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Stability Theorems for infinitely Constrained Mathematical
Programs

H. J. GreenBeErG! AND W. P. PIERSKALLA?

Communicated by G. L. Nemhauser

Abstract. The primary concern of this paper is to investigate
stability conditions for the mathematical program: find x € E” that
maximizes f(x): g/(x) < 0 for some je J, where f is a real scalar-
valued function and each g is a real vector-valued function of
possibly infinite dimension. It should be noted that we allow, possibly
infinitely many, disjunctive forms. In an earlier work, Evans and
Gould established stability theorems when g is a continuous finite-
dimensional real-vector function and | = {1}. It is pointed out that
the results of this paper reduce to the Evans-Gould results under
their assumptions. Furthermore, since we use a slightly more
general definition of lower and upper semicontinuous point-to-set
mappings, we can dispense with the continuity of g (except in a few
instances where it is implied by convexity assumptions).

Key Words. Stability of infinite programs, continuity of mathe-
matical programs, nonlinear programming, infinitely constrained
problems, stability analysis.

1. Introduction

As is well-known, mathematical programs usually represent an
abstraction of some economic or physical phenomena. Hence, most of the
literature in mathematical programming is devoted to the formulation
and solution of these problems. An area which has received less emphasis,
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but which is quite important for the application and implementation o
the solutions of mathematical programs, is the investigation of the
continuity properties of the optimal solution set and the optimal respons:
function. If a mathematical program lacks continuity, then small change:
in parameters or functions (often due to inexact estimates of the
parameters or functions) may result in large changes in the optima
solutions or in the optimal objective function values or both. Suct
behavior could be very disconcerting to the user or the user’s superiors
Another possibly even more important need for continuity in mathe
matical programs is the fact that digital computers operate with finite
arithmetic and often produce significant roundoff error over time
Continuity of the mathematical program being solved gives credence tc
the belief that the algorithmic process being used may lead to an optima
or near-optimal solution of the problem. Lack of continuity, on the othe
hand, could mean that the algorithm is yielding something far from
optimal.

This paper i1s concerned with the investigation of continuity o
stability properties of mathematical programs represented by

P: find x € S that maximizes f(x) : §(x) < 0 for some je ],

where S is a subset of Euclidean n-space, f is a real scalar-valued functior
on S, and each g7 is a real vector-valued function on S of possibly
infinite dimension (we use the bar over g, i.e., §, to denote a specifi
function). The set [ is an index set which allows for disjunctive forms
i.e., constraints of the either-or variety. For example, let J = {1, 2}
Then, a disjunctive mathematical program would be max f(x), subject tc
either gl(x) < 0 or g%(x) << 0, where g'(+) and g%-) are possibly infinit
dimensional. Such constraints appear in many areas, such as multiple-
choice programs, the theory of nonlinear programming, mathematica
economics, and some problems in game theory. An example in the las
area is given in Rosenthal (Ref. 1), where one wishes to solve the problen
of selection of a social state or set of social states by society througt
voting. This problem reduces to finding x € E™ to

min min (e, X),

BeAd S.t.Bx>e

x>0

that is, one wishes to find the minimum of the inner product (e, x) ove:
the disjunctive sets

Byx = e, Byx > e,... .
x>0 x>0
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The use of disjunctive constraints has not been widespread, due to the
difficulty in devising efficient algorithms for such problems; however,
many real problems have constraints which say either this and this or
that and that must be satisfied, but not necessarily both sets of constraints.

Another widely applied class of mathematical programs which falls
into the above formulation is the semi-infinite programs, which have a
finite solution vector and a (countably) infinite number of constraints.
Much work has gone into understanding and solving semi-infinite
mathematical programs (see Refs. 2-5 and many other works), since these
problems have wide application in such areas as numerical methods
(Ref. 6), statistics (Refs. 7-9), and air pollution and meteorology
(Refs. 10-13), to mention a few. Thus, a focus on the continuity and
stability of the general mathematical programs presented in this paper
will prove useful to investigators in many diverse application areas.

