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Abstract
THE MULTI-DIMENSIONAL ASSIGNMENT AND
QUADRATIC ASSIGNMENT PROBLEMS
The multi-dimensional assignment problem is a higher dimensional
version of the standard (two-dimensional) assignment problem in the
literature. The higher dimensions can be though of as time or space

dimensions or both.

An algorithm is proposed for the solution of the multi-index
assignment problem. The algorithm is based on a tree search
technique of the branch and bound variety. It uses dual subproblems
to provide easily computed bounds for the primal assignment problem.
The same algorithm with appropriate modifications is used to find
an optimal solution to the multi-dimensional quadratic assignment

problem.



THE MULTI-DIMENSIONAL ASSIGNMENT AND
QUADRATIC ASSIGNMENT PROBLEMS

Description of the Problem

In recent years much interest has concentrated on integer
linear programming problems and in particular several papers have
focused on the zero-one integer LP problem. This paper is also
concerned with the zero-one integer problem but in regard to the

special case of an optimal assignment in more than two dimensions.

We begin by describing the three dimension assignment problem
and later give its multi-dimensional statements. The three dimensional
assignment problem is the problem of assigning one item to one job at
one point or interval in time in such a way as to minimize the total
costs of the assignment. Mathematically, if it is assumed that

P £ q -~ r then we want to minimize:

i ¢ % 1.1
(D1 g5 asy 0k ik v
subject to
s 3 1 k 1 (1.2)
; X < for = R 4 .
[ e ijk—' ’ 4
i=1 3=1



r
E Z Xi‘k-i 1 for 3 =1,...,q9
i=1 k=1 *J
(1.2)
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. E Xi'k =1 for i =1,...,p
j=1 k=1 9
xijk = 0,1 for all 41, j, k (1.3)
Cijk is the cost of assigning item i to location j at time k.
.th . . . .th . .
X.,,, =1 means the 1 item is assigned to the j location at time k.

ijk

.th . . . . .
x:,ij = 0 means the i item is not assigned to location j at time k.
Equality holds in the third set of constraints since it is presumed

that a total assignment of the p items is required.

As an example of a three-dimensional assignment problem consider
the case where a company realizes that its distribution system is in
need of two new warehouses in the next three years and a third new ware-
house in about five years. The company i1s not only faced with the
problem of where to locate the warehouses but also when should the
warehouses be built. Eight different cities are being considered as
possible sites for the three warehouses. The company wishes to select
the combination of warehouse, site and time so as to minimize the total

costs associated with this expansion. For example, ik would be

-

the total cost of locating warehouse i on site j at time k;

c.

ijk could include discounted construction costs, future transportation

costs for shipping into and out of this location, operating costs, etc.



Another example could be the launching of x weather
sattelites into y directional orbits at =z different atmospheric
levels from the earth's surface. This example could include a
fourth dimension if we considered the various possible times of

launch.

The general idea behind the multi-dimensional assignment
problem is that there are often additional scheduling dimensions
besides just scheduling men to jobs which should be taken into con-
sideration in making the optimal allocation. These additional
dimensions may be time, or space or some other factors perhaps

qualitative in nature.

A more general formulation of this problem as a three dimensional
transportation type problem has been considered by E. Schell [11]
and K. B. Haley [5] with the exception that they do not consider
constraint (1.3) but rather xijk > 0. Since the polyhedron defined

by (1.2) and x,,

1Jk'z 0 has in general a great number of noninteger

extreme points the approach taken by Schell and Haley will most often
yield a noninteger solution (for large p, g, and r). A similar comment

applies to the simplex method when (1.3) is replaced by Xijk'i 0.

Before proceeding further we will list some standard definitioms.

(1) A solution x = (x is called feasible if x satisfes

1jk)
(1.2) and (1.3).
(2) A solution x is called optimal if x 1is feasible and

Xx minimizes (1.1).



In the case where p = q = r, we have the three dimensional
assignment problem where all of the constraints (l.2) are equality

constraints.

Method of Solution

The method of solution is merely a form of implicit enumeration
of all basic feasible points. For example, if we let p = 3 and
q=71r =14 we can sketch the tree of feasible solutions as follows

(see the following page).

