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ABSTRACT

This paper considers a population (composed, for example, of people,
machines, or livestock) subject to a randomly occurring defect or disease.
If there exist testing procedures capable of detecting the defect before
it would otherwise become known, and if such early detection provides bene-
fit, the periodic administration of such a test procedure to the members
of the population, i.e., a mass screening program, may be advisable. An
analytical model of a mass screening program is developed and analyzed.

In the development of the model, the defect arrival process is Poisson
and the ability of the test to recognize a defect is not, in general, as-
sumed perfect.

The model focuses on the time since incidence of a defect as the
factor which determines the reliability of a test administration and the
value of a detection. The objective is to minimize an arbitrary increasing
function of the detection delay which represents the disutility from the
occurrence of the defect and its detection. This disutility is also rep-
resented as a function of the type of test applied, the probability of
success of the test, the testing intervals and the arrival rates of the
defects over Q subpopulations. A relatively simple expression is derived
for the objective function and a comprehensive mathematical program is
presented. The case of perfect test reliability is then considered and,
from the class of '"cyclic" schedules, the optimum schedules are shown to
be equally spaced. For a polynomial disutility function, properties of
the optimal schedules are presented. Finally, a method for determining

the disutility function from experimental data is suggested.



A MODEL FOR OPTIMAL MASS SCREENING
AND THE CASE OF PERFECT TEST RELIABILITY

There are many situations where a defect can occur randomly among
the members of a population--either a population of human beings, in-
animate objects, or perhaps livestock--and once present, exist and de-
velop, at least for a time, without any manifest symptoms. If the early
detection of such a defect provides beneﬁit, it may be worthwhile to em-
ploy a test capable of revealing the defect's existence in its earlier
stages. (A deféct, disorder, or disease will generally be considered
simply as a defect; and the word unit or individual will refer to a mem-
ber of the population.)

Of course, continuous monitoring would provide the most immediate
such revelation. But considerations of expense and practicality will
frequently rule out continuous monitoring so that a schedule of periodic
testing--a screening program--may be the most practical means of achieving
early detection of the defect. In general terms, the question then be-
comes one of how best to trade off the expense of testing which increases
both with the frequency of test applications and with the cost of the
type of test used against the benefits to be achieved from detecting the
defect in an earlier stage of development.

The benefits of early detection often depend upon the application
considered. For example, in a human population being screened for some
chronic disease (cancer, diabetes, glaucoma, heart disease, etc.) the
benefits of early detection might include an improved probability of ul-
timate cure, diminished time period of disability, discomfort, and loss

of earnings, and reduced treatment cost. If the population being screened



consists of machines engaged in some kind of production, the benefits of
early detection might include a less costly ultimate repair and a reduc-
tion in the time period during which a faulty product is being unknowingly
produced. If the population being screened consists of machines held in
readiness to meet some emergency situation, an early detection of a defect
would reduce the time the machine was not serving its protective’function.
This process of inspecting a sizable population for defects is called

mass screening.

The expense of testing includes easily quantifiable economic costs
such as those of the labor and materials needed to administer the testing.
However, there can also be other important cost components which are more
difficult to quantify. For example, in the case of a human population
subject to medical screening, the cost of testing includes the inconven-
ience and possible discomfort necessitated by the test; the cost of false
positives which entails both emotional distress and the need to do unnec-
essary follow-up testing; and even the risk of physical harm to the testee,
e.g., from the cumulative effect of X-ray exposure.

The rationale for constructing a mathematical model of mass screening
is to provide a conceptual framework within which a mass screening program
might best be designed and its worth evaluated. Such a design must deter-
mine which kind of testing technology will be used. Several candidate
technologies may be available, each with different reliability character-
istics and costs. 1In addition, the frequency of testing must be decided.
If the target population can be partitioned into subpopulations according
to susceptibility to the defect (e.g., by age, family background, time

since last overhaul (for a machine), etc.), then the best allocation of



the testing budget among the subpopulations must be determined. Lastly,.
a decision must be made, for the population and type of defect under con-
sideration, whether a mass screening program is justified at all. It is
felt that the above determinations are best carried out within the concep-
tual framework of a cogent model of mass screening.

It is the purpose of this paper to present a reasonably comprehensive
model for decision making with regard to mass screening. The model util-
izes a time-based approach. But rather than seeking to analyze or minimize
detection delay, as in some of the literature on this topic, the objective
function is an arbitrary increasing function of detection delay. (Detec-
tion delay is the time between the incidence of the defect and its detec-
tion, regardless of whether that detection is the result of a screening
test or of the defect becoming self-evident.) The reason for choosing a
general function is that the disutility experienced upon the delayed de-
tection of a defect may well vary in a highly nonlinear way with the
length of the delay.

Another objective sometimes used for inspection models is to maximize
the lead time where the lead time is the time difference between the time
of detection via a screening test and the time detection would otherwise
have occurred had not a screening program been in existence. However, in
the case in which the test being used is perfectly reliable then it is
possible to consider the lead-time criterion in terms of the following
simple function of detection delay. Suppose that at the (possibly random)
age T (measured from the time of incidence of the defect) the defect, in
the normal course of its development, would become manifest even without

a screening test. Then, if the defect is detected at age t, the lead time
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gained is (T - tf+. Therefore, if sup T is finite, the function D(t) =
sup T--E(T--t)+ may be used as a disutility function which, when minimized,
will maximize the expected lead time.

Consequently, the results presented in this paper, based on an arbi-
trary disutility function, generalize as well as extend results in earlier
work. 1In addition, new results are presented.