The analysis of the continuity and stability of the optimal solution
set and optimal response function of mathematical programs focuses on
the continuity and stability of the constraint region itself. If the constraint
region behaves badly under small perturbations, it is not surprising that
the optimal solution set, and quite possibly the optimal response function,
will most often also behave badly. Furthermore, when the constraint
region is stable, then under mild assumptions the optimal response
function is continuous and often (under more restrictive assumptions)
the optimal solution set is stable. This relationship of the stability of the
constraint region to the stability of the optimal solution set and the
optimal response function has been recognized by many authors (see
Refs. 14-20). Indeed, in the study of stability, the concepts of closed and
of upper and lower semicontinuous point-to-set mappings applied to the
constraint region are fundamental to understanding the stability of the
mathematical program. It should be noted that the various authors differ
slightly as to their definitions of upper and lower semicontinuous
(abbreviated to usc and Isc) point-to-set mappings; hence, their results
are also slightly different. In this paper, we use the definitions given by
Berge (Ref. 15). These definitions are stated explicitly in the following
section. Furthermore, it should be noted that the concept of a closed map
is closely related to that of an upper semicontinuous map; i.e., if a map is
upper semicontinuous and if its image sets are closed, then the map 1s
closed; conversely, if a map is closed and its range on a neighborhood is
bounded, then it is upper semicontinuous. Meyer (Ref. 21) and Zangwill
(Ref. 22) have used the concepts of closed and usc mappings in relation
to the convergence of algorithms, thus demonstrating their importance
in this companion area of stability analysis.
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2. Background and Notation

Let E™ denote Euclidean n-space with the usual Euclidean norm
denoted by || x ||

Let (F, p) be the metric space of all real-valued functions definec
on a subset S C E™ with metric

p(hy , by) = i‘;? | hy(x) — hy(x)]

for A, , hy e F.

In analyzing the continuity and stability of the feasibility region
we are interested in families of real-valued functions which are clos
to our given functions and which have nonempty feasibility regions also
That is, we wish to pertutb our original functions in a uniform manne:

and see what happens to the resulting feasibility regions. Hence, wi
define, for any € > 0 and % € F, the set (k) C F given by

0h) = {heF | {x] hx) < 0} + $ and sup | A(x) — K(x)| < <

The set O(k) is the set of all real-valued functions which differ from /
at any x € S by at most € and which have a nonempty zero level set.

Throughout this paper, we use extensively the level set mapping o
8(h) — 25 (the power set of S) given by

olh) = {x e S | h(x) < 0}
and the strict interior of the level set
oO(h) = {x e S| h(x) < 0}.

It should be noted that, when % is an upper semicontinuous, real-valuec
function, the strict interior o%%) is contained in, but is not necessarily
equal to, the interior of o(£). If, for example, for x € E*,

X for <O,
h(x) = (0 for 0 <x <1,
x —1 for x> 1,

then ¢%#k) = (— oo, 0), but interior of o(h) = (—o0, 1).

As mentioned previously, we will be concerned with certain
continuity properties associated with ¢ and other mappings closely
related to o, since the union ();.,{o(g’)} defines the feasibility region.
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Now, let us define the neighborhoods

Nfx) ={y|llx =yl < e} where x€ S,
7{S) = | N=), where S C E™.

2ES
Observe that 1(S) = ncl S), where cl S denotes the closure of S.
Given any point-to-set map, o, with domain 6(%), we say that o is
usc [Isc] at % if, for any ¢ > O and any sequence {#*} C 6(h), where
p(K®, k) — 0, there exists a k* such that & > k* implies

1{o(R) D o(h*)  [no(h*)) 2 o(A)].

It should be noted that convergence in the sup metric means uniform
convergence. If o is both Isc and usc at &, we shall say that ¢ is continuous
at h.

Now, let I" be an index set (I" may be finite or infinite). Let g7(+) for
j € ] be given by the set §(-) = {£,°(*) | y € I'}, where g,7: S — E*. Thus,
if I' is finite,

g(C) = (&°()s &’ () C E™

For the following discussion, let | = {1} and define 2%(-) = g(*) =
&) lyel}.

There are several point-to-set maps associated with this collection
which we shall consider. The two fundamental ones are: (a) the inter-
section map and (b) the union map.