Each node of the tree is characterized by a triple of integers
i, j, k. Thus if we are at node 132 then i =1, j = 3, k =2 and

X =1, x =0 for j # 3 or/and k # 2. Denote by level (t)

132 1ik

the set of all nodes of the tree such that the i index has value

t. In the preceding tree graph level (1) would be the set of nodes
{111, 112, 113, 114, 121, 122, 123, 124, 131, 132, 133, 134, 141, 142,

143, 144},

Actually in level (1) of the graph there are nine branches from
each of the sixteen nodes. Only one complete set of the nine branches
has been drawn. Similarly level (2) has four branches from each node
and we have only sketched one full node. Thus for this particular
example there are 576 feasible paths. For the general case p < q < r

the total number of paths is given by the product of the permutations

pd . pt
p p

.



3, q=4, r=4

Partial Tree Graph of the Feasible Solutions to p
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The algorithm proceeds by selecting a feasible solution x
and computing its objective function value 2z = c:x. We then turn
to a dual problem to compute easily the lower bounds for p primal
subproblems. (These p primal subproblems are defined on page 8

following.)

Now each primal subproblem has a dual which we will call its
dual subproblem. The solutions to the p dual subproblems provide
p lower bounds 1 ,...,lp for the possible values of the primal

1

objective function as we proceed down the tree of feasible solutions.

For example, at level (1) of the tree if =z = 11, the first lower
bound, then we know that x, is an optimal solution, and we may

terminate provided that only one optimal solution is desired.

If z > ll then we proceed systematically down the tree using
1i at level (i) in order to evaluate whether it might be profitable

to continue the search further.

This method of solution is similar to the branch and bound
method used by Little, Murty, Sweeney and Karel [9] in their approach
to the travelling salesman problem. At each node of the tree of
feasible solutions they have calculated a lower bound for proceeding
further on any of the outgoing branches from that node. If the
lower bound exceeds the lowest value of the known feasible solutions
to the problem then a better solution cannot be obtained by proceeding
further from that node. On the other hand if the lower bound is

strictly less than the lowest value of the known feasible solutions,



then a better feasible solution might be found by proceeding further
from that node. In their algorithm just as in the algorithm

proposed in this paper, the lower bounds are easily calculated but

do not represent optimal solutions to the bounding problems. Thus
the lower bounds are not as tight as possible but computer time is
saved in their speed of calculation. In this regard the algorithm of
Balas [1] for the general 0-1 linear integer programming problem also
uses easily calculated but not necessarily tight lower bounds. The
Balas algorithm, however, differs slightly from the algorithm in this
paper due to the fact that all 2" possible solutions are (implicitly)
enumerated. This is necessary since he is solving the general 0-1
problem and does not know in advance the structure of the set of

feasible solutions.

Before going further with a more explicit description of the
algorithm we will state some interesting and pertinent results in
lemma and theorem form. Proofs of these results are available in

the appendix.

Lemma 1
(1) TFeasible integer solutions to (1.2) and (1.3) exist.

(2) Furthermore a vector x 1is a feasible integer solution
to (1.2} and (1.3) if and only if (a) there are
precisely p coordinates of x with value one and
the remaining coordinates have value zero and (b)

the p elements with value one consist of Xijk's

with the property that the i subscripts are a
permutation of the integers 1,...,p the j sub-
scripts are a permutation of p of the integers
l1,...,9 and the k subscripts are a permutation of
p of the integers 1,...,r.



For example, the solution:

Lol
it

iii

[

X 0 otherwise

ijk

is a feasible integer solution.

Theorem 1

(1) An optimal solution to (1.1),

1 for all i=1,...,p

(1.2) and (1.3) exists

although not necessarily uniquely.

(2) When ¢t

=2
i

g max C.. .
i=t k,j {”k}

1 a lwer bound on
m,_ = E min {%., } .
€ oime ok, LUK

Define the ith primal subproblem

(3) When t

problem remaining after the first i-1

but without regard as to which j and

1 an upper bound on

LIL Cijk Xijk is given by
(2.1)
LiX cijk Xijk is given by

(2.2)

as the multi-index assignment
assignments have been made

k 1indices have been assigned.