In the next section a brief review of the literature is given. Since
the work on inspection models is»very large, only the most relevant papers
are discussed. The interested reader may refer to the surveys by McCall
[1965] and Pierskalla and Voelker [1976] for a more comprehensive review.

In the third section the model is formally stated and an expression
derived for the expected disutility per unit time incurred under a regime
of uniformly spaced test applications. In section 4, the model is spe-
cialized to the case of a perfect test; i.e., when the test is adminis-
tered to an individual with the defect, the defect will be detected with
certainty. Under this assumption, a regime of uniform test intervals is
proved optimal within a wider class of '"cyclic" testing schedules for a
single subpopulation. The problem of allocating a screening budget among
various subpopulations is also analyzed. As part of this analysis, the

explicit screening schedule (r r.), where rj designates the op-

10 Togseees Q

timal testing frequency for members of the jth subpopulation, is obtained

in terms of the subpopulation specific incidence rates N.xj and the budget

constraint for the disutility function D(t) = at™. For D(+) convex, the

above solution (when m = 1) is shown to provide a bound on the ratios ri/rj.
The last section provides a technique to estimate the shape of the

disutility function from empirical data in the case of a perfect test.

The Appendix contains the proofs of all results.



Finally, it should be mentioned that the population (or each subpopu-
lation, in the instances where a heterogeneous population is considered)
is assumed to be of fixed size, N, and the defect to arrive according to
a stationary Poisson process with rate NA (N could be a very large but
finite number). It may be somewhat more realistic to set the defect ar-
rival rate proportional to the number of defect~free units, rather than
to the total number of units in the population. However, it is also as-
sumed that no defect can remain undetected longer than T*, even without
any screening tests being given. Hence, TNA is an upper bound on the
expected number of undetected defects in the population. If it is the
case that once a defect is detected, the afflicted unit is replaced in
the population with a healthy unit, then T*Nx represents a bound on the
expected difference between the number of healthy units and the total
number of units in the population. For A small, as would be the case
for a relatively infrequently occurring disorder, this should represent
no difficulty. Consequently, it is assumed that A is small relative to
N, which is consistent with the examples of potential applications which

have been or will be mentioned.

2. Literature Review

Some of the early papers which have a bearing on time dependent models
of mass screening considered a problem formulated as follows: Suppose a
single unit is subject to failure and failure may be detected only through
an inspection. FEach inspection has an associated cost and there is another
cost proportional to the duration of undetected failure. For this problem

Derman [1961] found a minimax testing schedule when the failure distribution
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is completely unknown and there is a finite time horizon. The reliability
of the test is a constant, p, not necessarily equal to one.

Roeloffs [1963, 1967] addresses essentially the same problem with
p = 1. However, the decision maker knows a single percentile for the
time-to-failure distribution of the unit.

Barlow, Hunter, and Proschan [1963] derive explicit rules for cal-
culating the optimal inspection schedule for a broad class of failure
distributions (now assumed completely known to the decision maker). The
test is assumed perfectly reliable, i.e., p = 1.

Keller [1974], again assuming p = 1, developed an alternative compu-
tational technique utilizing the calculus of variations to characterize
the optimal inspection schedule. Again there is a fixed cost for each
inspection. And there is a cost which is a function, not necessarily
linear, of the detection delay. In order to use the calculus of varia-
tions, Keller assumed that the intervals between inspections are suffi-
ciently small (compared, say, to the mean time-to-failure) so that the
inspection schedule may be expressed as a density function mapping the
unit's age into an associated testing frequency.

Kirch and Klein [1974], whose paper is addressed explicitly to a
mass screening application, seek an inspection schedule which will mini-
mize expected detection delay subject to a constraint on the expected
number of examinations an individual would incur over a lifetime. The
test is assumed perfectly reliable., Kuhn-Tucker methods are utilized
in solving for the optimal screening schedule. The point of view adopted
in this paper is similar to that of Kirch and Klein and Theorem 3 is re-

lated (although it is somewhat more general) to their main result. One
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respect in which the approach here differs from that of Kirch and Klein

is that this paper considers several subpopulations each with its own
characteristic incidence rate for the disorder. The idea is then to al-
locate optimally a fixed screening budget among the subpopulations. Kirch
and Klein instead take a longitudinal view. An individual through his
lifetime is subject to different probabilities of incurring the defect

and a screening schedule is optimized subject to a constraint on‘the ex-
pected number of examinations over a lifetime.

McCall [1969] considered the problem of scheduling dental examina-
tions under the assumption that the time between the incidence of a cav-
ity and the scheduled dental examination controls whether the cavity re-
sults in a filling or an extraction. Cavities are assumed to occur ac-
cording to a Poisson process. As a generalization, he permits the time
required for a cavity to become beyond repair (by a filling) to be a
random variable.

Lincoln and Weiss [1964] studied the statistical characteristics of
detection delay under the assumption that the times of examinations form
a renewal process and that the probability of detecting the defect, p(t),
is a function of the defect's age, t. They derive open form equations,
similar to renewal type equations, which relate the density functions for
the following entities: the probability of detection at a test applica-
tion (p(t)), the time until the defect becomes potentially detectable and
from this time the forward recurrence time to the first test, the proba-
bility of the event that at a particular time a test occurs and all prior
tests had failed to detect the defect, and the detection delay. For the

two special cases where p(t) is a constant and where p(t) is exponential,
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the moments for the detection delay are derived in closed form. For uni-
form testing intervals (and general p(+)), the distribution and moments
of the detection delay are computed. For p(t) = 1, they solve for that
testing schedule which maximizes the time between tests subject to a con-
straint on the performance of the screening program relative to detection
delay. Two such constraints are considered. The first bounds the proba-
bility of detection delay exceeding some threshold T. The second bounds
the mean detection delay.

