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OPTIMAL ISSUING POLICIES FOR PERISHABLE
INVENTORY*f

WILLIAM P. PIERSKALLA} AND CHRIS D. ROACH§

Optimal issuing policies for some particular classes of perishable inventory prob-
lems are derived under several possible objective functions. The inventory con-
sidered is one in which stock is grouped into categories according to shelf age. Demand
occurs for each of the categories, and may be satisfied by inventory units from that
category or from any “younger’’ category. It is shown for most of the objective func-
tions considered that the optimal policy is to issue the oldest unit which will satisfy
the demand. A prime example of the classes of inventory problems considered in this
paper is the issuance of whole blood from a hospital or central blood bank.

1. Introduction

Optimal issuing policies for some particular classes of perishable inventory problems
are derived under several possible objective functions. The inventory considered is one
in which the stock is grouped into categories according to age. Demand occurs for each
of the categories, and may be satisfied by inventory units from that category or from
any ‘“younger’’ category. Demands are initially considered to be deterministic, and the
resupply of the inventory is also considered to be known. Later these two assumptions
are relaxed to permit stochastic demands and resupply. It is shown that for most of
the objective functions considered, the optimal issuing policy is FIFO (First In, First
Out). In this case the FIFO policy issues the oldest unit which will satisfy the demand
feasibly.

The importance of studying these particular classes of inventory models can be seen
from looking at the following example: Consider a hospital blood bank which must
determine the optimal issuing and reorder policies for whole blood in order to meet the
demands of the patients at the hospital. Many factors affect the ordering and issuing
policies for whole blood. Some of these factors are

(a) the supply of blood is random, and comes from many different sources such as
volunteers, corporate blood plans, paid donors, ete.,

(b) the demand for blood is random,

(¢) much of the blood demanded is not used, and is returned to the inventory,

(d) blood is a perishable commodity and, for practical purposes, it is assumed to
deteriorate to lower freshness categories on a step function basis over a 21- or 28-day
horizon,

(e) the demand for blood of a particular category may be satisfied from a fresher
category but not an older category.

It would be misleading to say that whole blood is the only important commodity
with these perishability characteristics. Inventories of food produets at the retail or
wholesale store and at the home or commissary as well as many agricultural products
and certain types of chemicals and drugs have some or all of these characteristics.
Almost uniformly, previous papers dealing with perishable inventories have focused
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on the optimal ordering and issuing policies when demand and supply are assumed
known. The early works of Greenwood [10], C. Derman and M. Klein [2], [3], G. J.
Lieberman [15], P. Zehna [28], S. Eilon [4], [5], [6], [7] and W. Pierskalla [21], [22]
were of this form. Their primary objective was to give general conditions when one or
the other of two issuing policies, LIFO (Last In, First Out) or FIFO, was optimal. In
his thesis, A. F. Veinott, Jr. [27] investigated optimal issuing, ordering and disposal
policies under the assumptions of known demands and deterministic supply. Although
some work was done treating the utility of the commodity at the time of issue as a
random variable [2], [20], [23], [28], none of the studies of perishable inventory problems
has entertained the interesting and relevant properties listed above for whole blood
inventories.

Furthermore, some of the important work on the blood inventory problem done by
Jennings [11], [12], Keeney [14], Elston [8], Elston and Pickrel [9] and Pegels [16] has
not taken into account the previous work on perishable inventory control.

Thus, it is with the foregoing research in mind, and the fact that an important prob-
lem has not been resolved, that we provided the following results in partial answer
to an interesting and important class of perishable inventory problems.

The next section gives the specific assumptions and the mathematical model under-
lying the relevant classes of inventory problems studied in this paper; also each objec-
tive function considered is discussed in some detail, and its relevance to the blood
inventory example is brought out.

In §3 the results for the finite horizon discrete demand and discrete supply cases are
stated with the proofs given in the appendix. Again, the example of the blood inven-
tory problem is used to illustrate the relevance of these results and a numerical ex-
ample is provided.

