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ABSTRACT

The literature on maintenance models is surveyed. The focus is on work appearing since
the 1965 survey, ‘‘Maintenance Policies for Stochastically Failing Equipment: A Survey”
by John McCall and the 1965 book, The Mathematical Theory of Reliability, by Richard
Barlow and Frank Proschan. The survey includes models which involve an optimal decision
to procure, inspect, and repair and/or replace a unit subject to deterioration in service.

INTRODUCTION

For nearly two decades, there has been a large and continuing interest in the study of maintenance
models for items with stochastic failure. This interest has its roots in many military and industrial ap-
plications. Lately, however, new applications have arisen in such areas as health, ecology, and the envi-
ronment. Although it is not possible to detail these many applications of maintenance models, some of
them are: the maintenance of complex electronic and/or mechanical equipment, maintenance of the
human body, inspection and control of pollutants in the environment, and maintenance of ecological
balance in populations of plants and animals.

Just as the interest in maintainability has grown and changed, so has the sophistication of the models
and control policies for solving the maintenance problems. Many of the important early maintenance
and/or inspection models possessed an elegance and simplicity which led to easily implementable poli-
cies. These models were later generalized; and although much of the elegance and simplicity remains,
some of the new results are complex and require the use of large computers for implementation.

In two earlier and excellent works, the area of maintainability was rather thoroughly researched and
surveyed up to 1965. These works are: The Mathematical Theory of Reliability, by Richard Barlow and
Frank Proschan [1965] and the paper, “Maintenance Policies for Stochastically Failing Equipment:
A survey,” by John McCall [1965]. Here, the presentations of these earlier works will not be repeated,
but rather the coverage is primarily the results which have appeared since 1965. There are a few
exceptions to this rule, however, when it was necessary to review some key models which appeared prior

*This survey was produced in part as a result of research sponsored by the Office of Naval Research under Contract NO0014—
67-A—0356-0030, Task NR042-322. Reproduction in whole or in part is permitted for any purpose of the United States
Government.
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to 1965 and which formed the foundation of many of the later studies. Furthermore, in this survey it is
assumed the reader is familiar with such concepts as Markov processes, Poisson processes, dynamic
programming, linear programming, Lagrange multipliers, and other concepts and techniques with which
the holder of a master’s degree or an experienced practitioner in statistics or operations research would
be familiar.

Since there are many threads of activity which contribute to the total fabric of maintainability and
since it is not possible to include all of them in a reasonably sized survey paper, this study includes
only those models which involve an optimal decision to procure, inspect, repair and/or replace a unit
subject to deterioration in service. Not included are models which describe the operating characteristics
of a system, such as repairmen or machine interference models, unless these models involve some opti-
mization as well. Also not included are models which deal with the controlled reliability of a system such
as the design of redundant systems unless they also include aspects of optimal inspection, repair, and/or
replacement decisions. Each of these excluded areas is large, important, and worthy of a survey in
its own right. Furthermore, each lies slightly outside of what many people would call maintainability.
Even with these restrictions, however, the reader will see that the many topics covered in this survey are
rich with theoretical significance and practical application.

There are many possible ways to classify the works in maintainability. One could establish a multi-
dimensional grid whose coordinates would be (i) states of the system, such as deterioration level, age,
number of spares, number of units in service, number of state variables, etc., (ii) actions available, such
as repair, replacement, oﬁportunistic replacement, replacement of spares, continuous monitoring,
discrete inspections, destructive inspections, etc., (ii) the time horizon involved, such as finite or infinite
and discrete or continuous, (iv) knowledge of the system, such as complete knowledge or partial knowl-
edge involving such things as noisy observation of the states, unknown costs, unknown failure distribu-
tions, etc., (v) stochastic or deterministic models, (vi) objectives of the system, such as minimize long
run expected average costs-per-unit time, minimize expected total discounted costs, minimize total
costs, etc., and (vii) methods of solution, such as linear programming. dynamic programming, generalized
Lagrange multipliers, etc. _

Then in each cell of the grid, one could conceivably place every paper written on maintainability.
The empty cells would mean those research areas were irrelevant or not yet explored. To some extent,
McCall [1965] uses such a classification scheme (on a modest scale) by considering the primary categor-
ies of “preparedness” and “preventive maintenance” models with and without complete information.

Although classification schemes based on some breakdown involving two or more of the seven
categories mentioned above are useful for establishing an underlying general theory of maintainability
and also for exposing some unexplored areas, such a scheme has not been rigidly followed here. Rather
the papers have been classified in such a manner that a practitioner might be able to find the models
relevant to his maintenance problem (to a large extent this approach parallels that taken by Barlow and
Proschan [1965]. Thus, there are two major sections with several subsections in each.

The first section surveys discrete time maintenance models. That is, at discrete points in time, a unit
(or units) is monitored and a decision is made to repair, replace, and/or restock the unit(s). The second
section surveys continuous time mainienance models. Actions and events are not a priori restricted to
occur only within a discrete subset of the time axis.

In the discrete time section, most of the models are Markov decision models in which the state of
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the system is described by the level of deterioration and/or the number of spare units available in in-
ventory. This section is subdivided by segregating models with no restocking from those which involve
an inventory (restocking) decision. The subsection on models with no restocking is further subdivided
on the basis of kinds of information available. ‘

The continuous time models are subdivided into several topic categories also. The first of these is
concerned with applications of control theory to maintainability. The control function m(t) acquires
the interpretation ‘“‘rate of maintenance expenditure at time t.”” By the use of control theory, m(t) is
selected to maximize discounted return. The second subsection deals with age replacement models
thereby giving new enhancements to the classical model, such as age dependent operating cost and the
optimal provision of spares. Also described in this subsection are certain policies that regulate time of
replacement according to the occurrence of the kth failure. The third subsection describes shock models,
i.e., systems where the unit is subject to external shocks according to some stochastic process, and
these shocks affect its failure characteristics. Subsection four deals with interacting repair activities.
Here the decisionmaker must control a system composed of more than one unit.| Specifically discussed
are such “‘system-wide” activities as opportunistic replacement, cannibalization, multistage replace-
ment, and variable repair rate. Also discussed are models involving incomplete information. The
decisionmaker’s information may be incomplete only in regard to the current state of the system, in
which case inspection models arise. On the other hand, he may not know completely the probability
law governing the system or the actual cost implication of various actions. In the former case, max-min
and Bayesian strategies have been devised. In the latter case, the statistical implications of a related
sampling procedure are presented. The concluding section indicates some areas for future research.

Although the authors have tried to give a reasonably complete survey, the reader will note that
untranslated Eastern European and Asiatic papers are missing. Any other papers that are not included
were either inadvertently overlooked, not directly bearing on the topics of this survey, or no longer in
print. The authors apologize to both the readers and the researchers if we have omitted any relevant

papers.

1. DISCRETE TIME MAINTENANCE MODELS

In this section, models are reviewed which utilize information regarding the degree of deteriora-
tion of the unit or units in order to select the best action at certain discrete points in time. The deteri-
oration may be described by such factors as ““wear and tear,” “fatigue,” etc. In some cases, inspection
decisions must be made in order to ascertain the current state of the unit before a repair or replacement
action is taken. In others, it may be assumed that the current state is always known at the beginning of
a period and the available actions are to replace the unit or to choose one of several repair activities
which will tend to decrease the degree of deterioration. Often the decisionmaker must take these actions
under conditions of incomplete information about costs, underlying failure laws, or noisy observations of
the unit’s state. Models involving complete knowledge are treated first, then the models with incomplete
information are covered. In these latter models, it is always assumed that there are new replacements
available (i.e., an unlimited supply of new spares). The section concludes with models involving the
periodic restocking of inventories of spare parts.

Because of the Markovian nature of the state and action transition processes, Markov decision

theory and inventory theory are the primary approaches used in the model formulations. Consequently,
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linear programming and dynamic programming are the primary techniques used to solve these models.

COMPLETE INFORMATION

A unit (or several units) is inspected every period and a decision is made to repair or replace the
unit whenever it is found to be in a certain set of states. In the absence of a decision to repair or replace,
it is assumed that the unit deteriorates stochastically through a finite set of states denoted by the set
of integers {0, 1, . . ., L} according to a Markov chain. The state 0 denotes a new or completely
renovated unit and the state L an inoperative or failed unit. After inspecting the unit a decision is made
either to repair, replace, or do nothing to the units. In most of the models there are only two decisions
every period: decision 1 means do nothing and decision 2 means replace.