Theorem 1 in the next section, which gives the expected disutility
in terms of the test interval and test type, is similar to the objective
function given by Lincoln and Weiss although their approach, as outlined
above, is different.

Several recent papers have studied the statistical characteristics
of the lead time provided by a screening program--either a one-shot screen
of the population or a periodic screening program. One of the earliest
such papers was that of Hutchison and Shapiro [1968].

Zelen and Feinleib [1969] point out an important use for the expected
lead time in comparing survival time data (measured from the time of detec-
tion) gathered from a screened population versus that gathered from a con-
trol population. The expected lead time must be subtracted from the ex-
pected survival time of the screened population before a valid comparison
can be made against the control group's expected survival time. In a later
paper, Zelen [1971] derived expressions for mean lead time in the case of
two successive screens.

Prorok [1973] has established properties for the lead time in the

case of n successive screening tests conducted at uniform intervals. He



also derives the proportion of preclinical cases detected, both at a given
test and over all n tests. The test is assumed to have a constant relia-

bility not necessarily equal to one. In addition, he derives an estimator

for the mean lead time.

3. A Model for Mass Screening

Although most of the definitions are stated prior to their use in
each section, listed below are some notation and conventions used at

various times throughout the paper.

1 if%Stsm—:i
(L) lm(t) =1 - (t) = '
- =y 0 otherwise
r r’r
n
(ii) n x, =1 for n< 1
. i
i=1
n
(1ii) 2 x, =0 for n< 1
i=1 *
(iv) [x] is the largest integer not exceeding x.
(v) The phrase "increasing function" shall mean a strictly increasing
function.

As mentioned previously, the objective function will not be to maxi-
mize expected utility, but rather to minimize expected disutility. The
disutility associated with a particular detection will depend only on the
elapsed time since the defect's incidence. The notation D(t) will express
the disutility incurred if detection occurs t units of time after incidence.
D(+) is assumed throughout this paper to be a nonnegative increasing func-

tion.

.
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In those cases where sup D(s) < », there is a natural relation be-
s=20

tween the notion of a utility function and D(*); namely,

U(t) = sup D(s) -D(t) .
s20

U(t) is a decreasing function expressing the disutility avoided by de-
tecting a defect t unitsbof time after its incidence.

Initially, only a single susceptibility class of size N will be con-
sidered. The results will then be generalized to an arbitrary number of
subclasses. The times of incidence for the defect in the population are
assumed to form a Poisson process with parameter NA and is designated by
the sequence {Sk}, k=1, 2,... This assumption is motivated by the fact
that any arrival process with the following characteristics is a Poisson
process: at the time of an arrival there is almost surely (i.e., with
probability one) only one arrival, that the number of arrivals in a time
interval does not depend on past arrivals, and that the number of arrivals
in intervals of equal length are identically distributed (Qinlar [1975]).
For many applications such as the arrival of diseases like cancer, heart
trouble, etc., this assumption is quite reasonable.

Were a screening test of type L to be administered to the individual
with the kth defect (i.e., kth in the order of defect incidence) at time

k . .
S+ t, then the test outcome random variable is:

Definition:

0 if kth defect is not detected at time t

after incidence

k
Yz(t) = (3.1)

1 if kth defect is detected at time t after
incidence.
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Since a defect cannot be detected before its incidence, Yi(t) = 0 for
t < 0. Notice that the argument of Yi(-) refers to time relative to the
incidence of the defect. If the population is screened at time s, where
s is absolute time, then the kth defect will be detected if and only if
s < s and Y (s - 85) = 1.
It is assumed Yi(t), Yi(s) are independent except when k = j and
t = s, and that P<Y§(t) = 1> depends only on £ and t. This latter assump-

tion makes possible the
Definition: pz(t) = P(Y;(t) = 1> . (3.2)

The function pz(~) describes the reliability characteristics of the
type 4 screening test, i.e., how likely such a test is to detect a defect
as a function of the defect's age. Note that pz(t) =0 for t< O,

In this section the screening test is assumed to be administered to
the entire population at the times 1/r, 2/r, 3/r,... The testing fre-
quency r is a control variable. In the next section, upon assuming per-
fect test reliability, it is shown that the above schedule of uniform
testing intervals is optimal within a wider class of '"cyclic" schedules.

The random variable Ek denotes the time at which the kth defect is

r,4

detected. §$ ) depends on the arrival time of the defect (Sk), the type

of test used ({£), and the testing frequency (r).

Definition: gk = min {n/r\Yk(E- Sk) = 1} (3.3)
—_— r,l n=1.2 A\ r
S

Given the application of test type £ at the times {1/r, 2/r,...},

the disutility incurred by the kth defect is D(gﬁ z-—Sk>. To represent
b
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the total disutility incurred due to those defects which occurred in the

interval [j/r, (j+1)/r), it is useful to define:

Definition: B , . = & D(gk -Sk>1, (Sk).
- r,4,] k=1 r,4 jlx
The following theorem provides an expression for E[Br . j] in terms
3 b4
only of the disutility due to detection delay (as expressed by D(¢)) and

of the reliability of test type £ (as expressed by pz(-)). In addition,

the theorem shows that E[Br,z,j] = E[Br,z,O] for j =0, 1, 2,...

Theorem 1

n
55 T n-1 0 _
E[Brsz’j] = NA =1 J\ D(u)pz(u) gl [l-pﬂ'(u—;)]du
St "=
T

for j =0, 1, 2,...