Finally, in the fourth section, generalization of the preceding models to other types
of cost and utility functions is considered, and suggestions for future research are
delineated.

2. The Model

The mathematical model which is developed and analyzed in the subsequent sections
is based on the following assumptions:

(1) The items deteriorate over time on a step function basis; that is, the ‘“freshness”
of the items is a nonincreasing step function (in the case of blood inventory the
“freshness” would be a function of the survival rate of red cells and chemicals and or-

ganic compounds in the blood).
(2) The demands for the items oceur periodically and initially will be assumed to be

known.
(3) Replenishment of the inventory may be made by items of any age; that is, not

all items entering the inventory will be new but, indeed, may be several periods old,
in which case their freshness depends on what age they are in regard to the step func-
tion freshness curve. (In the blood inventory this assumption is very important since
much of the blood withdrawn from the bank is not used for the specific withdrawal
purpose and after one or two days is returned to the bank. Obviously, the blood con-
tinues to deteriorate while it is held, hence it cannot be considered “new” when it
reenters the bank.)

(4) The quantity of items added to the inventory is assumed to be known, initially.

This assumption will be relaxed later.
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(5) The demand for an item of a given freshness level may be satisfied from the
given level or any higher level, <.e., any “younger’ item in the stock.

(6) The model is dynamic in the sense that there is a time horizon of n periods con-
sidered (n is any positive integer).

In a completely deterministic model we can easily require that no stockouts occur
provided there are no limitations on the supply of items. On the other hand, stockouts
are an important factor in any real problem. For this reason, it is necessary to make
some assumptions about the demand process. The standard assumptions are (i) all
demand is lost if there is a stockout, (ii) all demand is backlogged and filled from the
next supply of items. We will show that in the case of backlogging, FIFO is the optimal
policy for all objective functions considered in §2, and in the case of lost demand FIFO
is optimal for two of the three objective functions.

In his thesis, A. F'. Veinott, Jr. [27] investigated 2 model similar to the above model
and determined the optimal issuing and disposal policies for his model. This model
assumed that the utility function had the form of a nonincreasing concave-convex
curve, A special case of this model then would be a nonincreasing step function con-
sisting of only one step; that is, the utility function would be equal to a constant for
a certain selected number of periods then it would drop down to be equal to another
constant for all remaining periods. In this latter case he showed that in order to maxi-
mize the total utility the optimal issuing policy must be of the form issue all items lying
on the upper utility level by means of FIFO after which one may use any policy for
issuing the items in the lower level. Our problem is somewhat more complicated than
the model analyzed by Veinott in that we permit many levels for the nonincreasing
step function and, indeed, in the blood inventory case we must consider at least three
such levels. Furthermore, we are interested in restocking the model with items of any
age level, and only items of the given demanded age or younger may be used to fulfill
the demand.

In order to state the problem mathematically, it is convenient to use the following
notation:

(1) n = number of periods the process operates,

(2) M = number of age categories for the deteriorating item,

(3) p; — pj—1 = length of age category j in periods forj = 1, ---, M and po = 1
(i.e., category J consists of all items of age less then p; periods and greater than or
equal to p;_; periods),

(4) V,; = nonnegative value of one unit of stock in category ;7 (by assumption (1),
VizVez --- 2 Vy),

(5) R; = cumulative value in period 7 of all filled demands (insofar as possible)
plus the value of the stock on hand at the end of period ¢

Ri = Riax + 2.5 ViDij + 2 a1 Viliy — 2255 Vil t=1,,n

D,; = total demand filled for items of category j in period 7,

I;; = the nonnegative inventory of items of category j remaining after demands are
filled in period ¢,

I,; = initial inventory and Ro = 21ty V14,

(6) R = (RI)RZ) ,Rn),

(7) Si;; = nonnegative stockout of items of category j at the end of period ¢,

(8) P is any policy which states which items are to be used to fill the demands.
P is a feasible issuing policy if all demands are satisfied whenever there are items in
stock to satisfy the demands.