Depending upon the assumptions concerning the time horizon, the amount of information avail-
able, the nature of the cost functions, the objectives of the models, system constraints, and numbers
of units, different authors have produced many interesting and significant results for variations on this
basic model. The basic model was originally introduced by Derman [1962] and extended by Klein [1962]
Although these two important papers are clearly presented in Barlow and Proschan [1965] and Derman
[1970], the basic model is briefly given here prior to surveying later generalizations.

The unit is observed at times t=0, 1, 2, . . . to be in one of the states X;¢{0,1, ..., L}.Ifno
action (decision 1) is taken, then p;; denotes the probability of moving from state i to state j in one
period. If the unit is replaced (decision 2), then the unit moves immediately into state 0, and the transi-

tion during the period is governed by the probabilities {po;}. It is assumed that

1) pio=0, i=0,...,L—1,
2) pPLo=1, and
(3) p{y >0 for some t and each i =0, . . ., L —1.

Condition (1) implies the unit is never as good as ‘“‘new’’ after its first period of service; condition
(2) implies the unit must be replaced on failure; and condition (3) implies the unit will eventually fail
and that the underlying Markov chain, {X,}, has a single ergodic class and the steady state probabilities
exist.

Upon inspecting the unit at any time, it is possible to replace the item before failure. In this way
it may be possible to avoid the consequences of failure or further deterioration of the unit. These de-
cisions to replace the unit or do nothing are summarized by a set of decision rules (or replacement
rules) based on the entire history of the process up to time ¢. Although the most generality is achieved
by considering these rules as elements of the class of nonstationary, randomized rules, conditions have
been established by Derman [1970] which enable one to restrict attention to stationary nonrandomized
rules. These latter rules are of the type that the set {0, 1,. . ., L} is partitioned into two subsets #
and 2. If X; €% then replace the unit and if X,e2, do nothing. Most of the models surveyed here satisfy
the conditions given by Derman or else restrict their attention only to the class of stationary nonran-
domized rules which do not utilize all prior history and can be denoted by R;fori=0, . . ., L, where
R;is the action taken when X, = 1.

By making an intervening decision before observing state L, the behavior of the system is modified
and the evolution of the system under a replacement rule results in a modified Markov ehain. The
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only costs consist of ¢, to replace a unit that has not yet failed, and a higher cost c: to replace a failed
unit, '

The objective is to minimize the expected long run average cost-per-unit time.

By making an additional assumption on the original transition probabilities

L
4) Z pijis nondecreasing in i=0, . . ., L —1
i<k
for each fixed k=0, . . ., L.

Derman has shown that the optimal replacement rule R* is a “control limit” rule; that is, there is a
state i* €{0, 1, . . ., L} such that if the observed state k satisfies k¥ = i* then replace the unit and if
k < i* do nothing. This key result reduces the size of the set of rules R in the minimization from 22-!
rules to at most L + 1 rules. The same key result holds when the objective is changed to minimize the
total long run discounted costs. ,

Assumption (4) implies that if no replacements are made, the probability of deterioration increases
as the initial state increases. Barlow and Proschan [1965] point out that this conditional probability
is equivalent to assuming the original Markov chain is IFR.

The mathematical programming problems resulting from the above objectives have a natural formu-
lation as dynamic programs, and in this context, successive approximations and policy iteration tech-
niques may be used (see Bellman [1957], Bellman and Dreyfus [1962], and Howard [1971]). Derman
has provided an interesting formulation in the long run average cost case leading to a linear programming
problem. On the surface it may appear that the linear programming problem is very difficult to handle
for most important problems because of its large size; however, recent work in large-scale linear pro-
gramming (cf. Lasdon [1974]) gives hope for solving these very large Markov decision problems.

Kolesar [1966] considers the same model with the cost function generalized to allow an “occu-
pancy” cost, 4;, associated with being in each state i. With the added condition 0 = 4, =. . . = 4,,
he demonstrates that a control limit rule is optimal in the long run average cost case.

Now the L+ 1 control limit rules can be represented by the integers {i]i=0,. . ., L}. In his case
where a control limit rule (or rules, if uniqueness is not present) is optimal, Kolesar shows that the cost
function is integer quasi-convex in i, i.e., if i* is the smallest optimal control limit then ¢g; is non-
increasing for i < i* and nondecreasing for i = i* (see Greenberg and Pierskalla [1971] for results on
quasi-convexity). This observation enables him to develop more efficient algorithms to solve the average
cost problem. He further observes that in the linear programming formulation of the model the re-
striction to control limit rules allows one to modify the simplex algorithm so that at most L changes of
feasible bases are needed before the optimal rule is obtained.

The results of Derman and Kolesar were later extended by Ross [1969a] to the case where the state
of the system can be represented by an element of some nonempty Borel subset S of the nonnegative
real line. Thus, continuous or denumerable state spaces are now allowed. Let x € S denote the state of
the system upon inspection at the beginning of a period, and F; the cumulative distribution function
describing the next state given that the decision is made not to replace defined for x > 0. The failed state
is denoted by 0. Thus p(x) = F.(0) is the probability the unit currently in state x will fail before the next

inspection.



358 W. P. PIERSKALLA AND J. A. VOELKER

In parallel with the finite state models, a control limit policy, R, replaces the unit at time ¢if X, = y
or X; > y for some control limit ye(0, «] and does nothing otherwise. Ross then proves the following. If
&(x), the cost of being in state x, is a nondecreasing bounded function of x for x > 0, p is a nondecreas-
ing function of x for x > 0, and for each y > 0 the function (1 —F,(y))/(1—p.) is a nondecreasing
function of x for x > 0, then there is a control limit policy R, that is optimal in the long run discounted
case. Under some additional conditions on g(x) and F:(y), he then shows that a control limit policy is
optimal for the long run average cost case as well.

In a recent paper Kao [1973] considers a different type of generalization of the basic Derman model.
He considers the problem of a deterioration process which moves from state 0 to state L, but the time
spent in each state before a transition is a random variable depending on the transition. This problem
is modelled as a discrete time finite state semi-Markov process. Since the underlying process is one of
deterioration it is assumed that p;; = 0 for j = i and that the holding time in state i before going to j is
a positive, finite, integer-valued random variable. As in Kolesar, Kao assumes an occupancy cost
A; per unit time, a fixed cost c; of replacement and a variable cost v; of replacement per unit time if a
decision to replace is made when the unitis in state i. Under reasonable conditions on the cost functions
and the expected sojourn time in each state, Kao proves that a control limit policy is optimal over the
class of stationary nonrandomized policies for the long run average cost case. He then generalizes the
model to include the time the unit has spent in the state as well as the state itself in determining when
to replace the item.

Until now, it has been assumed that the decisionmaker is continuously aware of the state of the
unit. That assumption will now be dropped. To ascertain the true state of the system, the decisionmaker
must inspect it, which is an action entailing a particular cost. Rules for scheduling inspections now enter
into the policy.

In an early paper, Klein [1962] was concerned with the different levels of decisions which could
be made upon the inspection of a unit. These decisions ranged from replace with a new unit to various
types and degrees of repair. In addition, he considered the decision as to when the next inspection
should be taken. He showed that the problem could be formulated as a linear fractional program and
then reduced to a linear program to be solved.

More specifically, there are costs associated with inspections and repairs. A repair moves the unit
from state j to state i at cost r(j, i); replacement is equivalent to moving it from state j to state 0. The
cost of inspection while in state jis c(j). After an inspection, the decisionmaker can choose to skip
the next m time periods before making another inspection. It is assumed that m is bounded by some
number, say M. If the unit is discovered to have failed at some time before inspection, it is assumed that
its failure time can be determined during the inspection.

The states are {0,1,. . .,L,L(1),. . .,L(M)}, where L(m) denotes that the unit failed m time
periods ago. The action (j, m) denotes placing the unit in state j by repair or replacement and skipping m
periods until the next inspection. The transition probabilities are the same as before. For this model it
is assumed pi;=01if i > j, pr, L4y = Prar), L&)= - + - =prLon), Lan =1, and p!Y > 0 for some ¢ and all
1=0,...,L—1.

A linear programming formulation for the long run average cost case can be found in Klein. Derman
[1970] shows that a stationary policy is optimal.

