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ABSTRACT

This paper considers the problem of computing optimal ordering policies for a product
that has a life of exactly two periods when demand is random. Initially costs are charged
against runouts (stockouts) and outdating (perishing). By charging outdating costs according
to the expected amount of outdating one period into the future, a feasible one period model
is constructed. The central theorem deals with the n-stage dynamic problem and demon-
strates the appropriate cost functions are convex in the decision variable and also provides
bounds on certain derivatives. The model is then generalized to include ordering and holding
costs. The paper is concluded with a discussion of the infinite horizon problem.

INTRODUCTION

Although some researchers feel that the single product inventory problem has been completely
solved, there is one very important aspect to the problem which has received little attention in the
literature; specifically, optimal ordering policies for a perishable product. Veinott [8] considered a
somewhat restricted class of deterministic models in his dissertation. Bulinskaya [2] considered the
case where the product perished at the end of the period in which it was ordered so that he was able
to utilize the standard single product model. The most salient analysis done on this problem was that
of Van Zyl [7]. The approach taken by Van Zyl was to charge only ordering and runout costs. Because
of outdating, the average inventory entering each period would be less so that orders would be larger,
thus in some sense accounting for perishing costs. Our approach will be to charge directly a cost for
outdating so that reasonable one period results can be obtained and the cost of outdating can be made
explicit.

Most of the effort involving a perishable product has been directed towards optimal issuing policies;
however, from an applications point of view, the ordering problem is just as important. The farmer
with the facility for stocking unsold produce is essentially faced with an ordering problem when deciding
how much to plant. Hospitals that can order blood from a central blood bank face a similar problem.
In addition, one can find applications of this problem to chemicals, radioactive elements, other aspects

of the food processing industry, drugs, etc.

*This research was supported by the National Science Foundation under Grant GK-24792.
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208 S. NAHMIAS AND W. P. PIERSKALLA

Our motivation in this paper is to develop a model for describing ordering policies for the product
that perishes in two periods in the hope of introducing a structure that can be extended to solve the
general problem. Wherever ordering occurs exactly twice during the product’s useful life, this model
will be applicable.

In the next section, the nature of the model is described and explicit statements of the assumptions
are given. These assumptions are discussed in some detail and the probabilistic processes describing
the perishability of the product are given.

In the third section, the existence of optimal ordering policies is established and many of its
properties are demonstrated. Specialized results for the backlog case and the lost sales case are
given as corollaries to the main theorems.

The fourth section is devoted to generalizing the results obtained to include ordering and holding
costs as well. The introduction of a salvage value at the end of the horizon induces a type of stationarity
on the model which is analogous to the single critical number obtained in Veinott [9].

In the last section, the results are extended to the discounted infinite horizon model.

THE NATURE OF THE MODEL-THE ONE PERIOD PROBLEM

Initially we will make the following assumptions. In the discussion which follows these assumptions,
it will be pointed out which assumptions may be relaxed and which cannot be.
(1) All orders are placed at the start of the period and received instantaneously.
(2) All stock arrives new.
(3) Demands in each period are independent identically distributed nonnegative random variables
with distribution function F and density f.
~ (4) Inventory is depleted according to a FIFO policy; that is, oldest first.
(5) Costs are charged linearly against
(a) unsatisfied demand (runouts) at r per unit
(b) deterioration (outdates) at @ per unit.
(6) If the product has not been depleted by the end of two periods then it deteriorates and must
be discarded at a cost given in 5(b) above.
(7) Unsatisfied demand is backlogged.

Discussion of the Assumptions

(1) This assumption is standard for models which don’t allow a delivery lag.

(2) This assumption is an important assumption for our model. As we will see, there is very little
one can say when the stock that arrives is of mixed age.

(3) The fact that the demands are identically distributed is not an important assumption in the
finite horizon problem. The assumption is made for notational convenience. It will be demonstrated that
our results apply to nonstationary demand as well.

(4) This assumption is actually a consequence of the model and can easily be shown to be the
optimal depletion policy. More general results of this type can be found in Pierskalla and Roach [5].

(5) We have assumed only two costs for the following reason: Consideration of a deterioration
cost greatly complicates the model and for most perishable product problems deterioration and
shortage costs are more important factors than holding and ordering costs. Again, though, this restric-
tion is not crucial to the nature of the model and a more general cost structure will be considered.

(6) This assumption is the basic deterioration assumption.
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(7) This assumption is not a crucial assumption. The model will also be applicable for the lost
demand case, as will be indicated.

The state variable will be called x and will represent the amount of one period old product being
brought into the period. The decision variable y represents the amount of new product being ordered.
The first problem that must be considered is how to charge the costs. The obvious solution is charge
costs against the expected cost incurred in the period so that

E [Runouts] =rE[D— (x+ y)]* = rfm (t— (x+ ¥))dF(¢)

T+y

E [Outdates]r= O0E[x—D]*+=#6 fr (x ~ t)dF (¢),

where f+ = max (f, 0) and F is the demand distribution. Letting
Loy =r [ - G+01 @0 +0[ -0 dF,
x+y 0

we see that this method has the property that y does not appear in the outdating cost, so that the charge
for out-dating is actually independent of our order. Hence the value of y that minimizes L(x, y) for any
value of x is y =+ oo,

The direct approach to charging outdates leads to somewhat undesirable first period results so
that we must develop a different method for charging the outdating cost.