For example, in the previous graph, Figure 1, if assignment x =1

and all other xljk =

121

0 then the 2nd subproblem would be to consider

the assignment problem for p =2, ¢ = 4 and r = 4 given by

3 4 4

min Z Z z cijk Xijk

i=2 j=1 k=1

subject to



3 4
X,., <1 for k=1,...,4
izz jzl 13k = T
3 4
X,., <1 for j=1,...,4
122 kzl i3k = oo
4 4
L oxg =1 for i = 2,3
j=1 k=1 *J
and Xijk =0,1 ¥ i=2,3, 3 and k =1,...,4 where cijk are

given in the original (Oth subproblem) problem.

Lemma 2
The numbers m, given by (2.2) are lower bounds for the optimal

policy for the tth subproblem, t = 1,...,p.

Many lower bounds of the m, variety can be formed by considering
feasible solutions to' the dual problem generated by each primal sub-
problem where we do not consider the primal integer constraints.
However, if an optimal solution to the dual problems generated by each
primal subproblem is found and if we denote these optimal solutions
by d for t=1,...,p then clearly (from the proof of lemma 2)

d zm and the dt provide the best lower bound which can be

t

achieved by considering the dual subproblems.

We are now able to state the algorithm for finding the optimal
solution to (1.1), (1.2) and (1.3). 1In the algorithm we denote the

lower bounds for the tth subproblem by lt. In the computer runs

given in the last section of this paper the £ are the m, of (2.2);

t
however, if dt is known, we would set Kt = dt.
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Define the sets Ji and Ki as the sets of all j and k
indices respectively which correspond to the values of j and k
at each node visited in levels (1) through and including level (i).
For example, in the previous graph if we were at node 232 in level (2)

then J, = {2,3} and K, = {4,2}. Also define T;k =z lower bound on

the total cost of proceeding all the way down the tree through node
i

ijk. Tjk is composed of the actual cost down the tree graph following

a specific path to node ijk plus the lower bound cost of proceeding

from node ijk to the bottom of the tree graph. Specifically

i i-1 ,
= - + )
T T S Bt T 5

. o - . P
where we define Tjoko = 21. The notation i-1, 3510 ki—l denotes the

immediately preceding node visited before arriving at node ijk. Thus

i-1
T.l - Zi is the actual total cost of a specific path down to node
Ji-1
i-1, j. k but not beyond; c, is the actual cost of going to

i-1° Ti-1 ijk

node ijk from some immediately preceding node such as i-1, ji—l’

ki—l; and 2i+l is the lower bound on the cost of proceeding from

node 1ijk on to the end of the tree graph.



Flow Chart of Algorithm
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Algorithm
(1)

(2)

(3)

(4)

(5
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Compute the first lower bound 21; if the solution x which

corresponds to the lower bound Ql is feasible, then set
x «x and z « c x and terminate; an optimal solution has

been found. If x is not feasible go to (2).

Choose a feasible solution x, say X =1,

iii X5k - 0

otherwise. Set =z <« c°x. If z = 21, then terminate; an
optimal solution has been found. If not, compute li for
i=2,3,...,p, set i <« 0 and go to step (3). The

algorithm now iterates on k, then on j and finally on

i until the entire tree graph has been (implicitly) searched.

Set i <+«1i+ 1., If i =p+ 1 then we had just previously
arrived at the bottom of the tree graph and it is necessary
to back up to the node visited just prior to visiting the
last level (level (p)). This backing up is accomplished by
setting 1 <« 1i -2, j <« ji and k +>ki, in that order.
Go to set (7). If i <p+ 1 then set j < q+ 1 and

k<« r+ 1, and go to step (4).
Set j <« j - 1. Go to step (5).

If j e Ji—l’ then go to step (4). 1In this case the j
element under consideration has already been included in the
path and cannot be brought in again (ref. Lemma 1). If

j ¢ J,_y and j =0, then go to step (6), else go to

step (7).



(6)

(7)

(8)

(9)
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Since j = 0 then we have exhausted all of the j index
numbers 1,2,...,p for the given value of i hence we
must back up to the last previously visited node in level
(i-1) by setting i <« i - 1, j +'ji and k +~ki. If now

i = 0 then terminate; the current candidate for optimality
x 1is the optimal solution since we have exhausted all paths
in the tree graph of feasible solutions. If i > 0 then

go to step (7).
Set k<« k - 1; go to step 8.