We first define the intersection map o, (where the subscript 7 denotes
intersection), given by the rule

og) = {x | g (x) <0,yel}= () olg)

yell

for all g such that

g=6(8) = |g| () 180 <O # g, €F, and sup plg, , £) < <.

yvel’

Thus, o,(g) is the feasibility region of g given by the intersection of the
nonempty feasibility regions of the collection of real-valued functions g,
which are close to g, , y eI

The union map o, (where the subscript # denotes union) is given by
the rule

ou(8) = {x | g(x) < O for some y e I'} = ) o(g,)

-yE['
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for all g such that

ge0,() = |g| U (51 ,(x) <0} # $.g,F, and sup (g, , 8) < |

yell

Thus, o,(g) is the feasibility region of g given by the union of the non-
empty feasibility regions of the collection of real-valued functions g,
which are closeto g, , y e I

The intersection map o;(g) defines the most common form of
feasibility region for mathematical programming problems found in the
literature, especially when I"is finite. The union map o,(g) is the simplest
disjunctive form, i.e., where every constraint is of the either-or variety.
Later, we will consider a family of point-to-set maps associated with the
collection {g, | y € I'} defined on 6(g) in terms of intersections and unions
of subsets of the collection {c(g,) | y € I'}.

We now define the strict interiors of o,(g) and o,(2) by

0 = {x&(x) <0,yel}= () o°F,)

yel’

and

0,0 = {x | 7,(x) <O for some yeI'} = |} o%(3,),

yel’

respectively. Note that we have suppressed the dependence of ¢,° and
o, on g, since we always use the strict interiors with respect to the
specified function 7, whereas the definitions of the ¢, and ¢, mappings are
in regard to g € 0,(2) and g € 0,(g), respectively.

Although the optimal response function Fg,, is not directly used
in the results of this paper, it is defined here in order to point out the
usefulness of our results with regard to this function and to the optimal
solution set ().

The optimal response function F,,: 0(g) — E* U {4 0} is given by

Fsup(g) = supif(x) | x € o(g),
and the optimal solution set £2(g) C E™ is given by

Qg) = {xca(g) | /(%) = Foun(g)}-

In an earlier paper (Ref. 18), Evans and Gould derived stability
theorems for the mathematical program P with the feasibility region
o,(g) and I" finite. That is, they considered the mathematical program

maximize f(x): g(x) — b <0, xckE"
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where f(-) is a continuous real-valued function, & is a continuous,
real-valued, vector function g: E® — E™ and b is a given vector in E™,
and it is assumed that P has a solution. They considered the usc and Isc of
og) in regard to perturbations of the vector 5. They presented the
following two theorems, under the assumption that ¢;(£) is a compact set:

(1) o, is usc at b iff there exists a b > b such that {x | g(x) < b} is
compact.

(2) Ifo, = @, then o, is Isc at b iff closure 0,0 = o,(2).

Thus, we say that o is stable at b if (a) 0,° # @, (b) {x | g(x) < b} is
compact for some b > b, and (c) closure 6,° = 0,(2).

Using these results (see also Berge, Ref. 15), Evans and Gould then
established the following:

(3) If f1s an upper semicontinuous function and o,(g) is an usc

map at b, then F (+) is an upper semicontinuous function at b.

(4) Ifo,° =% @, fis alower semicontinuous function, and ¢,(g) is a
Isc map, then F,, is a lower semicontinuous function at b.

Thus, the usc and Isc of the feasibility region play a very important
role in the continuity of the optimal response function.

Later, Greenberg and Pierskalla (Ref. 19) extended the Evans—Gould
results (1) and (2) to allow uniformly convergent perturbations of the
vector function g, namely:

(5) o;is usc at g iff o, is usc at b.

(6) Ifo? == @,o0;islscat giff o,is Isc at b.

This means the Evans—Gould theorems are sufficiently general to
allow uniform perturbations of the constraint functions. In the same
paper (Ref. 19), Greenberg—Pierskalla proved the following:

(7) If o; is usc at b and F, is continuous at b, then £ is usc at b.

(8) If £ is usc at b and if there exists a § > 0 such that, for all
b € Ny(b), £2(g) consists of a single point where g(x) = g(x) — b, then Q2
is Isc at b. (See also Berge, Ref. 15.)