This theorem yields a relatively simple expression for the expected
total disutility in any interval of length 1/r and using test type { with
probability of detection pz('). This expectation is used in the objective
function of a mathematical program to determine the optimal testing fre-
quency for a mass screening program for a heterogeneous population. 1In

order to develop this mathematical program, the following definitions are

useful.
— . n-1
Definition: B = 1lim = 2o E[B .
- r,,@ . r’*e"J
n—o J=0
Er ) is the long-run expected disutility per unit time. (The factor r
b

enters the definition to convert disutility per unit testing-interval into
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per unit time.) By Theorem 1, E[Br,z,j] = E[Br,z,o] for j =0, 1, 2,...
Therefore,
Br,z = rE[Br,ﬂ,,O]
o 2 n-1
= N\ 2 r D(u)pz(u) I [1.—pz(u-%)]du. (3.4)
n=1 m=1
n-1
r

Notice that if test type {4 provides perfect reliability, i.e.,
pz(t) = 1 for t 2 0, then (3.4) gives
1

B = N\ jr D(u)du . (3.5)
0

Now consider the problem of selecting testing frequencies and test-
types for each of Q different susceptibility classes which together com-
prise the whole population. These classes may differ from one another in
the number of units they contain, in their defect incidence intensity, and
in the cost per test application to an individual for a particular type of
test. The subpopulations, however, are assumed to share a common D(¢)
function.

The solution to (3.4) for the expected long-run disutility per unit
time in the context of the prior portion of this section may be regarded

as applying to subpopulation j where j =1, 2,..., Q by writing

i

r(.) i-l
7 D(Wpy 5y (w 1
i-1 =
r(j)

= r(j)Njk(j)

K

Y m
B3,(3),4(9) 1 1[1'Pz(j)(“‘r(j)>]du'
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This permits a multi-subpopulation screening problem subject to a

budget constraint to be formulated as follows:

Minimize 55

B, . .
(1)t @), 4CL),. .. 4@Q) =1 1°T()-4(D)

such that é%
N.c. Ar. S Db
j=1 332073
rj2> 0 j=1...,Q
L(J)e;g j=1, » Q

where

cj 2(3) = cost per application of a test of type £(j) to an
3

individual of subpopulation j,

2
Il

o
]

budget per unit time.

(3.6)

(3.7)

(3.8)

(3.9)

number of units (or individuals) in subpopulation j,

In order to make this mathematical program even more comprehensive,

it is possible to add constraints on the amount of testing labor available

and on the capacity of the testing facilities in terms of the number of

arrivals, the frequency of testing and the type of tests used.

In addi-

tion, the cost of false positives can be included as a part of the test

costs in inequality (3.7).

For example, a constraint on the total labor available is:

é% N.6 <L
Pt i PTG D B

and on the total testing facilities available is:

Q
N.f S F
;i’l §T5,8(0%5 T e

(3.10)

(3.11)
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for each type of test £(+) used over the subpopulations being tested,

where

6j L) = amount of labor needed to administer test type £(j)
b

to an individual of subpopulation j,

fj 2(4) = amount of testing facility time needed to administer
E]

test type £(j) to an individual of subpopulation j,

LZ = total amount of labor available to administer test

type £(+) per unit time,

FL = total amount of facility time available to administer

test type £(¢) per unit time.

4, The Case of Perfect Test Reliability

In this section, it is assumed that pl(t) = 1 for all t = 0; that is,
there is perfect test reliability. If a defect is present at the time the
test is administered, that defect will be detected with certainty.

Unlike the previous section, uniform testing intervals are not assumed.
Rather, such uniform intervals (within a subpopulation) will be proven op-
timal within a larger class of "cyclic" testing schedules. Once this is
done, the problem of allocating a screening budget for a target population
among Q subpopulations which comprise the target population is analyzed.
That part of the budget allocated to a particular subpopulation controls
how frequently the screening test can be administered to that subpopula-
tion. This budget allocation, in turn, is deﬁermined by the relative in-
cidence rates of the disorder and the relative costs of testing which
characterize the different subpopulations.

Until now, r was used to designate the testing frequency and 1/r the

interval between tests. In order to consider more general testing schedules,
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a different notation is needed. Suppose that the jth subpopulation is

tested according to an m(j)-cycle. To be specific, the intervals between

‘ N 3 ] j .
tests are successively X1s Xpseees xm(j)’ Xyseees Xm(j)"" Letting
. i .
yi = X xi , the successive times of test administration for subpopula-
v=1

tion j are yi, y%,..., i(j)’ yi(j)i-yi,...
Let 5<xi,..., xi(j)> be the long-run expected disutility per unit
time for the jth subpopulation under the above testing schedule. The

problem then becomes the following:

Mo

Minimize
(m(1),...,m(Q)) j
( 1 1 )
Xl""’xm(l)

1 B(X{,..., xi(j))

Q Q (4.1)
(xl""’xm(Q))
9
such that N.c.m(] .y S b
u o1 FRAS DA AYED
J—
x}> 03 i=1,...,m(i); J=1,...,Q
/
where
Nj = the number of individuals or units in the jth subpopulation,
cj = cost per test application per individual in the jth subpopu-
lation,

b = bound on' the average cost per unit time for all tests ad-

ministered under the screening program.