Much in the spirit of Derman’s and Klein’s models; but by using the functional equation of dynamic
programming, Eppen [1965] gives sufficient conditions on the cost functions and transition matrices
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to show that the total discounted expected costs are minimized from period n to the end of the finite
horizon by the following policy: there exists a sequence {i}} of critical numbers such that in period n
if the state of the déteriorating unit exceeds i ¥, then return the system to state i¥ (by repair); otherwise
do not repair. This policy parallels the critical number policy in the single product stochastic inventory
model without setup cost. v

In an interesting paper, Hinomoto [1971] considers the sequential control of N homogeneous units
by generalizing the approach developed by Klein. At each decision point the decisionmaker determines
the level of the repair activity and the time of the next inspection. Hinomoto considers two different
plans for the maintenance of the N units. The first plan is a fixed rotating sequence for the units, i.e.,
find an optimal permutation schedule from the set of all permutations of the numbers 1, . . ., N and
then inspect (and repair, if needed) the units sequentially in the order given by the permutation. The
second plan is a priority plan which alters the fixed sequencing by queueing those units for repair or
replacement which have fallen below a certain critical level of performance. (In the first plan, such a
unit would just have to wait its turn in the permutation sequence.) He formulates both problems as
linear programs and finds the optimal decisions over the class of fixed cyclic inspection patterns (ex-
cept for the temporary displacing priorities in the second plan). ,

Other authors Derman [1970], Eckles [1968], Sondik [1971], and Smallwood and Sondik [1973]
also allow for this greater variety in the decision space by allowing repair or replacement decisions

je{0, 1, . . ., L} (more will be said about their results in the next section).

Incomplete Information

A problem which often arises in the study of maintenance is the lack of information concerning
many aspects of the model. This lack of information may take many different forms. In his .earlier
survey, McCall [1965] treated the case of lack of knowledge of the underlying failure distribution. In
addition to this case, there can be lack of information due to (i) random costs or unknown costs and
(ii) noisy observations on the state of the system. A paper treating the costs as random variables with
known distribution is given by Kalymon [1972]. The papers concerning unknown costs are generaliza-
tions by Kolesar [1967] and Beja [1969] of another basic model due to Derman [1963a]. The papers on
noisy observations are by Eckles [1968}, Sondik [1971] and Smallwood and Sondik [1973]. Concluding
this section, the papers by Satia [1968] and Satia and Lave [1973] on the lack of knowledge of the
underlying probability distribution are mentioned.

Kalymon [1972] generalizes the Derman model of the previous section by considering a stochastic
replacement cost determined by a Markov chain. This chain is assumed to be conditionally independent
of the Markov chain defining the deterioration of the unit from period to period. The cost, C, of a new
unit in period ¢ is a random variable which takes on a finite set of values. There is a separable salvage
value of — [r(c;) + s(x¢)] and an occupancy cost 4(x¢) when the machine is in state x; and the realized
actual cost of a new machine is ¢; in period ¢.

When the cost functions ¢ + rc¢), s(x), and A(x) are nondecreasing in their arguments, the Markov
chains {X(|t=0,1, ...} and {C/t=0,1, ...} have distribution functions which are IFR, i.e.,
they satisfy (4) and its analog, and the conditional expected costs satisfy a certain condition, then
the optimal policy is a control limit policy for the nonstationary finite horizon discounted cost function.
This result is then generalized to the infinite horizon ergodic chains case for both the long run dis-
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counted and the long run average cost cases. In this context, there can be a different control limit policy

for each realized replacement cost c.
In another interesting variation on his earlier basic model, Derman [1963a] considered the problem

where the unit is in one of several operative states 0, 1, . . ., n and several inoperative states n +
1, ..., L A decision ke {1, . . ., K} is made to replace or partially repair the unit at some level £
once it is observed in states 1,. . ., n and only to replace if in states n+1,. . ., L. There is no explicit

cost structure available nor can one be easily inferred other than that the cost of failure is much greater
than the cost of replacement. The objective is to maximize the expected length of time between replace-
ments, called the cycle time, subject to the constraint that the probability a replacement is made when
the process is in state j is no greater than some preassigned number ajfor j=n—+1, . . ., L. Derman
develops a linear programming formulation of this model over the class of rules which repeat every
time the unit is renewed.

In a subsequent paper, Kolesar [1967] restricts the set of decisions to only two: replace or do not
replace. From the class of stationary randomized rules, a generalized control limit rule is defined by

do not replace when i < m,

Bﬂ'i (R m)

replace with probability B R+ (=) 7 (Rmed) when i = m,

replace ' when i > m,

where 0 = 8 =1 and Ry and Rm41 are control limit rules (as defined previously). The coefficient 8
which forms the convex cambination of the steady state probabilities for the two nonrandomized control
limit rules Ry and Rm ., is obtained as the coefficient which satisfies 7} = Bmj(Rm) + (1 — B wj(Rm+1)

L L
S L .
and the 7 minimize 7y on the set E =1, E mipij = mj, w; =0 and — = 7, where 7 is the pre-
i=0 i=0 o

J
determined maximum tolerable probability of failure in a cycle. Under the IFR assumption (4), Kolesar
establishes that the optimal stationary policy is either do not replace until state L, or else there are
control limit rules Ry, and R .1 such that a generalized control limit rule is optimal when the maximum
tolerable probability of failure in a cycle is 7.

Beja [1969] does not make the IFR type of assumption (4) on the transition probabilities. In so doing
he is able to consider more general transition matrices, e.g., the “bath-tub” variety. Let y; and x; denote
the probability of failure before replacement and the expected time before replacement given that

the present state is i, respectively. For every state i the set of constraints

yilxi = T, for a given 7,

impose restrictions on the potential hazard encountered while in state i. With these additional con-
straints on the unit, Beja shows that from the class of stationary randomized policies, one of the 2L~
nonrandomized policies (i.e., replace or keep whenever the process is in state 1,2, . . ., L—1) is
optimal. He then demonstrates what the “implicit” replacement and failure costs are, given the optimal

solution which maximizes the cycle length.
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The problems of uncertainty in studying a maintenance problem are treated somewhat differently
by Eckles [1968], Sondik [1971], and Smallwood and Sondik [1973]. The underlying process for the
unit is still the finite state, discrete time Markov chain as before and there are K possible decisions
from which a selection £ is to be made. For example, these decisions could be to replace, repair or do
nothing. Let p%(s) be the true conditional probability that the unit goes to state j in the next period
given that it is in state i at period t and decision k = k(f) was taken. An inspection of the unit after taking
decision £ in state i during period ¢ yields the observation x where g%, (¢) is the conditional probability
of outcome x given state i and decision £. In this manner, it is possible to characterize maintenance-
inspection problems ranging from those whose observation of the state reveal knowledge of the actual
state with certainty (as in the previous models) to those which provide no information of the new state
of the system. It is assumed (i) that the actual age of the unit in use in period ¢ is always known with
certainty given the sample history of observations and decisions #;, and (ii) there is an underlying cost
ck(t) which represents the cost of going to state j, given state i and decision & in period ¢. Letting

L
ck(t)= 2 p?j(t)c :cj(t)

j=0

be the expected one period cost given (i, k, t), and assuming that for any sample history &, the one-
step transition matrix P(# ;) and the current age of the unit t(#,) are jointly a sufficient statistic for
# i, then there exists an optimal solution which minimizes the expected total discounted costs where
the only information needed are the one-step transition matrix P(#;) and the current age of the unit
t(;) and not the entire prior history . Bayes Theorem is then used to update P(#)) to P(¥:.)) »
(or P(#¢-,) if one numbers backward as is often done in finite time dynamic programming). Eckles
formulates the problem as a dynamic program and under the standard assumption that whenever a
unit is replaced it is completely renewed (its age is 0) and its transition probabilities are then inde-
pendent of the past history of the process, he presents an algorithm for finding an optimal nonran-
domized age replacement policy for this renewal process.

Sondik [1971] and Smallwood and Sondik [1973] treat the same problem as Eckles; however,
they demonstrate that the entire history of the process is contained in the information vector

m(t) = (mwolt), . . ., mlD),
where

7j(t) = conditional probability that the actual state at time ¢
is j given observation x, history #;._, and decision k(z),

and that by Bayes Theorem

Zir)pf(Day; ()
2 3midpks i)Q'}](t)'

7t +1)=
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Thus, if 7(t) is the statistic generated by the outcomes #, then 7 (¢+ 1) is a sufficient statistic for #; 4.
This approach differs slightly from the Eckles model in that

g%;(t) = conditional probability that the outcome x is observed given that the true outcome

is j and that decision & was taken just prior to the inspection.