606 WILLIAM P. PIERSKALLA AND CHRIS D. ROACH

FIFO is the feasible policy which issues the oldest item satisfying assumption (5).

LIFO is the feasible policy which issues the youngest item satisfying assump-
tion (5).

The question of an appropriate objective function in the blood inventory example
or in the perishable inventory problem in general is an important consideration. Three
different objective functions are described below, and arguments can be presented for
their use and appropriateness. Fortunately, in the case of backlogged demand there is
no need to weigh their relative merits to make a choice among them, since the optimal
issuing policy is the same for each. However, in the lost demand case FIFO is optimal
for only the last two objective functions, and, as is shown by the example, FIFO isnot
optimal for the first objective function.

The first objective function considered is based on a utility approach. The total cur-
rent utility of the system is defined as the value of all demands satisfied in the past
plus the value of items in stock at present. The value of demand filled is linear, and
depends on the category of the demand. It is assumed that satisfaction of a demand
for a “‘younger” category has a higher value. In the blood bank problem this would
indicate the more critical uses of the fresher blood. The value for filling a particular
demand is then assumed to be the same whether the freshest or the oldest item (which
can be used to fill the demand ) is used, since the value is derived from the use of the’
item which the demand specifies. The value of the stock in inventory is defined as the
value of the highest demand which it can fill, i.e., the value of the stock is its ‘““poten-
tial” value in satisfying demands. We then have a series of values per item, Vy, Vs,
«++, Vau, where V; is value of the freshest category per item, V; is the value of the
second freshest category, etc., with the property Vi =2 Vo 2 Vi = -+ = Vy = 0.
It is shown that regardless of the actual values of the V.’s, as long as the above in-
equalities are maintained, FIFO maximizes the utility of the system provided all
excess demand is backlogged.

The second objective function considered is to minimize the total number of units
backlogged at any given time or, in the lost demand cases, minimize the total number
of lost demands. It is shown that FIFO again optimizes this objective over all feasible
issuing policies.

The third objective function is to minimize the total number of items reaching the
last age category. This last category could be construed as an overage category where
items in the category are too old to be used. Once again, FIFO is shown to be the
optimal policy.

3. FIFO Optimality

In this section the notation Df; , IT; , Si; denote the demand, inventory and stockout
for items of category j in period ¢ when a FIFO policy is followed. If the superscript F
is not used then an arbitrary feasible policy is being followed.

TarorREM 1. If all excess demand s backlogged, then FIFO maximizes B for all© = 1,
-, n and all feasible issuing policies.

Another way of stating Theorem 1isforany Vi = Vo = -+ = V, = 0 and if ex-
cess demand is backlogged, then R;" = R;forall¢ = 1, -+, n. Now

RiF = f——l + Z;il V:‘(ij + Ifj — If—l,a’)
= D it Dogm ViDG + 2oim Vills .
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Thus
R =274V, (Zi=1 Di; + If) 2 E.?LI V; (Zi=1 Dy + 1) = R:.
Letting V= Vo= -+ . =Vi=1land Visy = -+ = Vy = Oweseeforallk
Lemma 1. If all excess demand is backlogged, then

’;ml Zfsx (ij — Dy;) 2 I;=1 (I;; — Ifj
foralli=1,--- ;nandallk =1, .- M.

Note that D 51 > i1 D,; is the total demand filled for items of category k or less
through period ¢ for an arbitrary policy. Now the total demand through period < for
items of category k or less is: '

(1) when backlogging is allowed

2oim 2im Duj 4 205 Si;
regardless of what feasible policy is followed, 7.e.,
=1 (2im Doy + 8i5) = 25-1 (2o4= DI + 855);
(ii) when excess demand is lost

2 i1 2051 Dy + Sy),
regardless of what feasible policy is followed, 7.e.,
Dot 21 (Dij + 83) = D=1 25 (DY + SE)).
Lumma 2. When backlogging is allowed,
-1 (S5 — 8%) 2 25 Uy — 1))

forallz'= 1, e, nand ko= 1’...’M_

Lemma 2 reveals some interesting properties about the cumulative differences in
stockouts between FIFO and an arbitrary policy, say P. In the backlog case, the
cumulative difference of the backlog amounts for items of category k or less within
a period 7 is at least as great as the cumulative difference in their inventories. Roughly
the lemma says that whenever a policy P has more inventory than FIFO then it has
even more stockouts.