If k ¢ Ki—l then go to step (7). If k ¢ Ki—l and

k=0 then set k « r + 1 and go to step (4), else go

to step (9).
Since i #0, j#0,k#0, 3¢ Ji—l and k ¢ Ki—l we have
an acceptable node to test. Form

i i-1

T,, < T, -2, +c,,, + L, ..

jk Ji1 ki—l i ijk i+l

i = .
If Tjk > z, then a better feasible solution cannot be

found by going further from node ijk; hence go to step

i

(7). 1f Tjk < z, then perhaps a better feasible solution
. . i i
can be found. Set i < 73, ki < k and Tjiki < Tjk. Denote

by X(ji’ki) the path down to node i,ji,ki and the path

from node i,ji,ki suggested by the bound Qi+ If

1°
X(ji’ki) is a feasible path then set X < X(ji’ki) and

z = ¢c*x since we have found a feasible path with a lower

objective function value. Now if z = 21 terminate;
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an optimal solution has been found. If either

z > Zl or X(ji’ki) is not feasible go to step (10).

10) set J o« _ U 5} and x <k U (k).

Go to step (3).

The algorithm terminates whenever:

(1) z = 21 in which case x is optimal where Z = c'X or

(2) in the case that_ i = 0 there are no more iterations to
consider, then x is optimal.
It is obvious that the algorithm is finite since no branch of
the tree is searched more than once and there are a finite number of

branches.

It should be noted that the process can be stopped at any time
and the current stored z and its corresponding x 1is the best

feasible solution found up to that time.

This method systematically searches the tree of feasible paths,
however, it abandons a branch of the tree whenever it becomes obvious

that a better solution cannot be achieved by pursuing that branch

1

further. Thus if the sum of all feasible c, s down to a certain

ijk
branch point plus the minimum bound Ri+l to proceed further exceeds
the value z of the current candidate X for optimality then an

optimal path cannot be found by going further down that branch. This

last statement is given in the form of a theorem.
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Theorem 2

t - .
In the above algorithm if Tj K > z then an optimal solution
tt

to (1.1), (1.2) and (1.3) cannot be found on the branch of the

solution tree where we fix (O,jo,ko), (l’jl’kl) oo (t,jt,kt).

Furthermore, it should be noted that all optimal solutions may

be found by not rejecting paths when TEk = z but only when
T§k > z. Also adding or subtracting a constant amount M from

each cijk only changes the value of the optimal solution by p°M
and does not change the optimal solution vector. Therefore, if

cijk >0 for all i,j,k the problem could be changed to

min ZIZ (cijk - M) xijk
subject to (1.2) and (1.3) where we let M = min ik Such a
i,3,k
change would reduce the values of the <¢,.,,'s and for hand com—

ijk

putations at least makes the problem easier to handle.

Moreover, if some assignment xijk = 1 dis not possible from
physical considerations, the algorithm need not be modified but

only set cijk

= Q@ where Q is some very large positive number.
And in the context of the warehouse location example (or any other
example), it is not necessary that the time periods k = 1,...,r
be evenly spaced periods of equal length. If two warehouses but no
more could be built in say the first year, then let k =1 be a

period of length 1 week, k = 2 a period of length 51 weeks and

define x:.ij as the decision to begin construction of warehouse i
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at location j at the beginning of period k. 1In this way it would
be possible to build two warehouses in the first year but not more
than two warehouses since period 3 starts after the first year has

ended.

Finally, we can say that at each branch of the tree it would
be possible to find a lower bound or set of lower bounds peculiar
to that specific branch. Thus the brounds would most likely be
tighter and termination would be achieved sooner. These bounds
could be obtained by considering the dual problem defined by a
tjkth primal subprobelm where not only the previously assigned i
indices were removed but also the previously assigned j and k
indices. We could then generate lower bounds of the form of
lemma 2 for these new subproblems. Unfortunately this method
has the great disadvantage that the bounds would have to be computed
at each node of the tree reached by the algorithm, whereas the
bounds in lemma 2 only need to be computed once at the beginning

of the problem.

The multi-index formulation of the problem is: if

Py S Py L eee 2P then we wish to minimize
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subject to

fpserendy g Xil,...,in-:l Yi = Loy
1y5i55.%0,1 % Lo "in <1 ¥ i, = 1, Py
T .

iyseesiy Xil" i =1 ¥ i, = 1,.. Py
xil""’in = 0,1 ¥ 1yseeeniy

The foregoing lemmas and theorems as well as the algorithm for
solving the multi-index problem generalize in the obvious way. However,
the dimensionality of the problem increases extremely fast, namely by
products of factorials, and it is very doubtful that even small multi-
dimensional problems (dimension > 5) could be solved in any reasonable

amount of time.