Although there are undoubtedly many ways to charge the outdate cost, e.g., we could start the
process with two periods to go, instead we will charge this cost to what the expected outdates will be
after one period into the future. In this way, we will actually be charging the outdating cost against
the expected outdating of the present order y. This approach has several advantages: first, it is reason-
able for a real problem since the future demands are not known with certainty; second, it is easily
generalizable to the case where a product perishes in m periods (rather than just two); third, it leads
to a mathematically sensible one period problem as opposed to an approach which charges the outdate
“cost on the expected outdates E[x — D]+ at the end of one period.

Let D,, D; represent random variables denoting demands in two successive periods. Then the
total amount of outdating of our present order will be

Z={y—[D:+ (D, —2)*]}*.

This can be seen most easily by considering the two possibilities D; < x and D, > x separately. If
D, < x, then the demand in the first period is satisfied totally by one period old stock (x) and x — D,
outdates, so that only the demand D; depletes from y, and when D; = y there will be no outdating,
and when D; < y, y — D, will outdate. In the other case, when D; > x, the total demand depleting
from y will be Dy + D; — x.

THEOREM 1: The random variable Z has distribution function H given by

Hz.y(t)=1—fu_'F(u+x)f(y—t—u)du t=0

=0 t<0
and
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E@=["Fu+x) Fly—uyu.
o N .
PROOF: We wish to compute
P{(y=[D:+ (D1 =x)*])* < ¢} = P{y— (D2 + (D1 —x)*) < £}

fort=20,t<y.

P{y~[D:+ (D1 —x)*] <t} =P{y— (D:+ (D, —x)*) st N D, < z}
+P{y— (D:+ (D\—x)*) <t N D, > x}

=P{D:=2y—1t} -P{Di<x}+P{Dy+D:=2y+x—1t,D >x}
= [I—F(y—t)]F(x)-Pf” [1-F(y—t+x—u)}f(u)du

=F(x) =F(y—t)F (x) + 1 - F(x))

- f""" F(y—t+x—u)f(u)du,

where
y~t+ax v-t
f F(y—t+x-—u)f(u)du=f F(y—t—v)f(v+ x)dv
vt .
=-—F(y—-t)F(x)+J' F(v+2x)f(y—1t—v)dv.

The last equality results from a change of orders of integration. Hence, substituting above we gei

» if t>y
P{y—[D:+ (D, —x)*]* <1¢} = l—f" Fu+x)f(y—t—u)du O=st:s<y
0 .

0 t<0.
Since Z is a nonnegative random v#riable it follows that
E@) = [0 Hey®de= [* [ Flat 0y =t = u)du d
o o Jo

= L” j: F(u+ x)f(v—u)du dv
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¥f”IuF(u+x)f(v—u)dv du=[”F(u+x)F(y—u)du. : Q,E.D.
L I : 1] . ' .
By utilizing this result, our one period expectéd cdst function becomes

Ly =r[

[t = (x+y)]1f(t)de + Ova(t+x)F(y—t)dt.
T+y ]

Before examining the structure we’ve generated in detail, one can note a number of interesting
properties immediately. Notice that L(x, y) is not a function of x+ y as it is in the conventional models;
the outdating cost differentiates between the inventory brought into the period and that ordered at
the beginning of the period. Because of this property, the significant work on myopic policies by
Veinott [8] and Bessler and Veinott [1] will not be applicable nor will single critical numbers or
(s, S) policies be optimal.

THE DYNAMIC PROBLEM-FINITE HORIZON
The principle of optimality for this model takes the following form:

Calx) = jaf (LG ) + @ [ Cacaly— (e = 2) ) e)de},

where Cx(x) has the usual interpretation of being the minimum expected cost given we have x dn
hand and there are n periods remaining in the horizon with Co(x) =0 for all x. Note that we are dis-
counting costs (0 < a < 1). The form of the transfer function s(x, y, t) =y— (t—x) * is a consequence
of assumptions that we deplete according to a FIFO policy and demand is backlogged.

Define Bu(x, y) =L(x, y) + « ‘L‘ Cu-r(y— (t —x)*)f(t)dt and let ya(x) be such that

Ca(x) = Ba(x, ya(x)) = min {Ba(x, y)}.

y=0

Then the purpose of the next theorem will be to demonstrate the existence of yx(x) and to enumerate
some of its properties. The results obtained will be applicable to the finite horizon problem where the
length of the horizon is arbitrary. Apologies are in order for the length of the theorem, but the induction
argument requires all nine steps to be proven simultaneously.

THEOREM 2: Assuming that (a) the demand density f(x) is continuous for all x > 0, (b) f(x) =0
for all x < 0, and (c) f(x) > O for x > 0. We then have '

(1) Ba(x, y) is convex in y for all fixed x and is strictly convex in y for a fixed x in a neighborhood
of the global minimum.

(@) tim 2222 < 0 and lim Bal2e2) > 0 forallx.

y—oo y=—=>+o

(3) There is a unique yx(x) given by the solution to QE'_'(%T’_Z)_ =0, and ya(x) €(0, »). In addition

dya(x)
dx

=y, (x) exists and is continuous for all x.

4) C,(x)=—aC,_,(ya(x))F(x) =0 F (ya(x)) F(x).
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(5) —1=y,(x) <0. In addition y,(x) >—1if x > 0.

(6) Cn(x) is twice continuously differentiable over (— «, 0) and (0, ®). C}(x) is continuous at
x=0 whenever f(x) is continuous at x=0.

(7) 6f(x) +aC)(x) = Ofor all x.