Although all of these results were demonstrated for I finite and the
intersection map, results (3), (4), (7), and (8) will hold if I' is infinite and
the feasibility region is given by other types of maps (such as the union
map). Thus, to establish the continuity of Fy,, and £, we must first
examine the usc and Isc of o; and ¢,, in general.
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The next section presents usc and Isc of o; . The following section
does the same for o,, . The final section considers families of intersections
and unions.

Before proceeding, it should be noted that all of the results of this
paper are for general functional perturbations of g and include as a
special case right-hand-side perturbations of 5.

3. Intersection Map

In this section, we are concerned with the intersection map o; .
The extended Evans and Gould theorems do not apply when I is infinite.
For one thing, the set given by

= {x € 0,(Z)| g,(x) = O for some y e I'}

need not be closed even if each g, is continuous and S = E™. This
property was used by Evans and Gould in developing and applying their
shrinkage lemma.

To develop stability theorems for continuity properties in the
infinite case, we shall define the function g, ,: S — E* U {400} as

Zsup(x) = sup{Z,(x) |y e I}, xeS.
Let the strict interior of o(g,,,) be denoted by
ogup = {* € S | Fsup(¥) < 0.

We point out that, even if each g, is continuous on cl S, g, need
‘not be.

We shall say that gy, is regular if there exists 7: § — I', whereby
Zsup(%) = 2o (%) for each x¢€ S.

Observe that g, is regular if I' is finite.

Lemma 3. l. (1) U(gsup) = o) and o2, C % and (ii) if gg,p
is regular, then o2, = ¢,°

Now, we shall reduce our possibly infinite system to a single
constraint function with the following theorem.

Theorem 3.1. If 0¥, 5 @, theno;isIsc at giff o is Isc at gy, -
The main consequence of Theorem 3.1 is that we can now deal with
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the case of a single level set o(g,,,) whenever o3, 7 @ (which we shall
generally assume holds). Furthermore, in considering Lemma 3.1, if
Zsup is regular, then 0% 7 o is equivalent to 0dup # 2. This case could
be useful if it is easier to establish the result 0,° ¢ & than the result
o%p 7 . Another consequence of the regularity of Z,, was given by
Greenberg and Pierskalla (Ref. 23). If g, is regular and if each g, (y € I')
is explicitly quasiconvex, then g, is explicitly quasiconvex. The
importance of this rests with the fact established by Evans and Gould that
a continuous, explicitly quasiconvex function yields a continuous
point-to-set mapping (as defined by its level set) at O provided that
o(Zsup) 18 compact.

We cannot, however, directly apply the extended Evans-Gould
results because g, need not be continuous. However, using a different
mode of proof, we shall develop a theorem similar to theirs involving
a key closure property [viz., cl 6%,, = cl 6(Fsup)]. Our results reduce to
theirs when I is finite and each g, is continuous on S = E™.

Lemma 3.2. If ¢° % @, then clo? = cloy(g) iff, for all
x € cl 0,(Z) and any € > 0, there exists a y € ¢,° such that

e —y| <e ie., N(x)Nol # &.

Note that this lemma also holds if ¢,° is replaced by o2, and o;(g) by
o(Zsup), EVEryWhere.

The lemma states a reasonably obvious fact that the closure of the
nonempty strict interior of the feasibility region ¢, is equal to the closure
of the feasibility region o,(g) iff there are points in ¢, arbitrarily close to
any points in cl o,(g). The lemma is used to establish the following
theorem.

Theorem 3.2. Suppose that ¢, 5 @ and o(Z,,,) is bounded.
Then, o is Isc at gy, iff cl 0%, = ¢l o(Faup)-

Tt should be noted that the boundedness of o(g,,) is essential for
the sufficiency of Theorem 3.2; it is not needed in the necessity. A
simple example illustrating its need in the sufficiency is the following.
Let S = E' and g, = —exp(x), so that ogy, = E* = cl o(Zsup)-
However, o is not Isc at g, , for let A% = g ., + (1/k), so that o(h*) =
[log(1/k), + o).

Now, let us identify situations where the closure property holds,
assuming that o9, , #* .

