (6), (7), and (8) and if £ is optimal for
(6), (7), and z:7%=0 then cx*=ci= D 2l =m..

TraEOREM 2. By lemma 2, the bounds l; are at least as small as the minimum cost solu-
lion to the tth subproblem. Thus if the total cost for the first t—1 branches plus the lower
bound from t on is grealer than the current candidale for optimality, niz., 2, then a better
path (i.e., lower cost) cannot be found from the tth level on.
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