(8) —0F(x) =C,(x) <0 for all x and C},(x) =0 for all x < 0. In addition C} (x) < 0 for xe
(0,+>) andn = 1.

9 ,l_i.Twy"(x) =0 and ,li"lmc;(") =0.

Before proving this theorem, it is useful to describe what some of these results mean. Parts (8)
and (9) tell us that the optimal cost function, C,(x), is constant for x = 0 and then decreases to zero
as x —> -+ . Similarly part (5) indicates the optimal ordering function, y,(x), is decreasing in x, but at
a rate greater than —1 and by part (9), this function also asymptotically approaches zero as x—>+x.

PROOF: The proof is by induction.

Assume the theorem is true for1,2, . . ., n—1.

The case of n=1 follows in the same manner as when n is arbitrary with Co = 0, so that the logic
need not be repeated.

8)) B(x, y)=rf;v [t—(x+y)]f(0)dt+ OLHF(x+t)F(y——t)dt+aLw Coaa(y—(t—x)*) f(t)d:

=rfﬂ° t—(x+y)1f(t)dt+ 0 J‘VF(x-i-t)F(y—t)dt+aC,._1(y)F(x)
r+y 0

+af°° Co-r(x+y—1) f(t)dt

aB"(x9 y)=

=== F(x+y))+ 9LVF(x-i-y—t)f(t)dt+aC;_l(y)F(x)

r+y
ra [ G ary—ns0a,

since by the inductive assumption on (6) and 8) C,_, exists and C,_, (u) =0 for all u< 0.

@ @%%y—)=rf(x+y)+0F(x)f(y)+0 [t y-nroa

+aCl_ (9)F(x) +a f Ve (wty—1)fle)de

=rflx+y)+F(x)[6f(y) +aC;_, (¥)]

+j“" [0f(x+y—t)+aC"_ (x+y~1)]f(t)ds

=0,

since by the inductive assumptions on (6) and (7) we have C’, _, exists and 6f(u) + C% _1(u) = O for all u.
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Note that in the case where f has a jump at 0, the differentiation under the integral sign in the third
and fifth terms above would normally not be permitted. However, since the jumps occur at the end-
points of the range of integration and f and C,” are bounded the operation is valid. (See Van Zyl [7] for
a lemma which establishes this.)

},ﬂ'&%y_g lim, {—r[l ~F(x+y)]+ ofo" F(x+y—¢) f(t)dt
+aC_ (n)F(x)+a f e (aty—1) f(t)dt}

=—r[1-F(x)]<0 since F(x) <1,

and by the inductive assumptions on (6) and (8) C,_, is continuous and C,_,(0) =0,

Bn(lx, ) _, 1 vy ., _
g L =0—a lip [TV Oty -0 S0

by the inductive assumption on (9)

> 6+a yh;rgf“"— OF (x+y—t) f(t)dt,

by the inductive assumption on (8)

>6—af }i_glf“yf(t)dt= 68— af(1—F(x)) = 0.

9Bn(x, y)

Bn(x, ¥)
d dy

Thus B.(x, y) is convex and yll_n'}. <0 and ,hl‘l >0 imply ya(x)e(0, + =), where

ya(x) solves 8______B,.((3x, Yo,

aBﬂ(xs Y)

=0 we would obtain
dy

Now if x < 0, then we must have yx(x) > | x| or else solving

~r[1-F(x+yn(x))]+ BL”"(E)F(x+ ya(x) ~t) f(t)dt + aCpn_1(ya(x))F (x)

x+ yulx)
+°‘I Cri(x+yalx) ~1) f(t)de=—r #0,

which is impossible. Hence for all x, f(x+ ya(x)) > 0 and we see that in a neighborhood of y.(x)

PBu(x,y)

dy? 0

or B(x, y) is strictly convex in y in a neighborhood of y.(x). Thus y,(x) is the unique global mini-
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0B, (x,

mum of B.(x, y). Define Tu(x, y) = 3y 9B (x, 7) for all (x, y) eE2. Then

(3) Talx, ) ==rl1=F (x+0)]1+6 ["Fay=0)f(0)di+ aC}_, ()F (2)

+a f""c;_l(x+ y—t)f(t)de

is continuously differentiable on E? by the inductive assumption on (6). Now (x, yn(x)) uniquely
satisfies Tn(x, ya(x)) =0 and

3Ta(x, ya(x)) _ 3®Ba (%, y2(x))
oy ay®

> 0.

Hence by the implicit function theorem y.(x) is continuously differentiable in a neighborhood of x.
But x was arbitrary in E! hence ya(x) is continuously differentiable for all x.

4) Ca(x) =Ba(x, yn(x))
dCn(x) = 0Bn(x, y) BB (x, ¥) ot
dx ox v= v,.(.r) oy =y, ya(x)
= Bnlz. ) since Ba(x, y) =0.
ax y=yp(x) dy Y=y p(x)

Since Ba(x, yn(x)) =L(x, ya(x)) + a J;“ Cun-1[yn(x) — (£ —x)*]f(¢)dt it follows that

dCn(x) _ aL(x9 y)
dx ox

+aCp- l(y)f(x)—aC,. 1(y)f(x)+af Co_(x+y—t)f(t)dt| y=yu»)

—— [ =F(x+yn(x))] + 6 L I e x+ yalx) — )F (e de

.r+yn(z')
ta f C!_ (x+ ya(x) — ) f(t)de

r

by inductive assumption on (8).
But ya(x) satisfies

—r[1=F(x+ya(2))]+0 ]"" F(x+ ya(x) — ) £ (¢)dt+ aC,_, (yn(x))F (x)
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T+y,(x)
+af C,_(x+yn(x)—t) f(t)dt=0.