Computational Experience with the Algorithm

Using a Univac 1107 we applied the algorithm to several small three-
dimensional problems. The values of Cijk were obtained from a pseudo-
random number generator where the random numbers were all rounded to

integers between 00 and 99.
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Total no. Approximate Machine
Problem No. p q r of variables No. of feasible Running Time*
paths in seconds
1 4 4 4 64 576 1
2 5 5 5 125 14,400 3
3 6 6 6 216 5.2 x 10° 9
4 8 8 8 512 1.6 x 10° 173
5 8 8 8 512 1.6 x 10° 151
6 4 5 6 120 4.3 x 10% 2
7 6 7 8 336 1.0 x 10° 9
8 4 8 8 256 2.8 x lO6 3
5 %k
9 3 7 9 189 1.0 x 10 1
10 8 10 12 960 3.6 x lO13 128

*%
In this problem the lower bound provided a feasible (hence optimal) solution.

%
Does not include the compilation time of approximately 10 seconds.

Unfortunately, as in branch and bound techniques in general, the
algorithm is slow if the bounds are very loose and if the current
candidates for the optimal policy at each step decrease the objective
function slowly and the optimal policy occurs near the end of the search.
In this case the suboptimal method presented in [10] yields a faster

program.
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The Three — Dimensional Quadratic Assignment Problem

An interesting extension of the forgoing three~dimensional assign-
ment problem is to the case of a three-dimensional quadratic assign-
ment problem. In this latter case we wish to find X (i=1,...,p,

i=1,...,p, k=1,...,p) to

minimize E E g E E c.. x. . X (3.1
i=1l j=1 k=1 Qil m=1 n=1 ijklmn " ijk™ 1mn

subject to

X,.,. =1 for all i = 1,...,p (3.2)
. ijk ’
j=1 k=1

X,., =1 for all j = 1,...,p (3.3)
. ijk
i=1 k=1

x,,, =1 for all k= 1,...,p (3.4)

. ijk ’ s

i=1 j=1

Xijk = 0,1 for all 1i,j,k (3.5)

Without loss of generality it is assumed that the matrix

C = [| is symmetric. Furthermore it will be assumed that

CijklmnH
C 1is positive semidefinite.

Several papers on the two-dimensional quadratic assignment
problem [12, 14, 15, 16, 17] describe some of the many applications

of that problem. In the three-dimensional version we have the added

flexibility of a third dimension such as time or space. For example,
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the static nature of the facilities assignment problem or the

plant or warehouse location problem can be removed through the
introduction of a time horizon in the planning process. However,
adding dimensions greatly increases the number of variables and
restricts the size of the problems which can be handled on the current

generation of computers.

Just as before branch and bound techniques may be applied to
(3.1) - (3.5). Again the need is for tight lower bounds at each node
of the solution tree. Now an obvious lower bound at the tth level
of the solution tree is the quadratic programming solution to (3.1) -

(3.4) where (3.5) has be replaced by xijk

>0 for all 1i,j,k, and
where all indices (l’Jl’kl)’ (2,32,k2), -—— (t-1, Jeo1o kt—l) have
been removed from the problem. This approach would be extremely
costly in computer time. Another approach is to use easily calculated

dual feasible solutions to the dual problem (given by Dorn [13]) of

the quadratic program (3.1) - (3.4) and x.

1jk'i 0 for all i,j,k.

In this regard we define the tth primal subproblem as

minimize E g E E E

c.. X, .1 X (3.6
i=t §=1 k=1 1=t m=1 n=1 LJKim ijk’lm ‘
subject to:
g E xijk =1 for all i = t,...,p (3.7)
j=1 k=1
g E X 2 1 for all j = 1,...,p (3.8)
. J
i=t k=1
E 5 xijk'i 1 for all k= 1,...,p (3.9)
i=t j=1

X,,, >0 (i=t,...,p; j,k=1,...,p) (3.10)
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A dual problem to (3.6) - (3.10) is

3p
minimize - g E 5 g 5 E c,. X, ., X + Z A, (t)
i=t §=1 k=1 1=t m=1 n=] LoKlmA ijkilmn = .2 74