For the moment consider a homogeneous population, i.e., let Q =1,

and suppress‘the index j in the above cyclic testing schedule. Under the
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assumption of a perfectly reliable test, if the kth defect occurs before

time Vo it will be detected at test time s if and only if Y1 < Sk < Y-

Therefore, the total disutility incurred due to all defects arising

in the interval (0, ym] is

k

T 0y, -8 s

1 k=1 SARDA

RE!

where Yo = 0, although a test is not made at time O,
Similarly, the total disutility due to defects arising in the inter-

val (vym, \aym+ym) for v =0, 1, 2,... is

Tt‘jﬂa

k
DWYm+yi-S)

k
1 (s . (4.2)
L vy +y; 1299+, ]

Taking expectations and using Lemma A given in the Appendix, (4.l1) becomes

slp‘ \Jym+yi
E AN j D(\)ym+yi-s)ds
i=1 vy +

ym yi-l

m yi m xi

= 7, AN j D(y, -s)ds = b )\N‘[ D(t)dt .
i=1 L i=1 5
Yi-1

Hence, the expected disutility due to defects arising in the interval
[Vym, \)ym+ ym) for v = 0, 1, 2,... does not depend on v and

X

.

1
AN j D(t)dt . (4.3)
0

D(xl,..., xm) = —

Ma

i=1

I

8

It will now be shown that for any schedule such that X, # x, for

J
some i, j€{1, 2,..., m}, the alternate schedule {;El’ §2,..., ;im} where
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m
il = 22 = ... = §m = 2 x./m is feasible with respect to the program and
j=1

provides at least as small a value for the objective function. Once this
is accomplished, among all '"cyclic" schedules all future consideration may
be restricted to testing schedules charécterized by equal intervals between
all test administrations (within a single subpopulation). The following

lemma will be required:

x
Lemma 1: For D(+) an increasing function, h(x) = I D(t)dt is a (strictly)
0

convex function in x.

m m
Since h(+) is convex, h(§i) = h( 23 xv/m < Z h(xv)/m for
v=1 v=1

i=1,..., m. Adding these m equations together,

m
;i = ?3 X, - Using (4.3)

where y =
® 1 i=1

NVE

D(Xl’ Xgsoons xm)-< D(xl, Kgseees xm).

Hence, the schedule (El,..., §m) yields lower long-run expected disutility

per unit time than does (Xl""’ xm). Since both schedules require the

same number of tests per unit time (m/ym) and since §1 =%, = ... =X,

then any m-cyclic testing schedule may be replaced with a uniform testing
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schedule without increasing average testing frequency or expected dis-
utility per unit time.

To return to the general case of n subpopulations, replace the sched-
ule (xi,..., xi(j)> with a uniform schedule utilizing test intervals of
yi(j)/m(j) for j = 1,..., n. Since none of the subpopulations use more
of the testing budget than before (the average testing frequency remaining
the same for each subpopulation), the new testing schedule is fe;sible if
the old one is.

The above result is given formally by

Theorem 2: If p(t) = 1 for t 2 0, schedules with equally spaced test

intervals are optimal within the class of m-periodic schedules for m =

1, 2,...
Jo_=i_=i oo - =]
Now let x’ = X] =Xy = ...= X, then by (4.3)
=
Q _, . . Q AN, m(3j) i
2 D('}EJ,...,?(,))= v, -1 J D(t)dt
j=1 mid j=1 Ym(j) i=1 0
j

1

g -—)\-j—lij—.mg) ‘f D(t)dt
j=1 m(j)x i=1 p

o
3 AN,
= 3 14 J D(t)dt . (4.4)
j=1 x7 0

With uniform testing intervals, it becomes possible to define the
testing frequency for subpopulation j as rj = 1/x). Note that (4.4) is

consistent with (3.5) of section 3 where the assumption of uniform
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testing intervals was made and the problem of imperfect test reliability

analyzed.

By (4.4), the mathematical program (4.1) can be rewritten

Q
Minimize 23 Nj)\jrj j J D(t)dt
(rl,rz,...,rQ) j=1 0
Q
such that 2, Nec.r.<b } (4.5)
o1 3373
J
and r.>0 for j=1, 2,..., Q
’ )

where the constraint equation was transformed using

n(3) /v, qy = nD/(Fm®) = 1/ = 1w = x

The solution of (4.5) will optimally allocate the screening budget
among the Q subpopulations so as to minimize the long-run expected dis-
utility per unit time over the entire population. (If r, must be integer
valued, then just add this restriction and solve (4.5) as a constrained
knapsack problem.)

For the continuous case, let

( 1
T
rj D(t)dt for r> 0
0
f(r) = ﬁ 1
T
lim r D(t)dt for r = 0.
r—= 0
\ 0

At this point, assume that D(+) is a differentiable function on

[0, ®). Therefore, f(+) is continuously differentiable on (0, «) and
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1 1
' - 4f _ d r _|T 1.1
f'(r) = ar " dr Lr ..“ D(s)ds] = J D(s)ds - " D(r)
0 0

1 1.1 1
rD(y) -rD(r) <0, vye€(o, r) s r>0 (4.6)

where the last equality follows from the mean value theorem for integrals.
Also, since D'(¢)> 0

1

d ; 1 1 1 . _1_
= EE‘;I D(S)ds-;D(‘;)] = :3— D (r)> 0 forr>0. 4.7)
0

"

o

N

dr

So, on the interval (0, «), £(+) is a convex decreasing function in r.
The same may therefore be said of the objective function in (4.5). The

fact that the objective function is decreasing in each of its components
Q

implies that the constraint 2 Njcjrj < b is binding. Consequently, this
j=1

inequality may be replaced with equality in (4.5).

Lemma 2: If 1im D(s) = », then 1lim f(r) ==.
g = ® r— 0

Theorem 3: If 1lim D(t) = e, then there is a unique solution
t=c

(r’;, rz,..., r;) to (4.5) which satisfies Kif'(r;c)/ci = _)\jf'(r’J'f)/c:l for

i, j=1, 2,...,Q.