x

Substituting, we obtain

LD [ 1+ 1(0) ~OF () ~F (a4 3a(2) =0 £ ()1t = aC () F ()

=—0F (yn(x))F (x) —aC;_, (yn(x) ) F (x).
Since y,(x) exists and since Tn(x, yn(x)) =0 for all x then

(5) aT,.(x, )’n(x)) =aan(x, yn(x))
dx ox dy

=rf(x+ya(x)) [1 +5,(x) ]+ Oy (2)F (x) f (yn(x))

~6 ﬁ""’f(xw..(x)—z) [+ ,(x) )£ (1) de+ aCl_ (ya(x)) Y2 (x)F (x)

>

+a f T Gt (@) —) L R 1S (O,

by the inductive assumptions on (6) and (8) C);_, exists and C;,_, (0) = 0. Now since ya(x) > |x| if x <0
then f(x+ ya(x)) > Ofor all x; thus we can solve for ¥, (x) to obtain

N(x, yn(x))

ya(x)= D(x. yu(x)) for all x,

where

T+yp(x)
N(x,yn(x))=—rf(x+yn(x))+ft " 10F (x+ ya(x) — £) + aCl(x+ ya(x) — 1)1 f (1) de

< 0 byinductive assumption on (7).
Also

D(x, ya(x)) = rf (x+ ya(2)) + OF () f (ya(x)) + f T Lof (2 yalx) — 1)

+aCh_(x+ya(x) —t)1f(t)dt+ F (x) [0f (ya(x)) + aC;_,(yn(x))]

> 0 by inductive assumption on (7).

Also since — N(x, yn(x)) < D(x, yn(x)) it follows that —1 < y/(x) < 0. Notice that if x > 0 the
inequality is strict in both directions. We have that y}(x) will exist and will be continuous by the in-

ductive assumption on (6) (namely that C’_, exists and is continuous) so that

6 Cix) =< [~ aC)_, (rax) F (=) = OF (7a(x) F ()]
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=—aCh_ (y2(x))yn(2)F (x) — aC},_,(yn(x) ) f(x)
—0f (yn(x)) ¥ (2)F (x) = OF (yn(x)) f(x)

is continuous.

() 6f(x) +aCh(x) =0f(x)[1 = oF (ya(x))] — a2C,,_, (yn(x)) f(x)
—yn(x)aF (x) [0f (ya(x)) + aC;_, (¥a(x))]

=0
since each term is nonnegative by the inductive assumptions on (7) and (8) and since ¥y (x) <0,
(8) Chlx)=—aC,_, (?'n(x))F(x) — OF (yn(x))F (x) = — OF (ya(x) )F (x)
since C,_,(x) <0, and

C.(x) <+ a0 F(yn(x))F(x) — O0F (ya(x))F(x) <0

since C;_,(x) =2 —0F(x).
Hence
—0F(x) <Cl(x) <O for all x.

Assume to the contrary that Lim ya(x) =w > 0. (We know the limit exists since yn(x) is strictly de-
creasing and bounded below by zero.) Now we have for all x

©) 0=l {~rl1—FG+y@)]+o " F et yax) ~ 0 f(0)de

T+ yu(x)
+aC) (n@IF@+a [T € (et yale) - 0s()di}

Ypl T+ Y u(x)
[+]

(@)
=aC;_,(w)+£i_12{+0f F(x+ ya(x) — ) f(t)dt +af C;_l(x+y,,(x)-t)f(t)dt}

2(x) T+ yalx)
= oC),_, (w) +6 lim f” F(x)f(t)dt + e lim inf C,_, (u) f " feyde
0 X ue T

since F(x) < F (x+ yn(x) —t) for all te[0, ya(x)].
By inductive assumptions (6), (8), and (9), since C._, is continuous on E! and lim C,_,(x)=0 and

Ch_1(x) =O0for all x < O then irz‘f Chi1(x) =K >-—o». Thus
TeEr

lim inf C',_, () f’”""" f)de=Klim {F (x+ya(x)) ~F (x)} =0.

o oy

We see then from above that 4
0= aCy_(w) + 6F (w) = — afF (yn-1(w)) F(w) + 6F (w) = OF (w) [1 —oF (yu_1(w) )]>0
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via the inductive assumption on (8), and the fact that w> 0. Hence we achieve an impossibility,
so it must be the case that

lim yu(x) =0.
Now
lim C1(x) =lim [~ aC}-1(yn(x)) F(x) — 6F (ya(x)) F(x)]
=—aC}_,(0) — 6F (0) =0. Q.E.D.

There are some very novel features of this model that are apparent from the proof. In particular,
in the standard multi-period dynamic model for a nonperishable product the method of demonstrating
convexity is quite different. One shows inductively that C, is convex in its argument, which implies that

fw Cn [s (2, t)] f(t)dt is convex so that oz—x) +L(z) + fw Ca (s (z,t)) f(t)dt is convex, where L(z)
i: the expected holding and shortage costs when z is the inv:zntory on hand after ordering. In our model
through, C,, in general, will not be convex so that it was necessary to use different methods to demon-
strate the convexity of G,.

The following corollary shows that when demand is backlogged, the optimal order quantity is a
function of only a single critical number.

COROLLARY 1: If x <0, then yu(x) =y.(0) + |x].