Thus, m(f) behaves as a discrete time, continuous state Markov process. They then demonstrate that
the expected total discounted cost function is piecewise linear and convex. Using this structure they
develop an efficient algorithm which makes the rather difficult large state space problem relatively
easy to solve.

In conclusion of this subsection the case of incomplete knowledge of the probability law governing
the system’s evolution is briefly considered. As was mentioned earlier McCall [1965] surveyed this case
extensively.

The optimization of a maintenance problem modelled as a Markov chain with unknown transition
probabilities is usually approached from either a game theoretic (i.e., max-min or max-max) or from a
Bayesian point of view. The max-min approach essentially seeks the maximum overall possible policies
of the minimum of the total expected long run discounted return with respect to all possible transition
matrices (within some set). The max-max approach is defined analogously. Satia [1968] proves there
exists a pure, stationary policy for this latter decision process that is optimal.

‘Satia and Lave [1973] discuss this earlier Satia result and present an algorithm similar to Howard s
“Policy Tprovement Algorithm. Their algorithm will converge to within any predetermined e-interval
about the true max-min solution in a finite number of iterations. Satia and Lave also formulate a Bay-

esian approach to the problem and present an implicit enumeration algorithm for its solution.

Maintenance and Inventory Models

Most maintainability models which provide for the replacement of a unit assume that the replace-
ment items are drawn from an infinite stock. However, for some models, this stock is not infinite; indeed,
its management becomes a control variable.

There are many inventory papers which treat stock replenishment problems for stochastically fail-
ing equipment: Falkner [1969], Prawda and Wright {1972], Sherbrooke [1968, 1971], Sobel [1967], Por-
teus and Lansdowne [1974], Silver [1972], Miller [1973], Moore, et al. [1970], Demmy [1974], and Drink-
water and Hastings [1967]. These vpapers do not consider problems where a decision must be made to
repair, replace or inspect a unit or units. Rather they assume that once a unit has failed, it must be re-
paired or replaced and the decision process is how much inventory to stock either initially, periodically,
or continuously.

To be more specific, Prawda and Wright [1972] examine a system where there may be many iden-
tical units in operation. These units fail in one of two ways. The unit fails and is repairable with prob-
ability distribution F;(*) or nonrepairable with probability distribution %(-) in period i=1,2, . . .. Re-
pairable units go to a repair facility and after .#" periods are renewed and returned to inventory. Non-
repairable units are discarded. If the available inventory is insufficient to meet replacement needs,
these needs are backlogged until inventory is available. An order for new units is placed at the begin-
ning of each period and delivery is received \ periods later. They consider the two problems of how
much to order every period to minimize the expected total discounted costs and to minimize the ex-
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pected long run average cost-per-unit time. In their model, there are four costs: ordering, holding,
shortage, and salvage. Following some earlier work in inventory theory by Veinott [1965], Prawda and
Wright show that for an ordering cost of ¢ per unit and explicit quasi-convexity of the single period
cost function, the optimal policy is a stationary single critical number in each period. That is, in period
¢t and before ordering in this period if the state of the system determined by the stock on hand, in repair,

and on backorder is denoted by x, then there is a number ¥ such that
if x, < ¥ order ¥ — x,

otherwise do not order. They also consider the case where there is a setup cost K every time an order
is placed and give results on the optimal order quantities.

Taking a different approach, Sherbrooke [1968, 1971] considers the problem of determining the
stock levels at each echelon of a multiechelon multiunit inventory system of repairable units. The idea
is that at various sites j=1, . . .,/ there are repairable units of typesi=1, . . ., in use and in inven-
tory, vi; and there is a central facility, 0, which maintains a buffer inventory, yi, for use at the sites
when needed. Each site including the central facility has repair capabilities. The problem is to determine
the y;; fori=1, . . .,Jandj=0,1, . . ., J which minimize the total weighted expected number of units
backlogged at any point in time subject to a budget constraint on repair and operating costs. The failure
of units are independent and identically distributed (by unit type) according to a logarithmic Poisson
distribution with constant variance to mean ratios. There is no transshipment among sites 1, . . ., J
and the repair decisions are not explicitly entered in the model (only implicitly through the logarithmic
Poisson failure rates). It is also assumed that there are an infinite number of repair activities, so that
the repair times are independent of the number of units being repaired. Sherbrooke shows that the gen-
eralized Lagrange multiplier approach of Everett [1963] and Greenberg and Robbins [1972] can be used
to obtain near optimal solutions to the problem.

Porteus and Lansdowne [1974] consider the same model, but assume the failure process is Poisson,
that y;,0=0for alli=1,. . ., I and that the mean repair times for the repair of unit type i at site j under-
going repair work of level & can be controlled. Using a genéralized Lagrange multiplier algorithm, they
obtain the spare stock quantities and mean repair times which minimize either the long run average
cost-per-unit time or the long run total discounted cost.

In a related paper also based on Sherbrooke’s work, Silver [1972] determines the inventory levels,
i, for repairable subassemblies (=1, . . ., I) of a major assembly. The failure process is Poisson for
each subassembly, the failure of a single subassembly makes the entire unit inoperative, and canni-
balization of major assemblies awaiting repair is assumed. Under the additional assumption that there
is no inventory of the major assembly (i.e., yo=10), Silver shows that the entire optimization problem is
separable and easily solved. In the case v, > 0, he gives a near-optimal algorithm to obtain y; for =0,
1, ... L

Miller [1971] considers the optimal stocking problem also; however, in [1973] he asks the question
to which site should a repaired item be sent after it is repaired at a central facility given that transpor-
tation times differ and that only the central facility can repair items. He formulates a single-item multi-
location model and shows by simulation that the policy of shipping the repaired item to the site which
realizes the greatest marginal decrease in the expected backorders from this one additional unit (com-
puted over the time required to transport the unit) is better than the current Air Force shipping policy.
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Furthermore, under the assumption that repairs are instantaneous after a failure, he proves that this
policy is optimal.

Along different lines, Derman and Lieberman [1967] consider a joint replacement and stocking
problem. Inspections are made every time period. An initial stock of V identical units are on hand. At
the end of each period, a decision is made to replace the currently working unit or not to replace it. If
a replacement is made, the new unit works at a level s with probability f; and continues to work at the
same level until it either fails or is replaced. Its life-length is a random variable with a geometric dis-
tribution. If at the end of the period the unit in service has failed, it is replaced provided there are units
still in stock. If there are none in stock, the system is down for one period of time while N units are
reordered.

The state space is described by { (n,s): n=1,. . .,N;s=1,2,. . .} U {0}, where n denotes the
number of (identical) units on hand including the one in service, and s denotes the performance level of
the unit in service. Note that the levels of service are a denumerable set. The element 0 denotes no
units in stock and the system is down. The available actions are {1,2}, where 1 denotes no replacement
and 2 denotes replacement (or reorder).

Using the resulting transition probabilities and the cost functions given by

&:0)=C
&i(n, s)=gs(n, s) forn=1,.. . ,N;s=1,2,..

where g(n, s) is nondecreasing in s for each fixed n, Derman and Lieberman show that for a fixed N,
there exists a sequence of numbers s;, sz, . . ., sy such that the optimal solution for minimizing the

"expected average cost-per-unit time is a stationary policy of the form

1if s< sq,
R(",s)=

2 if s = sp.

Under additional assumptions on the cost functions, in order to determine the optimal ¥V, only a
finite number of possible choices for N need to be investigated.

This joint maintenance-inventory model is generalized by Ross [1969a] to allow a continuous state
space and deterioration of the component from period to period. He establishes optimal policies of the
same form .as Derman and Lieberman and shows that when the inventory is 0, it is optimal to order

N* units.

2. CONTINUOUS TIME MAINTENANCE MODELS

In this section maintenance models are considered which do not contain the assumption that main-
tenance or inspection activity is a priori restricted to a particular discrete set of points in time. That
is to say, in these models the actions of the decisionmaker may potentially take place anywhere on the
continuous time axis (although there may be only a discrete number of such actions).

In certain of these models, the maintenance activity is permitted to occur as a continuous stream.
That is, the decisionmaker must optimize over functions m(:) where m(t) is the maintenance expenditure

rate at time t. These models are considered first.
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Control Theory Models

Determination of the optimal maintenance schedule and the sale date for a unit in a deterministic
environment has been under study by a number of different authors. Early solutions to the problem are
to be found in Masse [1962]. Naslund [1966] was the first to solve the problem by making use of the
maximum principle. .