Theorem 3.3. If S is convex, oj,, 7 @&, and if each g, is
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explicitly quasiconvex and gy, is regular and continuous, then cl o3, =

el o(Zsup)- N .
A similar result holds for strictly isotonic (i.e., order-preserving
functions. '

Theorem 3.4. If o  =# @, S is convex, bounded, and a mee
sup

semilattice, and if each g, is strictly isotonic on .S, then clo?,, =

sup
cl o(&sup)-

For these two classes of functions, explicitly quasiconvex anc
isotonic, with reasonable restrictions on the feasibility region, we see
that o, is a Isc map at g.

Now, let us consider the usc of o; at g. It should be noted (Refs.
21-22) that successful convergence of primal algorithms depends upon
upper semicontinuity of o; rather than the Isc of o .

Theorem 3.5. o;is usc at g iff o is usc at g, .

In seeking sufficient conditions for the usc of o at 7, , it is important
to remember that 7, need not be continuous, so the Evans—Gould
theorems cannot be directly applied. Indeed, it is easy to see that g,
must be well behaved (in some sense) in order for o to be usc at g, .
A simple example illustrating what can happen when g, is not well
behaved is given by

x—12—1 for x» <2,
Zsup(x) = {1 for 2 <x <3,
x —3 for x > 3.

Let ¥ = 3, 50 g4,,(¥) = 1. However, if we consider the sequence {g*},
where

£5(%) = Zsup(¥) — 1/,
then the points
aF = %+ 1k =3+ 1)k

satisfy x% € o(g"); but x* ¢ (o(Fsp) for all k, since X ¢ o(Fgyp) =
(— o0, 2]. However, when each g, is lower semicontinuous on S, then
Zsup 18 lower semicontinuous, and the Evans—Gould theorem establishing
necessary and sufficient conditions for usc can then be extended to the
following theorem.

Theorem 3.6. Suppose that g, is lower semicontinuous on S for
for each y € I' and that o(g,,,) is compact. Then, o is usc at g, iff there
exists 8 > 0 such that o(g — ) is compact.
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4, Union Map

In this section, we are concerned with the union map o,: 0,(g) — 25,
where
ou(g) = U olg,) ={xeS|g(x) <O for someyell}

yel’

Recall that 0,0 = U, 0%g,) and define
Fuud#) = inf(Z,(x) |y I}, xS,

We shall say that g, is regular if there exists 7: S — I, such that

g-inf(x) = gf(m)(x)> xeS.

Let 0%, = 0%@ins)- The following lemma is easily verified.

Lemma 4.1. (i) o(Fins) D 0u(Z) and o3 = 0,0 and (ii) if gip is
regular, then o(gy,;) = o,(8).

Theorem 4.1. Suppose that ¢,%g) = @ and o(Zing) = 0,(&)-
Then, o, is Iscat giff o 1slsc at g, .

Again, we have only to deal with a single constraint. While convexity
properties are not maintained by the infimum, monotonicity properties
are; namely, if S is a convex, meet semilattice, and if each g, is strictly
isotonic on S, then g, ; is strictly isotonic on S if it is regular.

Further, the infimum does preserve concavity. We therefore obtain
the following lemma.

Lemma 4.2. Let k2 be a scalar, strictly concave function on
S = Em"such that 6%(%) = @. Then, cl k) = o(h).

It should be noted that strict concavity is needed. It can also be
shown that the conclusion may fail if & were to be a vector. Moreover, it is
not sufficient for % to be defined on a proper subset of E®, say S. For
example, let A(x) = 1 — %% and S = [—10, 1]. Observe that o%%) =
[—10, —1), so that clo%h) = [—10, —1]. On the other hand, o(%)
includes the point x = 1.

Theorem 4.2. Suppose that ¢,(F) = o(Zin¢). Then, o, is usc at
Ziff o 1s usc at g, -
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5. Compositions of Unions and Intersections

Define
0,(g) = gg U0 ote)] = 2,6, cF, and sup ple,5) <<
red \yer) vel'())
AeA
and
Oyi - Ouz(g) - 2S,
where
oui(g) = U { ) o(g)-
AeA \yel(A)
We also define
Ugi = U ﬂ Go(g_v) )
AeA \yel'(A)
and
Fint sup(®) = inf{sup(Z,(x) | y € T} | A e 4},
Define

U?nf sup — Oo(ginf sup)'

Then, we have the following theorem.