In the proof of Theorem 3 in the Appendix, it can be seen that the

hypothesis that 1lim D(t) = ® was needed only to establish (A.3). There-

t—=®

fore, an alternate theorem can be given.

Theorem 3': 1If (r’;, rz,..., r*) is a unique solution to (4.5) and if r";> 0

Q
for j = 1,..., n; then )\if'(r’;)/ci = )\jf'(rg‘)/cj fori, =1, 2,..., Q.
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As a corollary, one would expect that subpopulations with greater
susceptibility to the disorder should be tested more frequently. This

turns out to be the case provided testing costs are the same.

Corollary 3.1: If lim D(t) == and A;/e; > Aj/c,, then ry > rjf.
t—= o

The relation provided by this corollary between subpopulation specific
defect incidence rates and cost per test on one hand, and the relative test-
ing frequencies for the various subpopulations on the other hand, does not
require any knowledge of the shape of the disutility function D(¢), except
that it is increasing to infinity. The next two results show how more
specific knowledge of D(+) can be used to schedule a mass screening pro-
gram optimally. The first provides an explicit solution to the program
(4.5) when D(t) = at” for m> 0. The second result shows how the solution
for the case D(t) = at serves as a bound for the optimal solution when

D(+) is any convex increasing function.

Corollary 3.2: 1If D(t) = at™ for m> 0, then

(mt+1) T (mt+1)
Q A.c.c Q A.cC
rr=v/( T W -J-l—l)=b(2N,c, 219
1 j=1 j Kl . i i A cj

j=1 1

3 * ( 1) K.Cl
r, =T = j=1, 2,..., Q.
j 1 chj -

The following result does not require knowledge of the exact form of

and

the function D(¢)--provided that it is differentiable and convex increasing.

Theorem 4: If D'(¢) exists and is increasing, then rglri:> v K2c17klc2

for ‘)\1/c1 > )\2/02 .
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As an application of this theorem and Corollary 3.1, suppose subpopu-
lation #1 has twice the incidence rate of the defect, per unit population,
as does subpopulation #2. Then, if testing costs are the same, r§-< r¥'<
¢’fﬁr; , provided the disutility function satisfies the hypotheses of the
theorem.

An analogous proof to that of Theorem 4 Qould show that if D'(.)
exists and is decreasing (hence D(+) is concave increasing), then
rz/ri'< ny;EI7XIE; for )\llc1 >'A2/c2. One technical difficulty does
arise, however. If D'(e) is decreasing, it is not necessarily true that

lim D(t) = =, and hence Theorem 3 cannot be utilized. It is possible
t—=o

to get around this problem by adopting the hypotheses of Theorem 3'.

This 1s summarizced by writing

Theorem 4': If D'(+) exists and is decreasing and if the optimal solu-

% 3
tion (rl,..., r;) to (4.5) exists and has positive components, then

* *
r2/r1 < / )\zcl/)\lcz for ).1/c1 > )\z/c2 .

Kirch and Klein obtain essentially this result for ¢, =c and F a
*
uniform distribution over an interval [0, B]. If 0< rj-< B for j =
1,..., Q, then their F(+) may be regarded as differentiable and increasing

for purposes of our proofs.

5. Empirical Fstimation of D(+)

Although data may not be available currently to support the utiliza-
tion of particular models, that should not deter the development of such

models. It is reasonable to expect that in many application areas in the
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future much additional data will become available; for example, more data
will become available concerning the stochastic pattern of a particular
disease's development. Furthermore, a good model will serve as a guide
to the kinds of data which should be gathered.

It is also reasonable to expect the future development of improved
testing technologies capable of detecting a disorder in a much earlier
stage of development than is now the case. Such innovations will make
screening programs more attractive and, consequently, make more impor-
tant the analytical tools to design such programs intelligently.

However, it is possible to provide a simple procedure to estimate

empirically the disutility function D(+) under the assumption of perfect
detection. Such a procedure is necessary, since upon the detection of a
disorder there may be no way of directly determining how long the disorder
has been present; although that length of time could not exceed x = %.
It is assumed, however, that at each detection of a defect, the degree of
disutility incurred due to that defect can be‘observed. For example, in
the case of medical screening, at the detection of a tumor its degree of
development can be noted even if it is not possible to determine exactly
when, since the last test, the tumor originated.

In order to allocate optimally a screening budget among differing
subpopulations (susceptibility classes), as was discussed in section 3,
it is necessary to know the shape of the disutility function. Under the
reasonable assumption that D(») is an increasing continuous function, the
function may be derived in the following manmer. For a particular popu-
lation subject to a Poisson defect arrival {Sk} with rate NA , arbitrarily

select a value for x and set up a prototype mass screening program for
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the population in which tests are made (using a perfect test) at times
0, x, 2x,... The number of defects detected at the time jx, which are
characterized by a disutility less than or equal to y, record and desig-

nate by Qj(y). Then,

k .
Q) = 23 1o, ](D<Jx 51 G0, 1=, 2,8,

[ix-x
Qj(y) is observable for all values of disutility y> 0. Further, Qi(y)
and Qj(y) are independent and identically distributed random variables
for i # j and y> 0. Therefore, by the law of large numbers,

1im _]:1; Z Q (y) = E[Q ] for all y> 0.
n—o =1

Hence, the function y—°E[Q1(y)] may be estimated by collecting a
sufficiently large sample of the functions Ql’ QZ""

Let H(y) = E[Ql(y)]. Once H(*) is estimated in this manner, the
following theorem shows howvthe desired function D(*) may be obtained

from H(+).

Theorem 5: If D(0) = 0 and D(+) is continuous and increasing on [0, x],
then

D(t) = H'l(Nxt) for 0< t < x.