(3.11)
subject to:
(t) (t) (t) Po¥ E
AT+ A + A -2 <0 (3.12)
i j+ k+2p 12¢ m— nel lmnljk 1mn
for i = t,...,p
j=1,...,p
k=1,...,p
(t) . .
Ai unconstrained for i=t,...,p (3.13)
5 (6) .-
J+p >0 for j = 1,...,p (3.14)
, (B) -
k+2p_3 0 for k=1,...,p (3.15)
le‘i 0 for i=t,...,p; j=1l,...,p; k=1l,...,p

(3.16)

When t = 1, the dual problem (3.11) - (3.16) is merely the
dual problem of (3.1) - (3.4) and (3.10), and in this case equality

holds in (3.8) and (3.9) and all XA's are unconstrained.

Feasible solutions to (3.11) - (3.16) are easily found. For

example let

iii (3.17)

X,., = 0 otherwise
ijk
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Then (3.12) reduces to

(t) (t) (t) 5
AT H xj+p + Ak+2p 2 L Chmn ijk < 0 (3.18)

In order to satisfy (3.14) and (3.15) let

(6 o ¥ -
kk+2p = max {0, -2 ¢ onn ppk}’ k=1,...,p (3.19)
n=t
(t) E (t)
A, = max {0, -2 c , - A }; (3.20)
j+p k=1,...,p q=t Dnn P,J,.k k+2p
j=1,...,p
VB o min 2 5 e o=ale () g
i . nnn ijk j+p k+2p
j=1l,...,p n=t (3.21)
k=l,...,p i=t,...,p.
() (t)
Thus Xk+2p >0, Aj+p'z 0, xijk >0 and
(t) | (t) , (1) E (t) ., (t) (t) , ()
Ai + Aj+p * Ak+2p 22 “nnn ijk >\j+p + Ak+2p + Aj+p * Ak+2p

n=t

= 2 5 c . .
ne¢ DOD ijk

and (3.18) is satisfied. Note that the Xv(t) given above (v=1,...,3p)
can be calculated recursively in terms of Av(t+1); thus, it is not

necessary to repeat all of the calculations at each step.



24

In the event all Cijklmn > 0 then (3.19), (3.20) and
(3.21) become
(t)y _ () _ .
Ak+2p = Aj+p =0 for all j,k (3.22)
) _ 3 i
Ai = min {2 z Cn ijk}’ i=t,ec.,p (3.23)
j.k n=t

and the value of the objective function (3.11) is:

p-1
d =-1 E “hnn nnn t2 z E Cnnn mmm] + E Aét)'
n=t n=t m=n+1 ? n=t
(3.24)

It should be noted even if some or all c..
ijklmn

given by (3.17), (3.22) and (3.23) is still feasible.

< 0, the solution

Lemma 3 The solutions 9. given by (3.24) are lower bounds on the

t
cost of proceeding from the t h level of the solution tree

on through the pth level.

. . . . th
As was mentioned earlier, other feasible solutions to the t

dual subproblem are easily found. For example, if we take any
permutation set, P, of p ordered triples (i,j,k) of indices of

a feasible solution to (3.2) - (3.5), then the solution
Xijk =1 if (i,j,k) e P
=0 otherwise

can be used in place of (3.17) and (3.12) becomes

(t) (v) (t) :
Mo M T My T 2 L Ly Lo “lmijk =

(l,m,n)eP

0.
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Now choose

(t)

A7, = max {0, - 2 III c s k=1,...

k+2p ’ (lmmyep  Lmn,ppk se05P

(t) (t)

AN = max {0, - 2 TIZ c . - A }

P k=1, (Qmyep TMHPHIok o TlbIp

j=1,...,p

AV o nin {2 zzz el iy - (jr) - Aéi% } for

+ j=l,...,p (lmn)eP J 7P P
k=l,...,p 1= t,e..,p.

Again we have an easily calculable dual feasible solution to the tth

subproblem (3.6) - (3.10). If on some a priori ground it is felt
or known that a certain dual feasible solution will be better than

another then the former should be used.

As a final point, it should be noted that the algorithm given
for the three-dimensional assignment problem will work for the three-

dimensional quadratic assignment problem with certain minor changes.