Theorem 5.1. Suppose that

Otntsup = 05; # & and o(&int sup) = oui(£)-

Then, o,; is usc (Isc) at 7iff o 1s usc (Isc) at g,z guyp -

The proof is straightforward. Moreover, we can establish regularity
conditions with regard to Gy . that imply the equalities in the
hypothesis. More importantly, we have established the approach to deal
with any combinations of unions and intersections. That is, let o be a
point-to-set map with image of the form

o(g) = U{N {-{NUNZe D

Allowing the first or last index set to be vacuous, the above form is
general (i.e., we could start with (J instead of (). Then, upon replacing
inf for {) and sup for (), we can reduce to the level set of a single function.
Our regularity that guarantees the continuity equivalence between
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Oui..i 2t § and o at Fi¢ cup . int sup holds for finite index sets (and a
finite number of such operations). Moreover, if

g(x) = h(x, y),

where h(x, *) is continuous on I" and I' is compact for each x € .S, then
regularity holds.

6. Appendix
The proof of Lemma 3.1 follows immediately from the definitions.

Proof of Theorem 3.1. (i) Sufficiency. Assume that o 1s Isc at
Zsup - Consider any sequence {g*} C §(g) such that p(g¥ g)— 0, as
k — - o0. Define

h¥(x) = Zsup(x) + p(&", &)

and note that p(h*, g, ) —0 as k— 4-oo. Since 0%, ¥ &, there

sup

exists a k such that, for all & > &, h* e 6(F,,,). Furthermore, by the
Isc of o at g, , for any € > 0O there exists a k® such that

o(Foup) C m(o(h))  forall k> A

Thus, by Lemma 3.1, we can let k* = max(k, k%) and deduce the
following:

oi(§) = o(Zsup) C no(h*))  for k= k*.

Once we show that o(%*) C o,(g¥) for k¢ > k*, then the Isc of ¢, at g will
have been established. For any k > k*, choose x e o(h*). Note that
o(h*) # o, since h* € 6(F,,). Thus,

0 = P¥(x) = Zsup(x) + p(g*, &)
= §sup(x) + gvk(x) —' g_v(x) for all VE r
> g,k(x) forall yel,

and we see x € o,(g¥) as required. Hence,
oi(&) C nlo(A*)) C nlo(g"))
and o; 1s Isc at 2.

(ii) Necessity. Assume that o; is Isc at g. Let {#*} CO(gyy,),
p(h*, Zsup) — 0. Define g% = g, + p(h¥, ggyp) for y €I, and observe
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that p(g¥, ) — 0. Since 6,2 Doy, = @, {g"} C 6,(5) for k sufficiently
large, so there exists k* such that £ > k* implies that

oi(&) C nloi(g"))-

Moreover, 0,(2) = o(Fsup), 50 6(Fup) C n(0;(g¥)) for all & > k*. We now
will show that o,(g%) C o(#*). For x € 0,(g*), we have, by definition of
p(R¥, Zsup)>

Ri(x) < Zsup(*) + p(h”, Zsup)-

For each B > 0, there exists y; € I', where

g—vg(x) = g—SUD(x) - B

Therefore, for any 8 > 0, we have
(%) < Z,5(x) + p(B", Gsup) + B = ghi(*) + B < B.

This implies that
h(x) < 0,

so that o(4*) D o,(g¥). Hence,
o(Zoup) C (o(h¥))  for k> k¥

whence o is Isc at g, .

Proof of Lemma 3.2. (i) Necessity. Assume that cl 6,0 = cl o,().
Let x € cl 0/(g), and consider any € > 0. Since cl 0,(g) = clo0, x is a
limit point of ¢,°. Hence, let {x*} C ¢,° and {x*} — x. For & sufficiently
large, || x* — x|| < e.

(ii) Sufficiency. Assume that for all x e cl o,(g), there exists a
y€o% such that ||x —y| <e In general, clo®Cclo g), since
0;" C oy(Z), so let us prove that cl 0,° D cl g(g). Consider x € cl 0,(3), so
there exists {x*} C o,(#) such that {x*} — x. For each x*, there must
exist y¥ € 0,0 such that || x* — y¥|| < 1/k. Therefore, {y*} C ¢,° and
{y*} — x. This implies that x € cl 5,°. :

Proof of Theorem 3.2. (i) Sufficiency. Assume that cl ol,, =
cl o(Zsup)- Suppose, to the contrary, that there exist € > 0, {x*} C o(kF),
{1} C 0(Zsup)s p(A®, §sup) — 0 such that ||x* — y|| > e for all yeo.
Since o(Zqyp) is bounded, we may assume that x* — x € cl o(g,y,). Note
that, for each § > 0, there exists k;* such that k& > k,* implies that
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o(h¥) D o(Zeup + 8). To see this, recall A*¥ converges uniformly to Zgyp -
Hence, we have that, for all § > 0, there exists k;* such that

E>k* =[xt —y| >e foral yeo(geup + 9).