6. Summary

In section 3, an explicit expression for the expected long-run dis-
utility per unit time given a screening schedule of uniformly spaced test
administrations was given. A general multi-population screening program

was also formulated.
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In the subsequent sections under the assumption of perfect test reli-
ability, several features of optimal screening schedules for a heteroge-
neous population have been developed. Within the class of periodic sched-
ules, uniform schedules were shown optimal. The Kuhn-Tucker conditions
for assigning particular optimal uniform schedules (i.e., particular test-
ing frequencies) to the respective subpopulations were computed.g When

lim D(t) = «, these conditions reduced to a simple form which made pos-
—“
;;ble the following more specific results: (i) conditions (in terms of
Ki and ci) under which one subpopulation should be tested more frequently
than another, (ii) explicit testing schedules over all subpopulations when
D(t) = atm, and (iii) bounds on r?/r? when D(¢) is an arbitrary convex in-
creasing differentiable function. Finally, a procedure was suggested for

the determination of D(e) under perfect test reliability.
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Appendix

k . . .
Lemma A. Let {7} be a renewal process with associated renewal function

G(+). And let (X?), (X;) be two sequences of stochastic processes such

that

(a) The pair of processes (XT, XE) is stochastically identical to

the pair (X}, X;) for k=1, 2,...
I @Iy o s k .
() &5, XZ) is independent of 7 for any j, k.

Then

E\;kg)l (LS, X5, 79 = ImE[ H(X), X, s):‘ dG(s)
- )L

for any bounded function H.

Proof:
s kK k _k = kK k ke k
E D HEX, X5, 1) = L EE[HE], X5, O[]
- 1 .1 _ky k
= 2 EE[H(XI, X5, T 1.
k=1

The last equality uses hypotheses (a) and (b). Let

ek 1ok 2 g

1
£(s) E[H(Xl, X5, T

1 .1 Kk 1 .1
E[H(Xl’ xzs S)‘T = S] = E[H(Xla Xzs S)] >

where the last equality utilizes (b). Now, since H is a bounded function,

so is f£. Hence, we may utilize a result in Qinlar (p. 286) to get
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E 5 H(le, xlg, Ky = D EE()
=1 k=1
=J f(s)dG(s) =I E[H(Xi, x},_, s)]dG(s) .
0 0
Q.E.D.
Proof of Theorem 1l:
_ 5 =k ok k
E[Br’z’j] = = E[D(Sr,z S )1j/r(s )]
~ =k Ky ok k
= k§=31 E‘;E[D(Sr,z-s NE ]1j/r(s ):]. (A.1)

Now, since 51: Leil/r’ 2/r,...},

E[D(E:’L - s%y|s9]

21 D(%-sk)P(Elz,z = n/r|s%) .
n=

And by (3.3)

P(§ n/rISk)

r, 4

n-1
ki ok, _ kon Ky _
P( 121 {Yl(;-s ) = 0} ﬂ_{YZ(r ST 1})

n-1
n Jk i k
P, (-8 )il_l__1 [1-p,(C-8D]

by (3.2) and the independence of Y}Z(s) and le(t) for s # t.
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Combining the last two equations gives

E[D(§1;’£ - sk)]sk]

-4} n-1 .
= p®-sky, B_sk - (L-sk
= 2 D(r S )p'e,(r S ).II 1 pf,(r sH].
=1 i=1
This equation inserted into (A.l) yields
E[B E\‘ Z o p@-sp @5k n1[1 E-sM71., s ):l
r,L,j beml ~ T Poiy Pt i/t
=1 n=1
which by lemma A
® n-1
= NA J Z) DQ——s)p G——s) H [1-p G—-s)]l (s)ds
Lr Lr jlr
0 n=1
(J+1)/r © n-1
=ij (—-s)pz(—-s)ﬂ [1-p,CG-5)]ds
jlr
letting u = %-—s
n-i - .
. I D(uwp, (W) T [1-p,(u-22)]du
£ . L T
n=1 i=1
n-j-1
r
letting m = n-1i
© n-j n-1
=N\ 2 jr D(u)p,(u) T [1-p (u—E)]du
L o4 T
n=1 . m=1
n-j-1
r
which, since p(u) = 0 for u< 0
n-j n-1
= N\A 2 J T D(up,(w) O [1-p (u-5)]du
. £ L r
=j+1 . m=1

n-j-1
r
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letting v = n-j

R
J D(u)p,(u) T [1 -pz(u-;)]du
1 m=1

1
Z
>

<

i ™Ms

vl\)l m=

L v-1 n
=N\ 2 J‘ D(u)p,(w) I [1-p,(u-=)]du.
£ 1 )/ r
r
The last equality follows since for m 2 v and for (v-1)/r s u< v/r,
m/r 2 y/r > u. But then 1—p£(u-m/r) =1 for m 2 v and u within the

region of integration.

Q.E.D.

Proof of Lemma 1l: Since D(¢) is increasing

a va va
v | pe)as = [ peerae> [ pwar  for o<y <1,
0 0 0

Now, for 0O< o< land B =1-«,

X y ax By
o f D(t)dt + B j D(t)dt > J D(t)dt + j D(t)dt .
0 0 0 0

Q.E.D.

Proof of Lemma 2: For an arbitrarily large number M, it is necessary to

show that there exists a number § > 0 such that f(r) =2 M for all r < §.

Since 1lim D(s) = ®», there exists a number 1/2§ such that D(s) =2 2M

S—'m

for s 2 1/28 . Then
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1
6

1
£6) =6 _[ D(s)ds = § |°
0

—

D(s)ds = 6 (ﬁ)m =M.

hopd
o

Since f(+) is a decreasing function, f£(r) 2 £(6) 2 M for r < § .