PROOF: We know yn(x) satisfies

nlx) ™
—r[1—=F(x+ya(x))] +0J;v F(x+ ya(x) —t)f(t)dt+ « L Cr_(yn(x) — (t—x)*)f(t)dt=0.
For x < 0 this becomes
yn(.l‘)hl' ]
—r(1—F(x+ya(x)))+0 J; F(x+yu(x) —t)f(t)dt+ a J; C!_ (ya(x) +x—2t)f(t)dt=0.

Assume the solution is ya(x) =¥n(0) + |x|=yn(0) —x. Then by substituting in the above proof—

yn(0) ©
—rl1=FnO)1+6 [ Fn(0) —0f0di+a [ €m0 01100t

But this is precisely the defining relationship for y(0). Hence the substitution must necessarily have
been valid. Q.E.D.
In the following corollaries we will indicate what generalizations apply.
COROLLARY 2: If the demand is nonstationary (where the indexing corresponds to the indexing
of the functions C,) and each of the demand densities satisfies the assumptions of Theorem 2, then
all of the results of Theorem 2 and Corollary 1 remain valid with the following alterations:
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(a) The recursive equations take the form

Cu(x) = min {Ln(x, N +a f " Cat(y— (t—x)+)fn(t)d¢},
y»0 1]

where

® n(z)
La(x, y)=—er [t—(x+y)]f,.(t)dt+0J; Fn(t+x)Fa 1 (y—t)dt.

(b) Part (4) of the theorem becomes
C.(x) =—aC,_,(ya(x))Fn(x) = OF u_1(ya(x) ) Fn(x).
(c) Part (7) of the theorem becomes
Ofa(x) +aC)'(x) =0  for all x.
(d) Part (8) of the theorem becomes

— OF u_1(yn(x))Fn(x) <C,n(x) <0.
PROOF: (a) The functional equation form is well known. The form for the one period cost Lx(x, ¥)

is actually a consequence of Theorem 1. If we let the random variables be indexed backwards in accord-
ance with the functional equations then from Theorem 1:

He, y(t)=P{(y— [Dn-1+ (Dx—x)*]) <1t}

y-t
_{l-fo Fu(t+x) fai(y—1t)dt t>0
0 t<0,

so that E [outdates]=IyF,.(t+ x)Fu-y(y—t)dt.
‘ [

(b) Clearly (1)~(3) in Theorem 2 will not be affected by indexing the demands as long as each of the
distributions, F, satisfies the assumptions of the theorem. To show (4) is true:

Cn(x)=Lu(x, yx(x))+a j:’ Caoi(yn(x) — (£ —2x)*) fa(t)dt,

dCa(x) _ dLa(x, 7a(x)) . J'zw,,(z)

dx dx Croi(x+ya(x) —t) fu(t)de,

where yx(x) satisfies
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—r[1=Fu(x+ya(2))]+6 f " Fu(t+2) fact (ya(2) = )de + aCiy (ya(x) ) Fa(2)
z+y (x)
+aL - Cra(x+ ya(x) —t) fu(t)de =0.

Since

dLa(x, ya () :
_—“’(xdf @) (1 Fa(at ya(2)) ]+ 6 f Salt+2) Fuoa(ya(2) —t)dt,

it follows that

dCd.ix) =0 J;v"(ar) [fa(t+ %) Faci (yn(x) —t) = Fa(t+x) fac1 (yn(x) — t) ]dt — aCy(ya(x) ) Fa(x)

=—aC; (ya(x) ) Fa(x) —0F u-y (ya(x) ) Fu(x)
so that (4) holds; (5) and (6) will remain valid in spite of the nonstationary demands. For (7) we will get

aC & (x) + 6fa(x) = 0fa(x) [1 — aF -1 (ya(x)) ] —a*Cy_, [yn(x) 1 fu(x)

—ay,(x) Fa(%) [0fa-1(n(x)) +aC;_, (ya(x))] 0.

Again the first term is positive; C,_, () < 0 for all u so that the second term is positive, and the
inductive assumption on (7) vields the positivity of the last term.
(d) The generalization follows directly from (b) above.
The remaining sections of Theorem 2 remain valid under nonstationary demand.
Q.E.D.
Because of our method of projecting the outdate costs into the future, we must assume that the
demand distribution, Fo, corresponding to the period after the end of the horizon is known (recall that
periods are numbered backwards).
COROLLARY 3: If we do not allow the demand to be backlogged (lost sales case), where the
transfer function takes the form

s(x,y,t)=(y—(t—2)*)*,

then all of the results of Theorem 2 remain valid (where x = 0 always).
PROOF: For n=1 the two problems are identical, so all results will follow. Assume all the results
hold for n=1. Then

Ba (xy}')=l‘£:u [t—(x‘*'}')]f(l)dt-i-OL"F (x+¢t) F (y—1t) dt+aL“C,._1 [(y— (e—x)*)*] f(t)de
=rf; [t— (x+¥)]f(t)de + of: F (x+y—t) F(t)dt+aCu-1(y) F(x)

+a f s (y+x—1) f(t)dt+ aCa_r(0) [1 = F(x+1)],
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a_&.g(fﬂ=_, [1-F (x+y)]+0LyF (x+y—t) f(t)dt+aCly(y) F(x)

ta [ T (y+x—1) f(e)dt,

which is precisely the same form as in the backlogging case, so that (1), (2), and (3) will follow in the
same way. To show (4) holds as well:

G =min (L (,) +a [ Cos (= —0))" 1 f0) )

z+y (x) -
=L (x, yu(x)) + ¢Cr-1(ya(x)) F (x) +af W Gt (ya(x) +x—1) f(t)dt
z +aCr1(0) [1—-F (x+ya(x))],

z+y (
x

Ci(x) =—r [1=F (x+ya(x)) ]+ ofo""(’)f(ﬁy,.(x) —t) F(t)dt+ af W ue)+ x— 0 f@)de,
since all terms involving yn(x) drop out. But y,(x) satisfies:

(x)
—r L=F e+ 5 (@)]1+6 [ F (a4 () =) f)de+ aCls (n(x)) F(2)

r+y (x)
+af " Cpi(x+ya(x) —t) f(t)de=0.

x

Hence

n(x
C:.(x)-‘—of )[f(x"‘}’n(x)—t)F(t)-‘F(x'*'yn(x)—t)f(t)]dt—acr';_x(yn(x))F(x)
=—0F (yn(x)) F(x) —aCn_1(ya(x)) F(x)

as in Theorem 2.

Since the defining relationship for y,(x) is precisely the same in both cases, yn(x) is also equivalent
and (5) will hold. The results (6), (7), and (8) follow from (4), and (9) and (10) hold independent of back-
logging assumptions. Note that all the results for this corollary only hold for x = 0. Q.E.D.

ADDITION OF HOLDING AND ORDERING COSTS

An important consideration in our model is whether or not the results can be extended to a more
general cost structure including holding and ordering costs. The answer is that it can, but the form of
the policy changes; in particular, it will not always be advantageous to place an order.
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Assume that there is a charge of ¢ > 0 per unit for each unit ordered and a charge of A > 0 per unit
(charged at the end of the period before outdating, but after demands occur) for each uait carried.
Hence the one period expected cost function now becomes

L(x,y)=cy+h J;"" (x+y-—t)f(t)dt+rJ:y (t—(x+y))f(t)dt+0J;”F(v+x)F(y-v)dv.

We will also make the assumption that there is a salvage value at the end of the horizon which is
equivalent to the ordering cost so that

Ci(x) =inf {L<x, »—ac f b= (=)} (@) de}

It turns out that this assumption allows us to obtain a certain type of stationarity in our results. Notice
that if we define

Co(x)=—cx for all x,

then the functional equations are still consistently defined.

We will use the notation C and B, as in Theorem 2. Also the same assumptions are made on the
demand distribution. We also assume that r > (1 —a) c (otherwise we would never order to a positive
level).

We then have the following analogous result to Theorem 2:

THEOREM 3: Assume F has the same properties as in Theorem 2 and that r > ¢(1 —a). Define
the number % as the unique positive solution to

(1—a)c+hF(z) —r[1=F(2)] =0, ie., [ g=F-1 [’—'}i—‘hi")—"] ] .

Then we have
(1) Ba(x, y) is convex in y for all x, and is strictly convex in the neighborhood of the global mini-

mum for x < %.
2 ]im%y—)<0if and only if x < %, lim M>Ofor all x.
-0 dy P dy

(3) If x < % then there exists a unique nonnegative solution y»(x) which solves

aB"(x9 y) -— 0
dy V=un(x)

In addition y,(x) exists and is continuous for x < %.
If x = %, then the optimal policy is not to order, i.e., ya(x) =0.

4) if x < % then

Cr(x) =—c—aC}_,[yx(x) JF (x) — OF (ya(x))F (x).
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(5), (6), and (7) of Theorem 2 hold for x < %.
8 f0<x<z,then—c—0F(x) <C,(x) <0 and C,(x)=—cif x<0.
(9) If x> z then C,’' (x) > 0. C,(x) > —c. In addition C, and C}, are continuous at .

PROOF: Let n=1.
(1), (2), and (3): By assumption we obtain

Bz ) =L(x, ) —ac [ (y= =) f ()
=cy+hj;"" (x+y—:)f(:)dz+rf°° (t—(x+y))f(t)dt+0L”F(v+x)F(y—v)dv
r+y
—ac[yF(x)+L°° (y+x—e)f(t)dt],

Bu.Y) _ o et hF (x+5) —r[1—F(x+)]+6 [O”F(v+x)f(y—v)dv,

9y
and
ﬂg%’ﬁ= (h+r)f(x+y)+0F(x)f(y)+0];yf(v+x)f(y—v) dv =0.
Hence
Q‘L’%’;’_yl S~ =@ +hF (@) —r 1=F(9]=c (1=a) =r+ (h+1) F(x).
Now since # is defined where ¢ (1—a)+hF(£) —r [1—F(2)]=0 and —"’-’i;"—’ﬁ ., is & monotone

nondecreasing function.of x (and is strictly increasing in a neighborhood of %), it follows that

aBl(x, y)

<0 fx<z,
oy

y=0

0B:(x, y)

3 >0 ifx>%,
y

y=0

and

lim aBy(x, ¥)

y—rw oy

z(1—a)c+h+6>0forallx.

Hence it follows that if x < %, the optimal policy is to order to y;: (x) where y1(x) solves

0B, (x9 y)
dy =@
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and if x > % we don’t order. Notice if x= % then y, (£) = 0, so the policy is continuous at .
The differentiability of y,(x) follows in precisely the same manner as in Theorem 2 when x < z.
@) If x <z then

Ci(x) =B\ (x,r1(x))

_ aB1(x, v)

__aB;(x, y) aBl(x’ y) ’
= — e n(x)=—"4

dax y=u(2) dy

Ci(x)

y=5) v=y(x)

=hF (x+y:1(x)) =r [1=F (x+y,(x))]+of‘(’)f(u+x) F (y2(x) —v) dv—ac (1—F())

={c(1—a)+h[F (x+n(x)]—r[1-F (x+5(x))]

+ O’Lu,(’)F (v+x) f(n(x)—v) dv}—c-—OF (x) F (51(x)) + acF (x)
=—c—0F (x)F (5 (x)) +acF (x).