We now proceed to the next main result, namely, FIFO minimizes the total stockouts
over all feasible issuing policies. Indeed we will see an even stronger result is true.

TuroreMm 2. For all feasible issuing policies,
(1) when backlogging s allowed,

k k F
=18 = 7=1875;

foralli =1, --- ,nandk =1, --- | M,
(ii) when excess demand s lost,

7 M ) M F
i Sy z i 2 8

foralli =1, -+ n.

Thus not only does FIFO minimize the total stockout > ¥ .8, and the total
lost demand iy 21,8, through period 4, but in the case of backlogging FIFO
minimizes the cumulative stockout for all items of category k or less for all k£ = 1,

M.
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Levua 3. For all feasible issuing policies

M M .
5==115j = ,-___1111-7,' fOT all = .l, (N

Thus for both backlogging and lost demand FIFO minimizes the total inventory in
each period. But perhaps a more important result is that FIFO minimizes the total
inventory reaching the last age category M. Presumably the items in this last category
are not useable.

TueorEM 3. For all feastble issutng policies,
Iiw = ITy forall ©i=1,--+ n.

Thus when backlogging is allowed FIFO is optimal for each of the three objective
functions considered. Because of this result, one does not need to choose among these
objective functions nor does one have to consider weighted combinations of them.
Unfortunately in the lost demand case, FIFO is only optimal when one wishes to
minimize the total lost demand or minimize the number of items reaching age category
M. The following example illustrates the conclusions reached in the above theorems
and lemmas. In addition it points out that Theorem 1 and Lemmas 1 and 2 do not hold
in the case of lost demands.

M=4,n=5, V1=3, V2=2, V3=1, V4=0,
po=1 pi=4, pp=17, ps=13, ps= +=.

The inventory status at the end of each period (z = 1, 2, 3, 4, 5), the backlog by
category (j = I, II, II1, IV) and the lost demand by category are given for FIFO and
for a policy P where P issues the youngest item in the category for which the demand
occurs until that category is exhausted, then proceeds to the next younger category
and does the same.

This example was chosen to illustrate Theorems 1, 2 and 3 as well as to point out

TABLE 1
Initial Invenlory and Additions to Inventory
\ Age of Items in Stock
1 2 3 4 5 6 1 8 9 10 11 12
Units \
Initial Inventory 5 3

<
[N ]
-]
P
fay
w
[=]
(==l
ot
[ V]

Additions to Inventory at be- |4 0 0
ginning of period

2

3 7 0000 OO OO O1 5

4 2 3004 02 00 20 3

5 6 1110 00 O1 0O0 O
TABLE 2

Demands (in units)

\ Period ) ) s . s
Category\
I 57 6 6 3
IT 21 0 6 4
I1I 13 3 1 1
v 00 8 0 1




OPTIMAL ISSUING POLICIES FOR PERISHABLE INVENTORY 609

that in the lost demand case Theorem 1 and Lemmas 1 and 2 do not hold. Note in
Tables 3 and 4 that R,” = R,  fors = 1, ---, 5, but in Tables 5 and 6, Rs" < R5"
and R,” < R,". Similarly from Tables 3 and 4, it is easy to see that the results of
Lemmas 1 and 2 are satisfied by the example; however, in Tables 5 and 6, if one sets
i =4and k = 1 we see that ‘

Z}:l ZLI (ij - ff) = —1
i (I5; —I5) =0
show that Lemma 1 does not hold for lost demands, and
2=t 2t (8T — 8%) = —1

shows that the result corresponding to Lemma 2 for lost demands does not hold.