In more recent work, Thompson [1968] presents a simple maintenance model which illustrates the
application of the maximum principle technique to maintenance problems. The model contains the
following factors: the (unknown) sale date of the unit 7', the present value V(T) of the unit if its sale date
is T, the salvage value S(¢) of the unit at time ¢, the net operating receipts Q(¢) at time ¢, the rate of in-
terest r, the number of dollars spent on maintenance m(t) at time ¢t where maintenance refers to money
spent over and above necessary repairs, the maintenance effectiveness function f{#) at time ¢ (in units
of dollars added to S(¢) per dollars spent on maintenance), the obsolescence function d(t) at time ¢ (dol-
lars subtracted from S(¢)), and the production rate p at time ¢.

It is assumed that d, f, and m are piecewise continuous, d is nondecreasing and f is nonincreasing,
p is constant over time, and, for some given constant M, 0=m(¢) = M.

The object of this model is to ChOOSt\E a maintenance policy m (¢) and the sale date T to maximize
V(T). Thompson begins by solving for the optimal maintenance policy for a fixed sale date T.

He shows that the Hamiltonian is linear in control m, hence the optimal maintenance policy will be
of the bang-bang type (piecewise constant). The optimal maintenance policy is obtained by solving
f@)=r/(p— (p—r)e-""-1) for the unique point T'. Then

M, t<T’
m(t) = {arbitrary, t=T7T
0, t>T.

It is clear that m(t), the optimal control, is a function of T In this respect, it is piecewise constant;
hence, the solution of 37 /3 T=0 for T is simplified. Thompson presents the details of this procedure,
illustrates the model with a few examples and extends the model to the case of a variable production
rate.

Arora and Lele [1970] extend Thompson’s model by considering the effect of technological progress.
This was accomplished by including a term for obsolesence, due to such progress, in the state equation
for the salvage value of the unit.

Kamien and Schwartz [1971] consider a maintenance model which represents another extension of
Thompson’s work. In their model, it is assumed that the value of the unit’s output is independent of its
age while the probability of failure increases with its age. Furthermore, it is assumed that revenue and
scrap value are both independent of age. The probability of failure is influenced by the amount of money

spent on maintenance according to the following differential equation:

dF (t)
dt

=(1—u(t)h(t)QA—F(1)).

The function u(t) €[0, 1] is the level of maintenance at time ¢; F (¢) is the time-to-failure distribution pro-

vided the unit is given maintenance according to the schedule u(-); F(¢t) is the corresponding dis-
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tribution provided the unit receives no maintenance; and h(z) =F (t)/(1—=F (¢)) is the “natural”
failure rate of the unit. The object of maintenance is to reduce the probability of failure. Expected
revenue from the unit’s output is maximized by selecting the appropriate control function, and the
optimal sale date T* is determined.

Kamien and Schwartz characterize the solution to this problem by deriving necessary condi-
tions for the optimal sale date. In addition, they use the maximum principle to characterize necessary
conditions for optimal control and in particular show that it is not of the bang-bang type. They also prove
sufficiency of their necessary conditions. These results are of interest since the underlying process in
this case is controlled by influencing the failure rate and not the salvage value as was the case in Thomp-
son’s paper.

In two recent papers by Sethi and Morton [1972] and Sethi [1973], the basic one-unit model is ex-
tended to the situation of maintaining a chain of units. In addition, conditions for a changing technolog-
ical environment affecting both production and maintenance requirements of future units is assumed.
In this dynamic model, prices of future units are also allowed to vary. In the first paper, a finite horizon
problem is considered and a solution procedure for determination of the optimal maintenance schedule
for each unit in the chain is derived. In addition, conditions for bang-bang control are discussed. In the
second paper, the problem is solved where the maintenance policy is assumed to be stationary in the
sense that the same maintenance policy is applied to each unit in the chain. The optimal maintenance
schedule is characterized and again conditions for bang-bang control are presented. Finally, the com-
putation of the optimal replacement period is posed in terms of a nonlinear programming problem.

In a related paper by Tapiero [1973], a sequence of n units is also considered. This paper is a direct
generalization of Thompson’s model. Characterization of optimal maintenance schedules and a dis-
cussion of replacement times are presented. Tapiero demonstrates that the decision to replace a unit
depends only on the relative value of the current unit and the subsequent unit. Thus a replacement is
effected when the subsequent unit becomes more profitable to operate. Tapiero refers to this condition
as “technical obsolescence.”

The above maintenance policies permitted a (piecewise) continuous rate of maintenance expendi-
ture through time. Consider now policies that apply a maintenance action only at discrete instants of
time; for example, replacing an item upon its reaching a certain age or upon its third breakdown. Such
policies can nonetheless be distinguished from those in Part 1 because the event precipitating the main-

tenance action is, in general, permitied to occur anywhere on a continuous time axis.

Age Dependent Replacement Models

In the earlier models of age replacement (cf., Barlow and Proschan, 1965) the replacement of the
unit at failure costs ¢, while replacement before failure costs ¢; < c2. It was shown that if F, the dis-
tribution of time-to-failure, had a strictly increasing failure rate then there existed a unique T* such
that expected cost-per-unit time was minimized if the unit was replaced at age T* or at failure, which-
ever occurred first.

Glasser [1967] has obtained solutions to the age replacement problem for three specific distribu-
tions, the truncated normal, the gamma, and the Weibull .

Fox [1966b] showed the optimality of an age replacement policy under a total discounted cost
criterion. For a continuous and strictly increasing hazard rate, he derives an integral equation which

can be solved for the optimal T*,
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Schaefer [1971] extends the standard age replacement model by including an age-dependent cost.
Such a cost may reflect the increasing burden of routine maintenance as the unit ages, its diminishing
productivity, or reduced salvage value for the unit at replacement due to depreciation. Specifically,

he expresses the total cost up to time ¢ as
) N(t)
C(t) = C]N1(t) -+ CzNz(t) + c3 [ 2 Z:! -+ (t - SN(I))O‘ :I,
i=1

where Ni(¢) is the number of replacements due to reaching the age replacement level T which have
occurred by time ¢, N, (t) is the number of replacements due to failure by time ¢, N (¢) =N, (t) + N2 (t),
cs > 0, Z;is min (X;, T) where X; would be the uninhibited life of the ith unit in the sequence of re-
placements and T is the fixed age at which replacement is to be made, Sy is the time of kth replacement,
and 0 < a < 1. The goal is to minimize the long run average cost-per-unit time. By an argument similar
to the one given in Chapter IV of Barlow and Proschan [1965], it can be shown that the optimum policy
is nonrandom if the failure distribution F is continuous. The case of an exponential life distribution
is analyzed in more detail.

R. Cleroux and M. Hanscom [1974] considered a very similar model. One of the differences is that
the age-dependent cost cs(ik) is incurred only at discrete times, the multiples of the positive constant
k. Moreover, cs(ik) need not be increasing in i. For F continuous and IFR, they show that the optimal
age replacement policy is nonrandom for an infinite time span. They then develop sufficient conditions
for the optimal replacement interval T* to be a finite number and to be restricted to a certain finite set.

The notion of an age-dependent cost structure is further generalized by M. R. Wolfe and R. Subra-
manian [1974]. If the nth unit is replaced at age T the total cost incurred over the life of that unit is

T
W, =J’ [Yi+ r(s)lds + K,
0

where Y, and K, are independent random variables forming renewal processes and r(-) is a differentia-
ble and strictly increasing function. K, is the cost of replacement and Y, + r(s) is the cost rate at time
s after the installation of the nth unit. There are no failures. In order to minimize the expected total
cost-per-unit time, the decisionmaker determines a critical threshold value ¢* such that when the cost
rate exceeds c* he replaces the unit. For a particular realization of Y, this occurs at age r~}c*—Y,).
Procedures for determining c* are given, and for r(t) linear, they derive an explicit solution.