These changes are: (1) z =% C x in all cases where 2z is computed,
(2) Qi is everywhere replaced by 4y given in (3.24), (3)

P =q =r everywhere, and (4) replace T;k by o}k where

. . +c,., .., T2 C,.
i i+l ijk,ijk (z’m’n)EP(i_l’ji—l’ki—l) ijk,1lmn

+ 2 E Bz(isjsk) -2 Z * Bi(zymsn)-
1’ i—l)
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For c;k the following definitions are needed:

Bg(i,J,k) minimum {Cijk,lmn} for L =41+ 1,...,p;
m=1,...,p
n=l,...,p
.0 = . s = = .
Oj e S 4ps 82(0’30’k0> =0 for all % 1,...,p;
oo
P(%,m,n) = set of all previously assigned triples of indices
in levels (1),...,(%) of the tree graph;
P(O,Jo,ko) z 0 9ot = 03 Bp+l(1,3,k) =0 for all 1i,j,k.

The Bz(i,j,k) require a considerable amount of computational effort
at each level (i) since they must be computed for every j and k in
level (i). A different 82 which is not so tight a lower bound but which

greatly reduces the number of total calculations is

82(1) = minimum {Cist,lmn}'
m=1l,...,p
n=l,...,p
s=1,...,p
t=1,...,p
Then 1-1
o] +~ g, - q, + q. + CL.q . + 2 Ciste 1
R S 15 e S N DI S B i

i-1
+ 2 E B (1) -2 ] 8,(0).
L=i+1 =1

. . i . o
The economic interpretation of either of o is similar to the

jk

interpretation of the T;k.
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i _ , _ . .
Ojk = actual cost of setting ¥om = 1 for 2mn € P(1—l,3i_l,ki_l)

and X = 1 plus the lower bound cost of the i+15t

jk

subproblem plus the lower bound linking costs of the i+lSt

subproblem and the previously assigned indices.

i-1
. 2 ) [
331k

fomeP (i-1,3, 5k, )

=9t Sk, a5k T 19k, tm ~ P1(Fomom)]

is the actual cost of setting x =1 for A&mn € P(i—l,ji k., )

Lmn -1*7i-1

and x,,, =1, is the lower bound cost of the i+1St subproblem.

ijk 941

2 g Bl(i,j,k) is the lower bound linking costs of the i+15¢t
L=i+1

subproblem and the previously assigned indices.

A simple example may illuminate the above definition.

Let p=3. C is 27 x 27. Consider the node ijk = (1,2,3) in

level (1).
L 3
O3 =93 79 T 9yt Cp3903F 2 222 By (1,2,3)

= ay * cipg 193 + 28,(1,2,3) + 285(1,2,3).

If we divide C = |]ec,. ]| into 9 x 9 subblocks

ijklmn
. . _ ) L
Aiﬁ = |]Cijk2mn|| for i =1,2,3; % 1,2,3 we can diagram On3

as follows:

Aa | P2 | A3
- where A, , = A . by
C = A21 A22 A23 il 21
the symmetry of C.
A31 |As2 | Pa3
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We can now pick out the relevant costs in each subblock.

c123,123 82(1,2,3) ' 83(1,2,3)

B,(1,2,3) l

B4(1,2,3)

c123,123 is the actual cost of X193 = 1 in block All' q, 1is

the lower bound on the cost of subblocks

22 23

32 33

82(1,2,3) is the lower bound linking cost of block A11 to the

block Ag Now assume the next node visited in ijk = (2,1,2)

X
in level (2).

2 1

919 T 93 7 Ay T A3 Coqp 10 F 2055 103 F 285(2,1,2) - 26,(1,2,3)

= C193,123 * 212,212 T 2%12,123 T 283(2,1,2) + 285(1,2,3) + 4.
c123,123-+ 2c212,123~+ c212’212 is “the actual cost of subblocks

11 12

21 22
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283(1,2,3) and 283(2,1,2) are the lower bound linking costs of

block A to A and A to A respectively. 45 is the

11 33 22 33
lower bound on the cost in block A33.
c ! c B,(1,2,3)
123,123 | 123,212 3 e
________ e
12,123 | 312,212 B5(2,1,2)
I
lli
B5(1,2,3) 1 8,(2,1,2) a5
|
- I

Finally assume the last node visited is ijk = (3,3,1) in level (3).