and

TABLE 3
Backlog Inventory Status Using FIFO
\ Age of Items FI{F% I?acklog
I 1 v ) i v Lotegory
Number of 12 3|a s 6|7 8 910 1 2] | Ri |[BEaSullew |
Items End I I I IV
1 3 00101 0({1 3 0011{0°@0 37 0 0 |00 0O
2 00 0{00O0[01 2 00UO0(0°1 49 0 1 00 0O
3 0 00{0 00|00 0O0O0O0CO0C|]0QO0 67 0 0 0 0 0O
4 0 00(0 002 00290200 97 3 0 1 2 00
5 6 0 0|0 0O0j0 21 010|110 118 1 1 0100
TABLE 4
Backlog Inventory Status Using a Policy P
\ Age of Items bP gacklog
1 I 11 v . s v Calegory
Number of 107 3|48 6l 8 od0 u os|woe| R (BLaSei Lo | 0
Items End I I I IV
1 03 0({0 010 3 0 012{00 37 0 0 |0 0 0O
2 0 00(0O0O0O{0011O01;2090 47 1 2 0100
3 00 0{0 O0O0(0 0 O0O0O0ODO0O]00O0 67 0 0 0 00O
4 00 0/0 001 0020300 97 3 0 1 2 00
5 000{00O0j001O02©0;2290 117 1 2 10100
TABLE 5
Lost Demand Inventory Status Using FIFO
\Age of Items P gﬂgﬂgog;’
1 0} I v | R (Bt | g, | Category
Number of 1 2 3|4 5 6/ 7 8 9 10 11 12]13 14--. PolzMasy
Ttems End : 1 I I IV
1 3 0001013 0011!00 37 0 010 0 0O
2 00 0l0O0O0OC|I0120C0O0}10 49 0 1 00 00
3 6 0 0|0 0 O0O|0 OO0OCO0OODO0O;00 67 0 0 {0 00O
4 000{000{2002¢02;00 97 3 0|1 200
5 2 0 0/000/021010|10 119 3 1 /0000
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TABLE 6
Lost Demand Inventory Status Using a Policy P

\ Age of Items s P Lost Demand
1 I T v P L T I L e

Number of 1 2 3[4 5 67 8 9 10 11 12| 1314--- g 2Mysyl M |———
e o \ I I I IV
1 0 3 0(001{03 0012|00 37 0 0 00 00

2 0 00/00O0O[0O0T1101]j20 47 1 2 0100

3 1 00;0060j000O0CO0OO0C)]00O0 68 1 0 0 000

4 0 0 0{0O0O0]1 002 023]00 98 3 0 0200

5 01 1(000(0010 20|20 116 3 2 0000

Finally we note in Tables 3 and 4 that
DLSL s Y k.8h forall i=1,---,5,
in Tables 5 and 6 that
2t 2 S8 S i 2t 8h for i=1,---,5

and in all cases

F .
fMinM fOl‘ 74=1,"',5.

4. Generalizations and Extensions

In the preceding sections it was assumed that the utility function was a decreasing
step function with values ¥V, = -+ Z Vu 2 0. If one examines the proofs of the
earlier results, it becomes apparent that any nonnegative decreasing function f(z) for
z € [0, + ) will do provided there are only a finite number of demand categories
(=1, -+, M). Indeed if f(z) is strictly decreasing for all z € [0, + « ), then FIFO
is the only optimal policy (in continuous time).