The term in brackets is

B (x, ¥)

3y =0.

exactly e
=YX

Also notice that Ci(x) =—c, so this conforms with our notation.
(5) Solving for y{(x), we obtain (as long as x < £) precisely the same expression as in Theorem 2
with 7 replaced by r+ A. All terms involving ¢ drop out.

ks
1:?} yi(x)= (r+h)f(z)+ 6F (%) £(0) <0

so that there is a discontinuity of y; at %, since y;(x)=0, for x > x. Notice if f(0)=0, then li;r}_ yix)=—1
(6) and (7) follow since C} is identical. Notice that Cjwill not be continuous at £ by the fact that y;(x)

is not continuous at %.
(8) follows directly from (4).
9) If x> %, Ci(x) =Bi(x, 0).
Ci(x)=hF(x)—r[1—F(x)] —ac[l1—F(x)]
=(l—a)c+hF(x)—r[1—F(x)] —c+acF(x) >—c

Ci(x)=(h+r+ac)f(x) >0 sincex >z >0.

Notice }1{:} Ci(x) =B1(%, 0) =111n; Ci(x) and }lm Cilx) =li%r; Ci(x) =—c+ acF(x).
Assume that the theorem holds for 1,2, . . ., n—1.
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(1), (2), and (3):

Ba(x, ) =L(x, )+ [ Cosly=(e=0))f 00k

Let y<z.
ﬁ'i;;-:’i)=c~i- hF(x+y)—r[1—=F(x+y)]+0 Ly F+x)f(y—v)dv
+aCl_, (y)F(x)+af“" Chs(y+x—1t) f(t)dt—ac[l~F (x—y)].
OB = (ht-1)f ot 3) 4 OF ()5 () + 0 [* flo+ 2)f (y= )+ aCHF ()
+ f T Oy x—t) () dt+ acf (x+ y) —acf (x+7)
Z(h+r)f(x+y)+0(Q—a)f(y)+0(1~a) L”f(v'*'x)f(y—V)dv
= 0 by the inductive assumption on (7).
If y > %, then

Bu (5,9) =L (x,9) + Cas () F() + & Conyrx—y e+ [ Corslytx—0) 0

y+z
—_aBng’ Y= ¢4+ hF (x+y) —r [1—F (x+y)]+oL"F (v+x) f (y—2)

y+x—%
x

+aCh_y(y) F(x) +a f Cra(y+x—12) ft)dt+ aCn1(2) f (y+ x—%) —aCr_1(Z) f (y +x—%)

+a [ Chilrta—0 fO)di—ac [1=F (y+2)].
y

+Ir—-T
Notice that the upper limit on the last integral became y+ x by the inductive assumption on (8).

PRl = (1) £ a49) + OF (0 S0 +8 [ o) £ (r=0) o

Y+
x

+aCl(y) F(x) +a j Oy x—1) f(B)dt+ aChr(2) f (y+ 2 —2)

—aCl (%) f(y+2—%) +a f””'_c;;_,(yﬂ—z)f(t)dz— acf (y+x) + acf (y+x).

y+x-F
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Although C;_, may have a jump at % and at 0 the differentiation under the integral sign is justified
by Van Zyl’s lemma.
Now since y > %, C3-1(y) > 0 by the inductive assumption on (9),

J'WI_;CZ_l(y+x—t)f(t)dt=j: Cli(u) f(y+x—u) du>0

x

and in the same way,

f"” ’CZ_,(y+x-—t)f(t)dt=]:C;:-1(u)f(y+x—u) du

y+z-

2—0fff(u)f(y+x—u) du
°

v
?—OJ; flu)f(y+x—u) du

by the inductive assumption on (7).
Hence

02Ba(x, ¥)

e >h+r)fx+y)+0F(x)f(y)+0(1—a) L"f(v+x)f(y—v) dv=0

and convexity is established over (%, ).

Since Bn(x, y) andﬂna(—xy—’—yl are continuous at % the convexity follows.

. aBﬂ(x9 y) . ’ ® . r
lim————=c+hF(x)—r[1-F(x)]+alimC,_(»)F(x)+a | lmC,_ (y+x—t)f(t)dt
-0 dy y—0 z 70

=c¢(l—a)+hF(x)—r[1—-F(x)]
by the inductive assumption on (8) so that

0Bn(%,y)

dy =0

y=0

aBﬂ(x9 y)

and it follows that if x < %, 3y

< 0 and the optimal policy is to order y,(x) where yn(x) is
y=0

the solution to

aB" (x9 y) = 0
dy Y=Y ()
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oB, e
+;,y)_ > 0, so it is advantageous not to order. Notice y.(£) =0.

y=0

andifx > %,
4) If x < %,then

Cula) =hF (x+ 3a(x)) = rlL = F e+ 7a(0)1+0 [ flo+2)F (1u(x) = 0)do+ af () Cucs ()
—af(x)Cu-1(yn(x))+ aj:: C._(yn(x)+x—1t) f(t)de
= {c+ hF (x+ yn(x)) —r[1 = F (x+ ya(x)] + OL'"MF(v-f- x) f (yn(x) —‘v)dv

+aF(x)C,, (ya(x)) + e f " Crorn() + 5= 0) ()} = = aF (3)Cas(72(2))
— 6F (ya(2) )F (2)

=—c—aF (x)Cu-1(ya(x)) — OF (yx(x) )F (x)
by the definition of ya(x).