(o =0

31 T 912 T 93 ¥ 94 F C335 337 F 20335 93 F 20

331,212
- 28,(1,2,3) - 28,(2,1,2)

2 + 2c¢

= 123,123 T ©212,212 T 331,331 T 2%212,123 T 2%212,331 123,331°

which is precisely the actual cost of the feasible path (1,2,3),

(2,1,2), (3,3,1); that is, Xjy3 = X = x =1, x,., =20
- 3

otherwise and =z = 031.

As is pointed out in Lawler [17] the matrix C may be made positive

semidefinite by replacing all diagonal elements cijk,ijk by

: .1 = C.., ... + K where
Cijk’ljk ijk,ijk
K 1is some suitably large positive constant. The cost function is

raised by an amount p+K; however, the set of optimal solutions to the

problem is unchanged.



APPENDIX

Proofs
Lemma 1 part (1) is obvious. Part (2) (=) Let x be a feasible

solution to (1.2) and (1.3).

Since Z z Xijk =1 ¥ i=1,...,p then upon adding these
i k

P equality constraints g % E

X.,. = D.
=1 4=1 k=1 3K

But = 0,1 ¥ 4i,j,k > there are exactly p of the x,,, 's

xijk ijk
equal to one. Now assume that the xijk

satisfy part (b). Thus there is at least one Xijk = 1 with at least

's which equal one do not

one common index element with another xijk =1, say x, . e VR

10300

But by (1.2) we must have since x 1is feasible
5 X =2 1
i=1 j=1 3%

thus we have a contradiction since E

X, > 2.
=1 j=1 kg

(+) Now (a) and (b) are given. Clearly (1.3) is satisfied and since
each inequality of (1.2) can contain at most one xijk = 1 and each

equality must contain one x,

15k = 1 due to the permuting of the

indices then (1.2) holds. Hence by definition x is feasible.

30
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Theorem 1 We first prove part (3):

part (3) r § §
C.uy X,u7 > min .. X, .
121 371 g=1 Sik R T oo g MR g0y g B3R
= E min c,, =m
i=1 j,k Ik 1

part (1) This part is obvious from part (3) above and lemma 1.

part (2) This proof is mutatis mutandis the same as part (3) above.

Lemma 2
th . .
The t subproblem is given by:
P31
L jil kzl Ciik ¥ijk (A1)
subject to E §
Lo b xijk-i 1 ¥ k=1,...,r
.
X,,, <1 ¥ 3 =1,...,q (A2)
. ijk —
i=t k=1
r
i1 kzl xijk =1 ¥ i=t,...,p
13k = 0,1 (A3)

The dual of this subproblem where we omit (A3) and use instead

b.4 > 0 1is given by

ijk

E ptqt+r
max v, - V. (A4)
i=t = di=p+l
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subject to:

- - A5
Yori T V1 7 Yprgtk S Cijk (45)
for all i = t,...,p
j=1,...5q
k=1,...,r
vy unconstrained for i=t,...,p
(A6)
yi_i 0 for i=pt+l,...,ptqtr

In (A5) if we set v = 0. for all i=p+l,...,ptq+r and set
v, = min {}ijé} for i=t,...,p then both (A5) and (A6) are
i,k
satisfied and from (A4)

Py =m
i=t T

Hence this solution is feasible for this dual problem. Now by the
standard results of linear programming if =x* is optimal for (Al),

(A2) and (A3) and if x is optimal for (Al), (A2) and X, > 0 then

jk

Theorem 2. By lemma 2, the bounds Qt are at least as small as the

. . t .
minimum cost solution to the t P subproblem. Thus if

the total cost for the first t - 1 branches plus the lower
bound from t on is greater than the current candidate for
optimality, viz., z, then a better path (i.e., lower cost)

cannot be found from the tth level on. Q.E.D.
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Proof of Lemma 3

Let the optimal value of the objective function for the problem
(3.6) - (3.10) be deonted by s.- By duality theorems of nonlinear

programming, q, j_st.

Let the optimal integer solution to (3.1) - (3.5) be given by

*
x with permutation set P* i.e.,

*
x,., =1 if (ijk) e P

=0 otherwise

*
X = ] for (ijk) € P
=0 otherwise
is feasible for (3.7) - (3.10). For this feasible solution the wvalue

of the objective function (3.6) is

% %
I, = E § 5 E C.. X,., X
t i=t j=1 k=1 1=t m=1 n=1 1ijklmn “ijk “Imn

and It 28, 2 4. Q.E.D.
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