A more important extension of the earlier results is to consider the demand and the
additions to stock as stochastic processes. Here it is necessary to assume each process
is independent of the issuing policy. Under this assumption the results of §3 still hold.
Furthermore this assumption also implies that the amount of stock received and de-
mands originating in period 7z + 1 are independent of the inventory on hand at the
end of period 7. In the case of the whole blood inventory it would be reasonable to
assume that the demand for blood occurs independently of the issuing policy or the
stock on hand. However the replenishment policy cannot be independent of the stock
on hand. Indeed the less stock on hand means a larger amount must be ordered to meet
the anticipated demands. If one holds the backlog to a constant regardless of the
issuing policy, then from Lemma 2 it is apparent that

bl = D5l for k=1,---,M and ¢=1,---,n.
That is, FIFO has a “younger” and “larger” stock on hand, and FIFO would therefore
minimize the amount needed to meet the anticipated future demand.
Appendix

Proor or THEOREM 1. The proof is given by construction. We will show that for
any policy which is not FIFO through period 7, we can construct another policy
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which is one unit closer to FIFO through period 7 and at least as good as the first
policy. FIFO optimality follows through recursive application.

Consider any policy P which fills a demand for category &y (ky = 1, -+, M) in
period ¢ ({ = 1, -+ -, n) with a unit ¢ and there exists a unit ¢’ such that
(1) age (¢') > age (q)

and ¢’ can be used to fill the demand. Then we will show there is a feasible policy P’
which fills the demand with ¢ and R’ = R (we say the vector R’ = R if and only if
R'; 2 Riforj=1,---,n).

Define

V¥ = value of unit ¢ in period ¢,

j = period policy P issuesitem ¢’ (j =44+ 1, ---,n + 1),

{ = first period P is stockout for a demand category %, (for convenience we call this
demand k;) which P’ can fill with item ¢ (f = ¢+ 1, -+, n + 1),

r = the period in which P fills the demand k&, with anitem g (r = ¢t + 1, --- ,n + 1).

We use the conventionof j = n + 1, = n + 1l orr = n + 1, then the event deserib-
ing 7, t or r never occurs.

Note that V¥ = Vy, if py, < = age (¢) £ pysr — land V7 = Vi, in any case.

Case 1. j < t,i.e., Pissues ¢ and there are no intervening stockouts under P which
P’ can fill with item q. For all periods « < 4, R’y = R, . For all periods ¢ £ u < 7,
R — R, =V,"— V% = 014.e., P still has ¢ in stock and P has ¢ in stock, (1) holds
and both policies have filled the same demand. On day j let P’ issue g to satisfy the
demand for which P issues ¢’ each receiving value Vi, (L = 0,1, 2, ---) and hence-
forth the two policies issue the same items. Thus R’; — R; = V4 = 0. Since each
policy has satisfied the same demands and has the same inventories remaining,
R, — R, = Oforallu > j.

Case 2. j = , i.e., before or at the same time P issues ¢ there is a stockout for
demand %, in P, and P’ issues ¢ to satisfy k. .

We have
2) Viz Vi, 2 VY,

Since ¢ can be used for ks, and ¢’ cannot.
Consider « such that 7 < u < t. We stillhave R', — R, = V,2 — V% = 0, since (1)
holds.

Consider % such that ¢ < u. We have the situation that P’ has issued ¢ to meet
demand k%, and receives value Vi, .

Subcase (a.). u < jandu < r. Then P has not issued ¢’ and has not satisfied demand
k. hence

R'y—Ry=Vi,— Vi z0.

Subcase (b). v < jandw = r. Then P has not issued ¢’ but P has satisfied demand
k, with item §. Then each policy has satisfied the same demands but P’ has § in stock
and P has ¢ in stock. Hence

Ru—R =VA-VY20
since V.2 2 Vi, = V? implies V,2 = V¥ forallu = .

Subcase (¢). u = j and w < r. Then P has issued ¢’ for some demand %; and has

received value Vi, ‘but P has not satisfied demand ks . Now elther
(i) P’ satisfies demand k; with some item §, then

Ry—R,=Viy+ Vi, — Vi, = V220
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since the age (§) at time  is too old to satisfy demand k,, or
(ii) P’ cannot satisfy demand ks, then

R,u_‘Ru:sz—Vk;;gO

since each policy has the same inventory.

Subcase (d). u = j and w = r. Then P has satisfied demand %, with § and demand
ks with ¢'. Let P’ use § to satisfy demand ks . Thus each policy has satisfied the same
demands and has the same inventory so R, — R, = 0.