Since xeclol, by hypothesis, there exists y€og,, such that
Nl — v] < e/2. Choose § = — gn(¥) > 0, and note that y € o(Zsyp + 9).
Then, choose K such that ||x* — x| << ¢/2 for k > K. Let k* =
max{K, ks;*}, so ||« — y| < e for all y €clo(gey + 8), which is a
contradiction.

(i1) Necessity. Assume that o 1s Isc at g, . Choose x € cl o Zsup)>
so there exists {x*} C o(gy,,) such that {x*} — x. Define

R¥(x) = gsup(x) + 1/k.

Clearly, {#¥} C 6(§4,p) and p(h*, g.,,) — 0. Therefore, for each € > 0,
there must exist £*, such that, for all 2 > &*, then

x* € n{osup(h®)).
Therefore, for each k& > k*, there exists y* € o(h*) such that
lx¥ — %] <e and  Gsup(y®) + 1/ < 0.

This implies that {y*¥} C 6%, and y* — y € cl 6%,,, . Therefore, we have
shown that, for any € > 0, there exists y € cl o5, such that{| x — y || <e.
This implies that xecloly,, so clod,, D cl o(geyp). Since cl o0 C
cl o(gy.p) In general, equality must hold.

Proof of Theorem 3.3. Greenberg and Pierskalla (Ref. 23) have
shown that Z,,, is explicitly quasiconvex on S under the given
hypotheses. Then, Lemma 5 of Evans and Gould (Ref. 18) may be
applied.

Proof of Theorem 3.4. We have, for any x, y€ .S, and x # y,
that their meet is given by «™y and

Zoup(®*Y) = &r(er(®*Y) < £riai)(¥)* Zrian()
< 2% grw(y) = Zsup(%)™ Zsup(¥),

SO Zqyp 18 strictly isotonic on S. The result in Ref. 23 then applies.

Proof of Theorem 3.5. (i) Necessity. Assume that o; is usc at
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Z. Then, for any € > 0 and {#*} C 0(g,,,), where p(h*, g...) — 0, define

g"* = & — p(h*, Zsup), yel.

Observe that {g¥} C 6(g) for all k and p(g*, g) — 0, so for & sufficiently
large by usc o;(g*) C n(o,(g)). From Lemma 3.1, we have that ¢,(2) =
0(Zsup)- Further, if x € o(A¥), then A¥(x) < 0, so

£,4%) < &%) + AH(x) — Zsup(¥) < A¥(x) < 0.
This implies that

o(h) C 0(g¥) C n04(2)) = n(o(Zsup))-

Hence, o is usc at g, .

(i1) Sufficiency. Assume that o is usc at gg,,. Consider any € > (
and any sequence {g¥} C 0(g) such that p(g¥, g) — 0 as k — -} 0. Define

lz’“(x) = gsup(x) — p(g", &)-

Note that p(h*, g,.,) —>0 as k— +oco and that {A*} C6(Z,,,). Let
x € o,(g*) be given; then,

0 = g,%(x) forall yel’
= Fsup(¥) — Zsup(®) + &,/(x)  forall yel
= Zsup(®) — p(g*, &) = h*(x).

Hence, x € o(h*) and, by usc of o at 2, and by Lemma 3.1,
oi(8") C o(h*) C n(o(Zsup)) = 7(0i(&))s
and o;isuscat 5.