An example where an optimum age replacement policy is found for a two-unit redundant system
is provided by T. Nakagawa and S. Osaki [1974]. While one of the identical units is in operation, the
other is in standby status, immune to all failure or aging effects. When the operating unit is sent to re-
pair, either for preventive maintenance (which renews the unit) or because of failure, the standby unit
takes over. If an operating unit should fail when the other unit is still at the repair facility, the system
becomes inoperative and the most recent failure must wait its turn for repair. Under the assumption that
a preventive maintenance activity for a unit entails less mean time in repair than does the repair of a
unit’s failure, it may be advisable to routinely schedule such preventive maintenance after a unit has
been in operation for time T. (If at that point in time the operating unit lacks a standby, preventive main-
tenance is delayed until the current repair work is completed.) Nakagawa and Osaki derive the optimal
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value for this 7 under the assumptions of increasing failure rate and with regard to maximizing the
long run proportién of time the system is operating. Their arguments utilize the regenerative properties
of the system at those epochs when the operating unit enters the repair facility and a standby unit is
available to take over.

With very expensive and complicated systems, the failure of a single component unit would not
very reasonably call for replacing the entire system. Instead the system could be restored to operation
by replacing the single failed unit. Because the great bulk of that system’s components were not re-
newed, the probability distribution for the system’s remaining life remains essentially what it was at the
instant before failure. That is, the failure and subsequent repair activity often do not affect the system’s
failure rate. The action of restoring a failed system to operation without affecting its failure rate is called
minimal repair. Barlow and Hunter [1960] incorporated this notion in their Policy Type II replacement
Model (Policy Type I was the simple age replacement model—replace at age T or failure, whichever
comes first). A Type II Policy assumes that the unit is replaced after functioning for T units (downtime
is not included in the 7). Any failures before that time would be dealt with by minimal repair. The opti-
mization of a Type II policy with instantaneous minimal repair is equivalent to the age replacement
model which incorporated an age-dependent cost of operating the unit. This age-dependent cost is the
expected cost of incurring the expense of minimal repair which depends on the unit’s age via the failure
rate. Bellman [1955] and Descamp [1965] applied dynamic programming to this problem. Sivazlian
[1973] generalized their work by permitting a positive downtime for the minimal repair following a
failure. This downtime is random with an arbitrary distribution. Using the functional equation technique
he derives an explicit expression for the long term total expected cost. Further, he derives necessary and
sufficient conditions for the optimal policy to be of the “Type II"’ form described above.

Makabe and Morimura [1963a, 1963b, 1965] and Morimura [1970] introduce a Policy of Type III
and Type III'. Under Policy Type III, the unit is replaced at the kth failure. The i1 previous failures
are corrected with minimal repair. A Policy Type III, Morimura feels, would be easier to implement in
many practical situations than a Type II policy.

An optimal policy of Type III is shown to exist for strictly IFR distributions, both with respect to
the criterion of expected fraction of time operating in [0, %), called limiting efficiency; and with respect
to what Makabe and Morimura [1963a, 1963b] call the maintenance cost rate which is defined to be

[cost-per-unit downtime] X [expected fraction of downtime]
+ [expected cost of all repairs and replacements during a unit time].

Also for distributions of strictly increasing failure rate, Morimura [1970] has shown the existence
of an optimal policy (with respect to limiting efficiency) for a larger class of policies, Type III' policies.
This class of policies is specified by two critical numbers ¢t* and k. All failures before the kth failure
are corrected only with minimal repair. If the kth failure occurs before an accumulated operating time
of t*, it is corrected by minimal repair and the next failure induces replacement. But if the kth failure
occurs after t*, it induces replacement of the unit. Clearly, if t* =0, this reduces to a policy of Type III.

Even if the replacement rule is purely according to age, it cannot always be assumed that the pro-
vision of replacement units is outside the purview of the decisionmaker. Falkner [1968] examines a
maintenance-inventory problem where there is a single unit which is operating and it fails according to
an IFR distribution F(-). When the unit reaches a certain age or when it fails, it is replaced by another
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new unit. The problem is to find both the initial number of spares, N, to produce and the age replace-
ment policies 7;(t), j=1,. . ., N+1, for the original new unit and the spares in order to minimize
the expected total operating cost of the system over a finite time interval [0, T]. This problem is formu-
lated as a dynamic program with nondecreasing costs for holding stock (h per unit), stockout penalty
(p per unit) and unscheduled replacement (r per unit). Under the assumption F(0) = 0 Falkner shows
that the optimal number of spares is bounded above by the greatest integer less than or equal to p/h,
where h > 0. With additional assumptions on F(-) he is able to characterize the cost structure and the
structure of the optimal age replacement policies.

In a later paper, Falkner [1969] specializes this model by removing the age replacement decision
process and is able to obtain stronger results on the optimal initial number of spares. He gives an

application using the negative exponential failure distribution.

Shock Models

In most maintenance models the time-to-failure random variable of a unit is considered intrinsic
to that unit. But it is possible to take a different view—regarding the unit as being subject to exterior
shocks, each of which damages (or causes wear) in such a way that the damage accumulated up to a
particular time defines the unit’s probability of failure at that time.

For example, A-Hameed and Proschan [1973] set up the shock process as a nonhomogeneous
Poisson process. This process, gombined with the probabilities P, that the unit will survive % shocks,
induces a time-to-failure distribution for the unit. Various properties of the distribution {P,} are
related to corresponding properties in the induced time-to-failure distribution. For example, if the former
distribution is IFR, so is the latter.

The question of optimal replacement rules in the context of a shock model has received attention
only very recently. Taylor [1973] considers a unit subject to a shock process where the decisionmaker
knows at all times the level of accumulated damage from the shocks. At the occurrence of a shock he
has the option of replacing the item at cost ¢,. If the item should fail, it must be replaced at cost c; > c;.
The shocks occur according to a Poisson process and each shock causes a random amount of damage
which accumulates additively. The device may fail only at the occurrence of a shock and then with a
probability which depends on the accumulated damage. If the probability of the device failing is an
increasing function of the accumulated damage, Taylor proves that the optimal replacement rule is of
the following control limit form: replace the device at failure or when accumulated damage first ex-
ceeds a critical control level Z*. He gives an equation which implicitly defines Z* in terms of the replace-
ment costs and other system parameters.

Richard Feldman [1974] and [1975] has permitted a more general stochastic process to represent
the incidence of damage to the unit. In particular, both the time to the next shock and the degree of
damage inflicted by that shock may depend on the current level of accumulated damage. He then de-

rives the optimal control limit rule for replacement.

Interacting Repair Activities Models

For a system composed of many units, the repair or replacement of one unit should sometimes be

considered in conjunction with what happens to the other units. Below are discussed four ways in which
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a maintenance policy either gives rise to, or exploits, interactions among the units of a system; namely,
opportunistic policies, cannibalization policies, multistage replacement policies, and variable repair rate
policies.

Opportunistic policies exploit economies of scale in the repair or replacement activity. That is,
two or more repair activities done concurrently may cost less than if they are done separately. So the
necessity of performing at least one repair might provide the economic justification to do several others
at the same time.

In cannibalization and multistage replacement models, units of the same type are utilized at dif-
ferent locations in the system. In response to a failure at one location, an identical unit may be trans-
ferred there from another location. In the multistage model, a new item must enter the system at some
location so that all units are restored to operation. Also in multistage models, the purpose of trans-
ferring units among locations is to locate those units, which because of their age are less likely to fail,
at those locations where failure is most costly. In the cannibalization model, on the other hand, no new
item enters the system when a transfer is made. Since the performance of the system depends on which
items are functioning, the purpose of the transfer is to provide the system with the best possible con-
figuration of functioning units.

The last type of interacting activities model to be discussed is a variable repair rate model; that is,
when the repair capacity of a system is limited and under the decisionmaker’s control, he may wish to
modify that capacity according to the number of items in a down state.

Some recent work has examined opportunistic repair in the context of the following system struc-
ture: There are two classes of components, 1 and 2. Class 1 contains M standby redundant components
so that upon the failure of the currently operating class-1 component, a standby takes over. When all
the class-1 standbys have failed, the system suffers catastrophic failure. The class-2 components, on
the other hand, form a series system; if one of them should fail, the system suffers a minor breakdown.
The operator always knows the state of the system.

When a minor breakdown occurs, there is the opportunity for opportunistic repair of those class-1
items which have failed. Kulshrestha [1968a] examined such a policy under the assumption that the
class-1 units fail according to a general distribution and the ith component of class-2 fails with the con-
stant rate \; (i=1, 2, . . ., N). The time to complete repairs follows a general distribution. He then
compares this policy to the corresponding nonopportunistic policy upon assuming the failure distribu-
tion of the class-1 units to be exponential.