Q.E.D,

Proof of Theorem 3: Upon taking the closure of the feasible set in (4.5)

and extending the objective function so as to preserve continuity, the

following program is obtained:

Q
Minimize 2 N, f(r.)
(rl,rz,...,rQ) j=1 .
Q
s.t. 2 N c.r, s b
j=1

rj 20 forj=1,...,Q.

. Since the objective function is continuous and the feasible region is

% % e
compact, the minimum r = (rl,..., r.) exists. By the strict convexity

Q

of the objective function (Lemma 2), r* is unique.

The linearity of the constraints and the differentiability and con-
vexity of the objective function imply that the Kuhn-Tucker conditions
are both necessary and sufficient conditions for r*. The Kuhn-Tucker
conditions are

N E'(r)) +u
3] ]

lecj -uj+1 =0 for j

and (A.2)

* .
uj+1rj =0 for j

It
e
-
"
o

|
 nd
-
-
O
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Suppose

r§2> 0 for j=1,..., Q. (A.3)

Then u,

41 =0 for j=1,..., Q and the theorem will follow from the first

equation of (A.2). Of course, (A.3) is also necessary for feasibility
with respect to (4.5). Hence, it only remains to verify (A.3).

*
If for some i, r, = 0, then

Q * *
2 N f(r.) 2 N\, f(r, =0) ==
. 3 ] ] 1 1 1

i=1
where the equality follows from Lemma 2. But, it is easy to exhibit a

feasible point which maps to a finite value of the objective function; for

Q
example, (rl,..., rQ) where rj = 3//23 Nici for j=1,..., Q. This con-
i=1

tradicts the optimality of r*, hence establishing (A.3) and the theorem.

Q.E.D.

Proof of Corollary 3.1: From Theorem 3

NP —
£ (ri)/f (rj) = (chi)/(kj/cj) = (Xj/cj)/(li/ci) <1.

Multiplying each side by f'(r?), which is a negative number, f'(r:):> f'(r?).
The corollary now follows from (4.7) which shows f'(+) to be an increasing

function.

Q.E.D.

Proof of Corollary 3.2: Since 1lim D(t) = o, Theorem 3 provides that for

t=

all j =1,..., Q

k,f'(r%)/c. = constant. (A.4)
J J J
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Now compute

1
d ; m d a -ma
f'(r) = E‘Erj at dt] =-—[_——:\ = ————
L L @+ (e 1)
Therefore, using (A.4)
Jemrt-1
1= [A £ G e, /N E T/ ] = ijflil“‘ j =1
= j rj cj 1 r1 c1 = bl i=1l,..., Q.
A,c.r,
1737
Hence,
mt+1
\.c
= —-]—1 * =
rJ )\lcj rl ’ J 1: H Q

As mentioned above, the budget constraint in (4.5) is binding; therefore

Q . Q Vs, 9 AT
b= 2 N.c.r, = r1 2 N.c. XlE' = r1 2 N, —JXJ——
j=1 4 3] j=1 33 13 j=1 3 1
which yields
* b
r, =

Q.E.D.

Proof of Theorem 4: Since D(+) is convex increasing, lim D(t) = =,
t—oe

Therefore, by Theorem 3

V(e E = 1 (e x
le (rl)/c1 Xzf (r2)/c2
and so

1 * 1 * —_
f (rl)/f (rz) = chl/klcz.
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Hence, to prove the theorem, it suffices to show

D> e e )

that is (recall f' < 0),

*2' * *2' %
r, f (rz) < r, f (rl) . (A.5)

Now, >\1/c1> )\2/c2 implies by Corollary 3.1 that r;j> r’;. So (A.5), and
thereby the theorem, will be established if rzf'(r) is shown to be an in-

creasing function; i.e., -ir r2f'(r) > 0.

1 1
a‘lr £2f (r) = -d% rz( JrD(s)ds -%D(%))] = Ed;[_rz JrD(s)ds - rD(%)]
0 0
1
= 2r frD(s)ds - D(-ll?) - D(%) +‘1:D' (%)
0
letting x = Il;

X
% j D(s)ds - 2D(x) + xD' (x)
0

X
%LXD(X) - j sD'(s)ds] - 2D(x) + xD' (x)
0

X
- -}-2; I sD'(s)ds + xD"' (x)
0

x
> - % ‘[ sD' (x)ds + xD"' (x)
0

since x 2 s

= (2D (x)/%) (x%/2) + xD' (x) = O .
Q.E.D.
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Proof of Theorem 5: Let D(x) = d. Since D(0) = 0 and D(+) is continuous

. . -1 . . . .
and increasing on [0, x], then D " (+) exists and is continuous and increas-

ing on [0, d] with D_l(O) = 0 and D-l(d) = x.

H(y) = E[Q, (9)] E[_ > 1[0’y](n(x-sk>)1[0,x]<sk>]

k=1
by Lemma A .
X X
0 0
X -1 -
- 110,01 (gy] ()% = A (x, D7)
0
=N)\D_1(y) for 0 y< d.
Therefore,
D™ (y) = H(y)/NA for ye[o0, 4] .
Applying D(+) to each side,
/
D\H(y)/m) -y for yelo, 4] . (A.6)
Let
t = H(y)/NAX for y€[o0, d] . (A.7)
Then t €[0, x] and
y = H'(NAt)  for t€[0, x] . (4.8)

Inserting (A.7) and (A.8) into (A.6),

D(t) =y = H.ll(N)\t) for t€f0, %] .

Q.E.D.
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