(5), (6), and (7) follow in precisely the same way as in Theorem 2 since the expressions for y,(x)

and C}(x) are the same for x < %.
Notice thatlin; yi(x) <0and=-—1if £(0) =0, as in the n=1 case.
(8) From (4) and the inductive assumption on (8), we obtain forx < £
Ci(x) < —c—aF (x) [~ c—OF (ya(x)] — OF (yx(2)F (x)
< —c(l—a) - 0(1—a)F(ya(x))F(x) <0,
C\(x) 2 —c—O0F (yx(x))F(x) = —c—0F (x).

From 4) C,(x)=—cif x=< 0.
9) If x > £ then

Cu(x) =L(x, 0) +a J; ® Car(—(t—x)*) ft)dt

=l;(x, 0)+aCx_1(0)F(x)+ afn Cu-1(x—1t) f(t)dt.
Hence i

C!(x)=hF(x) —r(1=F(x)] —ac[1—F(x)]
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>(1—a)c+hF(x)~r[1—F(z%)] ~ct+acF(x) >—c

Ci(x)=(h+r+ac)f(x) >0.

The continuity of C»(x) and C,(x) at £ follows easily since y.(%) =0by (1), (2), and (3), and C,,_,(0)=
—c by (8). Thus C, (%) =—c+ acF (%) independent of n. Q.E.D.

Notice that the introduction of a salvage value at the end of the honzon insures that the numbers %
don’t depend on the period n. If we exclude this assumption then %, > %; and xn—fn n2<n<N,
provided we number the periods backwards.

We remark that the results of Corollaries 1, 2, and 3 remain valid with the addition of ordering and
holding costs.

The model considered by Van Zyl is precnsely this one with h=0=0. Note that in the case where
6=0 the results of the theorem remain valid with the added property that C, is convex every“here

We have the following result:
COROLLARY 4: For 0<x < £ and all n,

0<ya(0) < ya(x) +x< %
PROOF: Since ya(x) >~1 and ya(x) is continuous,

< M)—:l”-@from the mean value theorem

=>ya(x) +x > ya(0).

Also since y,(x) >—1for0<zx < %, li{n’ ¥x(x) 2 —1 and yn(x) is continuous,

1< ¥n(%) — yn(x)
XT—x

=>x+yu(x) < ya(X) +x=2. Q.E.D.

This is a particularly significant result. It says that if the initial inventory is less than % then we
would order in every period. If x > %, then we would not order until the inventory on hand fell below
£ and then we would order in each subsequent period.

In the case where y.(0) and % are relatively close, one could approximate an optimal ordering
policy by assuming the inventory on hand after ordering is some number interpolated between yx(0)
and %.

THE DYNAMIC PROBLEM-INFINITE HORIZON
The objective in analyzing the infinite horizon problem is to demonstrate the existence of a sta-
tionary policy that minimizes the long run expected discounted cost and to determine methods for

computing that policy. The formalism we will employ is that of Denardo [3].
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The state space of our problem is R = (— », ).

Define:
W = {w: wis a real valued Borel measurable function on R}. The metric on ¥ is defined in the

usual way by
p(u, v) =sup|u(x) —v(x) |
xeR

Also let
V={u, veW : p(u, v) < » and u, v are continuous}.

The subset V is introduced to insure the property of completeness. We note that, in general, ¥ will
not be uniquely defined depending on our choice of r (per unit runout cost) and 6 (per unit outdate cost).
We deal with one specific subset V of W.

Denardo assumed that his space ¥ was the space of bounded functions on R. It was recognized by
Porteus [6] that this assumption was really not necessary and that the results of the theory apply to the
more general classes of functions indicated above.

For any ordering policy define the mapping H, on V as

Hw(x) =L(z, y(2)) +a [ "o(r(x) = (1=2) ) fle)d

and

Av(x) = inf {L(x, y) + af“v(y— (t—x)*)f(t)dt}.
¥>0 ()

For the infinite horizon case we assume 0 < aa < 1. We then have the following result:

THEOREM 3: The mappings H, and A are both positive contractions on V. In addition both of
these mappings satisfy the monotonicity property, that is, if u(x) = v(x) (for all xeX) then H,u(x) =
H,v(x), and similarly for 4. Finally there exists an optimal stationary policy y*(x) which is the solu-

tion to the equation
@=Ll y* @) +a [ 4t @) — -0 S0,

where u* is the unique fixed point of 4. The proof is obvious from Denardo’s and Porteus’ work.

The term u*(x) has the interpretation of being the minimum expected cost, given we are in state x
and infinitely many periods remain in the horizon. To see that the infinite horizon problem arises in a
natural way as the limit of the finite horizon problem as the length of the horizon gets large, let vo =10
vn=A"p,o. Then it follows that v, is exactly C» of Theorem 2 and the function

L+ [Tar— -1 s00a)

will be convex in y. Hence the sequence of functions y, — y*.
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The computational schemes developed employ precisely this idea that the infinite horizon problem
is in a sense the limit of the finite horizon problem. Algorithms for successive approximations are con-
sidered in Denardo and Porteus.
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