Nakamichi, et al. [1974] examine the same system, but they require that any class-1 unit enter re-
pair upon its own failure —not waiting for either a minor or major system failure. They further assume
that in a major breakdown, as soon as the class-1 unit being serviced is repaired, it is reinstalled per-
mitting the system to operate again. And in a minor breakdown, as soon as the failed class-2 unit is re-
paired the system operates again. In the case where a class-2 unit fails when a class-1 unit is under re-
pair, two alternatives are examined. (1) It is repaired immediately, interrupting the repair of the class-1
unit and (2) it’s repair awaits the completion of the class-1 unit’s repair.

The notion of cannibalization stems from the situation where a working (operative) part in a system
may be removed from one location to replace a failed part in another location. This “cannibalization”
would be done in order to improve the operation of the system in some sense.

The foundations for the study of cannibalization were established by Hirsch, Meisner, and Boll
[1968]. Each part in the system is classified by type (1, . . ., N) and location (1, . . ., n). The set of
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parts is then partitioned into subsets such that any two parts in a subset are interchangeable, but parts
in different subsets are not. At any point in time, the status of all parts in their locations is given by a

binary n-tuple v=(vy, . . ., va),

where
0 implies part i has failed
vi=
1 implies part i is operating.

It is assumed that failures are detected immediately. The state of the system is given by a monotonic
increasing “structure” function ¢(v) which takes values from {0, 1, . . ., M}, where 0 is total system
failure and M is the best performance. In the event there are spare parts available and a failure occurs,
the failed part is immediately replaced by a spare part and the structure function is unchanged. How-
ever, if there are no spares, then part shortages exist and the problem is to find cannibalizations (trans-
formations that make feasible interchanges of parts) which maximize ¢ over all feasible interchanges.
Any cannibalization T which maximizes ¢ is called admissible. Under an assumption, known as the
“minimum condition,” on the composite transformation ¢ - T = ¢T, Hirsch, Meisner, and Boll ex-
plicitly characterize the state of the system for any admissible cannibalization T as a function of the
number of working parts of each type. The minimum condition asserts that ¢7{(v) is equal to the mini-
mum value of ¢T7{v) over i =1, . . ., N, where mi(v) is the operation of making all parts of type j
operable (for all j s i) while the status of parts of type i are held constant. Thus, in a sense, a single
part type determines the value of 7 for any v. Using the minimum condition and the explicit charac-
terization of the state of the system, ¢T, for any admissible T, they demonstrate the probability laws
of the state of the system under the additional assumptions that (i) the failure distributions of parts
of type i are identically distributed and do not depend on the location of the part for eachi=1, . . .,
N, and (ii) the lifetimes of all parts are independent random variables.

Simon [1970, 1972] generalizes the results of Hirsch, Meisner, and Boll by relaxing the restric-
tions on the interchangeability of parts. He classifies their interchangeability as closed, isolated,
andf/or communicating classes or parts. When the closure, isolation, or communication aspects are
relaxed, then the result of Hirsch, Meisner, and Boll that all admissible cannibalizations are equivalent
no longer holds. The question becomes: from the set of admissible policies for a given v, are there poli-
cies which are “better” than others? With the additional objective of maintaining the most flexibility
for future cannibalization, Simon [1970] demonstrates that certain admissible policies are uniformly
better than others. In another paper [1972] Simon establishes upper and lower bounds on ¢T under
his more general interchangeability rules and from these bounds he also develops bounds on the proba-
bility laws of the state of the system.

In a later work, Hochberg [1973] returns to the interchangeability classes of Hirsch, Meisner,
and Boll; however, rather than allowing each part at its location to occupy only one of two states—failed

or operating (i.e., 0-1), he assumes it can be in any one of £ states

{ai}k  where0=a; <...<a;<a; =1L

Each successively smaller state represents a decreasing level of performance. With this generalized
description of the status of each part at any point in time and the minimum condition, Hochberg (paral-
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leling the work of Hirsch, et al.) obtains a characterization of the state of the system oT (i.e., the per-
formance level over admissible cannibalizations) as a function of the number of working parts at each
level a;. He then develops the probability distribution of ¢T.

Implicit in the Hirsch, Meisner, and Boll, Simon, and Hochberg works is the assumption that all
parts start operating from time zero and are continuously subject to failure as long as the system oper-
ates. For many systems when a working part is in a major assembly that has failed for other reasons,
this working part does not experience any further deterioration or stress until it is cannibalized and
commences to operate again. Rolfe {1970] looked at this aspect of cannibalization. He considered a
group of S identical major assemblies which operate independently of each other. A major assembly
contains V distinct subassemblies (or parts). Each part is interchangeable with its corresponding part
in the other major assemblies, but with no other parts. All working assemblies operate continuously for
a period of time T before they are inspected. During this period of operation, parts may fail but the major
assemblies continue to function. Upon inspection, failed parts are immediately replaced from an initial
stock of spares until the stock is exhausted after which they are replaced by cannibalized parts from
other nonworking major assemblies. Assemblies containing any failed parts are not used in the next
period of operation. It is assumed that all parts fail independently while operating and that parts of type
i have failure distribution 1 — e*i#, With these assumptions the state vector of the stochastic process is
described by the number of working parts of each type n;(¢) available at the end of each operating per-
iod ¢. This stochastic process forms an SV+1 state, absorbing Markov chain where the absorbing state
is reached when n;(z) =0 for some i=1, 2, . . ., N. Rolfe develops the expected number of good major
assemblies at the end of any period and because of obvious computational difficulties when S and/or

N are large, he gives approximations and lower bounds for this expectation.

As mentioned before, multistage models differ from cannibalization models in that new items enter
the system to replace items transferred to other locations. Bartholomew [1963] examined the following
model: Suppose a system contains N units with independent but identically distributed times-to-failure.
These N units, although stochastically identical, are partitioned into two classes, class I and class II
(according, perhaps, to their function or location within the system). Upon the failure of any unit, it
must be replaced —at a cost &, for items in the first class and at cost k, for items in the second class.

The procedure Bartholomew analyzes, the so-called two-stage replacement strategy, is to replace
all failures that occur amongst items in class II with items in class I and to replace items in class
I, which either failed or were transferred to class II, with new items. There is a cost 3 for transferring
one item from class I to class II. Also, there is a purchase cost per item (which turns out to be ir-
relevant). It is assumed that replacing and transferring items takes no time.

The total number of unit failures remains unaffected by the above procedure. But the proportion
of failures in class I vis-a-vis class II may change. Bartholomew determines the following condition
under which a two-stage replacement strategy is better than simple replacement at failure.

If p is the transfer rate from class I to class II, n; is the number of units of class i, and u is the mean

time-to-failure of a unit; then the two-stage strategy is preferable if

nz(kz—k])#,_l_nlp(k2_ kl +ﬁ)>0'

The determination of p depends on whether an item from class I is selected for transfer to class I on a
random basis or by an oldest-first rule. Upon assuming 8=0, he derives an approximation for p for each
of these cases.
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One implication of his results is that for IFR time-to-failure distributions, k; > k» makes the two-
stage scheme preferable to simple replacement at failure. In the DFR case with k; < k,, the two-stage
scheme is also better.

Naik and Nair [1965a, 1965b] have generalized the above scheme to multistage replacement strate-
gies. Marathe and Nair [1966b] investigate multistage block replacement strategies. This latter model

’

requires the assumption that there is a reserve of units, the “interstage inventory,” attached to each
class.

In his model of a variable repair rate problem, Crabill [1974] considers a collection of M+ R units.
The state of the system, i(i=1, . . ., M+R), designates the number of these units in operating
condition. A cost-per-unit time of C(i) is charged when in state i. Min(i, M) of the i units in operating
condition are actually in production, and only these are subject to failure —at the constant hazard rate
A. When a unit fails, it enters the single-server repair facility (or its queue). On the basis of the current
state of the system, the decisionmaker selects action k(k=1, . . ., K) which provides the repair facility
with an exponential repair rate u; at per-unit-time cost nx. The object is to minimize long run cost-per-
unit time. Using Markov decision theory, Crabill presents sufficient conditions for particular service
rates to be eliminated from consideration regardless of state. Furthermore, he provides sufficient con-
ditions ensuring that the optimal service rate is a nonincreasing function of the system’s state.

Incomplete Information

As with discrete time models, the decisionmaker may lack complete information about any of the
following: the current state of the system (unless he performs an inspection), the probability law govern-
ing the system’s stochastic behavior (e.g., the time-to-failure distribution of a single unit), and the cost
implications of particular operating policies.