Proof of Theorem 4.1. (i) Necessity. Assume that o, is Isc at
Z. Consider {#*} C 0(gpns), p(F*, Fine) — 0, and let € > 0. Define g.f =
g, + p(H*, gins), v € I'. Since 0,0 %= @, {g¥} C0,(g) for k sufficiently
large, so there exists k* such that & > k* implies that

(&) C nelou(£"))-

We are assuming that o(g,;) = 0,(g), so

o(Zint) Cne(ou(g®))  for k= k%
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Now, consider x € o,(g*). Then, there exists y € I, say y*, such that
g% (x) < 0. This implies that

F(x) < —p(FF, gint) < —h*(x) + Fime(x),
SO

HH(x) < Zint(x) — g(%) < 0.
Therefore, x € o(h*). Hence, o,(g*) C o(#*), which implies that
oG Cnloi¥)  for k> R%
Hence, o 1s Isc at g, .
(11) Sufficiency. Assume that o is Isc at g;,; . Consider any € > 0
and any sequence {g*} C §,(g) such that p(g¥, §) — 0 as k — -}-c0. Define
PH(x) = Zini(x) + p(g", £) + 1/

Clearly, p(h*, §ns) — 0 as k— - o0; and, since ol # @, there is a

inf
k such that, for all 2 > &, h* € 6(g.,;). By Lemma 4.1 and Isc, there is a
K such that

ou(£) C o(&imt) C ne(a(A*))-

Let £* = max(k, k°). We shall show that o(#*) C o,(g*) for all & > k*,
and then the Isc of o, at § will have been established. Let x € o(hF¥)
[o(h*) 5= @, since h* € 0(F,,;) for k = k*].

Hence, the following relations hold:

0 = PH(x) = Zine(%) + p(h*, Zine) + 1/k

= Zint(x) + g,%(x) — g(x) + 1/k, forall yel.

Now, for any k and any x € .S, there is a y,, such that

Zint(%) > g, (x) — 1/k,
or

Fini(x) — (%) + 1/k > 0.
Thus,

0>gh(x) and xeod),

as required. We have

ou(§) C o(&ine) C n(o(h*)) C 1(ou(£¥))-



426 JOTA: VOL. 16, NOS. 5/6, SEPTEMBER 1975

Proof of Lemma 4.2. Suppose that x € /4, and observe that
5 — ¥ + d) + }x — d)
for any d € E™. Therefore,
0 > h(x) > Yh(x + d) + dh(x — d).

This implies that A(x 4+ d) < 0 or h(x — d) < 0. Therefore, choose
d = €], where 1 is an n-vector of 1’s, and observe that N (x) N o%h) # & .
From Lemma 3.2, our proof is complete.

Proof of Theorem 4.2. (i) Necessity. Assume that o, is usc at
g. Let {I*} CO(Fins), p(H* Gine) — 0, and consider € > 0. Define
g = g2, — p(h*, gine) — 1/k for y € I'. Then, {g*} C 6,(g) for all k and
p(g*, &) — 0. Therefore, there exists £* such that £ > k* implies that
0u(£") C 104(8)) € 1o(Zins))-

The second containment follows from Lemma 4.1. Consider x € o(h*),
so that, for each y € I', we have the following:

&%) = g,(%) — p(h*, gnr) — 1k < Z(x) + F¥(x) — Zine(x) — 1/k
< £(%) — Zint(x) — 1/k.

There exists y;, € I', such that
Therefore,

whence x € 0,(g¥). This implies that ¢,(g¥) O o(#*), so
O'jnf(hk) C nc(c(g—mg)) for k = k*,
whence o, 1s usc at gy .

(ii) Sufficiency. Assume that o is usc at g, . Consider any e > 0
and any sequence {g¥} C0,g) such that p(gk g)—0 as k— -+ 0.
Define

hi(x) = Zmt(x) — p(g", &)-

Hence, {#*} C 0(g.,;) and p(h®, g,ns) — 0 as B — 0. By the usc of o at
there is a £* such that, for all & > k*,

o(h*) C 1e(0(&1mr)) = ne{0u(£))-

Sint »
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The last equality follows by assumption. Let x € 0,(g¥). Thus, thereisay
such that ‘

0 > £,5(x) = Zint(*) — Zint(x) + &,(x)

>
= Zint(x) — Z,(x) + &/5(x) = Zint(x) — p(g*, &) = HH(x).

Hence, x € o(h*), and we then have

ou(g¥) C o(h*) C n(o(&ine)) C 710u(£)),

whence o, 1s usc at g.
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