When the current state of the system is not known, the problem arises of jointly determining a re-
placement and inspection policy. In a model by Savage [1962] the state of the unit moves from x=0
(a new unit) to x=4k, k=1, 2, . . ., according to a Poisson process. In state x, income is earned at the
rate i (x). At a cost L, the decisionmaker can inspect the unit and thereby learn its true state. After
each inspection, he elects either to schedule another inspection T (x) time units into the future and not
replace the unit at present, or to replace the unit (thus returning to x=0), with the next inspection 7'(0)
time units into the future. Replacement requires m units of time at a cost of ¢ per unit.

The objective of the decisionmaker is to minimize the long run average cost-per-unit time by
specifying the ‘“how-long-to-next-inspection” function T'(x) and the set W of all states which will
call for another inspection rather than replacement. Savage shows that if i(x) is nonincreasing, then
T(x) is strictly decreasing for x in W and bounds on 7(x) are derived. More explicit results are derived
for two special cases of i(x).

Antelman and Savage [1965] consider a parallel problem, namely, the process governing the change
of states is Brownian Motion rather than a Poisson process. In particular, it is then possible to move to
an improved state without a replacement.

These models were generalized by Chitgopekar [1974]. He considers a larger (but still finite)
action space which includes the class of all random time-to-inspection policies while permitting a
more general stochastic process to govern the change of states. He shows that the optimal policy

is nonrandom.
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Keller [1974] utilized optimal control theory for an approximate method of selecting that inspection
schedule, for a unit subject to failure, which will minimize cost until the detection of the first failure.
Each inspection has cost L and the cost H (¢) is incurred when detection of the failure by an inspection
occurs time ¢ after failure. This problem is placed in the control theory framework by assuming that
the tests are so frequent that they can be described by a smooth density n (¢) which denotes the number
of checks per unit time. In other words, at time ¢, the tests are scheduled 1/n (t) units of time apart.
He then derives an integral equation for n(t) and uses this solution to minimize the expected cost
up to detection of the first failure.

Several authors consider the problem of incomplete information concerning the time-to-failure
distribution governing the system. A single unit is subject to random failure which can be detected with
probability p by an inspection. Each inspection has cost L and v * tis the cost of a failure which remains
undetected for a duration ¢. The problem is to schedule inspections so as to minimize these two costs
over the period the unit remains installed which can be no longer than the time when failure is first
discovered by an inspection.

Derman [1961] has found a minimax optimal solution to this problem when the time-to-failure distri-
bution is totally unknown. However, it was necessary to assume a finite time horizon T i.e., the cost
accounting stops at either the first inspection to detect failure or at time T, whichever happens first.
The reason for this is that for any possible inspection schedule there exists a distribution which would
induce an arbitrarily high expected cost during an infinite time horizon. Hence, a minimax solution
would not then exist. McCall [1965] gives Derman’s results.

Roeloffs [1963, 1967] (letting Derman’s probability of detection, p, equal one), found the minimax
inspection schedule when a single percentile is all that is known of the time-to-failure distribution.
That is, ¥ and 7 are known where F (y) = 7. He finds the minimax schedule (%1, %2, . . ., Xm+n),
where 0 <% <...<xn <y < Xmi1 <...<2xn+n<T,and the corresponding expected cost for a cost
structure identical to Derman’s. Naturally, the expected costs are less than Derman’s due to the addi-
tional information. It is interesting to note that the form of his solution for selecting the inspection points
after y, is identical to that of Derman. That is to say, the information contained in the percentile has
no bearing in carrying out a minimax surveillance after that percentile is crossed. Roeloffs also finds
the optimal inspection schedule to minimize expected cost-per-unit time (rather than per period of
installation). However, in doing this, he sets T = y. Kander and Raviv [1974] utilize dynamic pro-
gramming to model this problem for an arbitrary T.

Combining the unknown time-to-failure distribution with the traditional age replacement problem
(cost ¢ for replacement at failure, cost ¢; < c; for scheduled replacement), Fox [1967] used a Bayesian
approach. As the realizations of times-to-failure or scheduled replacements are progressively observed,
the decisionmaker learns more about the underlying time-to-failure distribution. Using the Weibull
time-to-failure distribution with the gamma a priori distribution for the parameter, his objective is to
minimize the long run expected discounted cost. He derives certain asymptotic optimality conditions

on the stationary policy for an arbitrary fixed number of replacements.
In actual maintainability applications, the exact form of the function relating expected cost to the

control variable is often not known. In such cases it may be appropriate to precede any attempt at
optimization by an experiment which “samples” the resultant costs for various values of the control
variable. Then, using least-square techniques, estimate the shape of the actual cost function —thereby

permitting an inference as to the optimal value for the control variable.
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Such a model was proposed by Dean and Marks [1965] and analyzed by Elandt-Johnson [1967].
If routine maintenance is provided a machine (or vehicle fleet) with frequency x per year, the average
resulting cost is C(x) = bx + D (x) where b is the average cost of a scheduled maintenance and D (x)
is the unknown expected cost-per-unit time of providing emergency nonscheduled maintenance. Pre-
sumably, D(x) is decreasing. C (x) is assumed to possess an absolute minimum, say at x. For the

specific form

D(x)=E [ 3 A;\.x"+®] :
£=0
where © is a random variable with distribution N(0, o2) and the Ax’s are not known, least-square
estimates (ax) are obtained for the coefficients (4 ). By those estimated coefficients, the estimated
total cost function can be minimized for %,.

Elandt-Johnson [1967] provides a normal distribution which approximates the true distribution
of the statistic £o. She further shows that E [C(xe) — C (%) ] depends on the degree and coefficients of
the polynomial

A/l-x".
k=1

3. REMARKS

The foregoing survey has been primarily expository rather than critical. This approach was taken
in order to be able to include most available works on maintainability in a reasonably sized monograph.
It was felt that the more papers included, the more useful it would be to a general reader, practitioner,
or research scholar or teacher interested in entering the area.

Now that the reader has seen what has been accomplished in maintainability, the question be-
comes, “what new work needs to be undertaken?”’

In the case of deteriorating single-unit inspection, repair and/or replacement models, there have
been many generalizations of the basic Derman models. For example, the state space has been allowed
to become nondiscrete, the costs a nonstationary random variable and the sojourn time in a state a
random variable. It would appear that most future research on these types of models would be to add
more system constraints and to develop efficient algorithms to solve the large linear, nonlinear or
dynamic programs involved, rather than to provide additional refinements to the assumptions of the
basic model. Such efforts will tend to be directed toward particular problems in the sense that the
models will become more specialized and tailored to particular situations. Similar comments hold for
the area of age-dependent replacement models and the maintenance-salvage models.

The area requiring the most future work is the study of multiechelon multipart interaction mainte-
nance models. This area is perhaps the most difficult to handle mathematically especially when the
interactions occur because of stochastic dependence among the parts. In many such cases, very little
can be said about the operating characteristic; or optimal solutions of the models. Often the only way
these problems can be handled is by simulation; consequently, few general results will be obtained in
the near future. In the long run, however, work will be initiated to handle more complex kinds of sto-

chastic dependence, where the dependence is restrictively proscribed.
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Multipart, multiechelon models which involve economic dependencies are often less difficult to
model and solve than the stochastic dependencies. Frequently, as in the inventory-maintenance
models, large mathematical programs result and the question becomes how to solve them rather than
how to model or describe the problem. Future research will see an increase in the general applica-
bility of these models. Of course, making them more general and/or realistic usually removes the opti-
mality of simple, elegant policies and one is dependent on large computers to solve the complicated
mathematical programs involved. Fortunately, many decisionmakers in the military branches, other
governmental agencies, industry, and private nonprofit organizations now possess the sophistication
to use more complicated techniques and approaches. The phenomenal progress of space age technology
is to be thanked for this development, as well as the need to maintain more increasingly complex
devices.

Perhaps the most future research will go into the development of new models with different con-
straints that are needed to handle maintenance problems in health, ecology, and the environment.
With the advent of a national health insurance program, there will be an increased effort nationwide
on preventive medicine in order to cut costs and to extend the lifetimes of previously disadvantaged
groups. Similarly, with the depletion of many of our plant and animal resources, new concepts of
maintainability must be developed to restore balances for future populations. Finally, there are many
environmental problems that require inspection and corrective action. Models for all of these problems
will be built. Some general theory for these models will be established and large scale versions of the

problems will be solved.
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