Proor or Lemma 1. By Theorem 1

R — Ri= 2 Vi i D = Dy) + I, — 15120, i=1,---,n,
forall Vysuch that Vi = Vo= --- = Vi = 0.
LettingV1 = V2= fee = Vk = 1and Vk+1= frr = VM= Oweobtain

R —R; = §=1[Z§=l (Df; — Dy) + Ifj -1 = 0.
Proor or LEmmA 2. In the case of backlogging
Zf=l Z,;=1 (Df] - Dtj) = l;=1 (Sij - Sf])

for k=1,---,M and 7=1,---,n.
Thus by Lemma 1 ,
D2ha 8y — 8h) 2 2ia iy — If) for k=1,---, M and i=1, -, n
Proor or TueorEM 2. Consider the backlog case. Assume to the contrary that
(3) Dha Sy —85) <0

for some ¢ and k.
Let £* = max {k] (3) holds and Si; > 0}. Then

dev = 2 5 (S5 — 8:) > 0

is the number of demands filled by P for items of category & or less that could not be
filled by FIFO. Farthermore IT; = 0 forj = 1, --- , k. Hence

s Iy = L) = 251,20

which by Lemma 2 contradicts (3) above.

The lost demand case is proved in a manner similar to that of Theorem 1. Let P
and P’ be two policies such that P issues item ¢ and P’ issues item ¢ to fill a demand
k; where age (¢) < age (¢'). Define State 1 to be the state such that each policy P and
P’ has the same number of stockouts. Since

28, = 2048,

the process starts in State 1. Define State 2 to be the state such that policy P has one
more stockout than policy P’ and policy P has one more inventory item than policy

P’. We will show that forz = 1, - - - , n the process must be in one of these two states.

Assume the process is in State 1 in period < and P has issued ¢ for k; and P’ has issued
’

q fOI‘ I{J] .

Case 1. P issues ¢ for k. Let P issue ¢ for k. The process is still in State 1.
Case 2. P stocks out for k& and P’ stocks out for &'. The process is still in State 1.
Case 3. P stocks out for k and P’ issues ¢ for k.
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Subcase (a). P still has ¢’ in inventory. The process is in State 2 and P has one more
stockout than P’.

Subcase (b). P issues ¢ for k' and P’ stocks out for &". The process is in State 1.

Subcase (c¢). P issues ¢’ for k" and P’ issues § for k'. Then P has  in inventory and is
stockout for k. Thus the process is in State 2. Replacing ¢’ by § in the preceding cases
shows that the process is in either State 1 or 2 at all times. Hence

Zf=1 Z;iq ng __>—_ Z;;l Z;{q S:, fOI' all 7 = 1, e, N

FIFO optimality follows by the recursive application of policies P’.
Proor oF LeEmmA 3. Letting py = + « then the total stock in the system through
periodz (¢ = 1, --- , n)is:

D= 2Dy + 200 I
regardless of the issuing policy, 7.e.
Do Dl 4+ LI = 2w 2Dy + 2 Iy
or
Dim 24 (DY — D) = 2205 (I — 1),
But in the backlog case and Theorem 2
2im 2og (DY — D) = 2250 (Si — 83) Z
and in the lost demand case and Theorem 2
D 2K (DY = Dy) = 2 259 (Si; — 8i;) 2 0.

Hence XX, (I; — IT;) 2 0.
Proor or TueoreMm 3. Consider the backlog case. Now

(4) D D I = S e Dt Dy + p R
By Lemma 1

(5) i 2SI DG+ XS I 2 X 2005 Dy + 2005 Ly

Assuming there is no demand for category M items i.e. Diy = Dur = 0 for all
t=1,---,7thenby 4)and (5) T = ITx.

For the lost demand case, note in the proof of Theorem 2 (lost demand case) the
two policies P and P’ either have the same inventory or P’ has g and P has ¢’ or P
has one more item than P’. If the inventory is the same, Iy = I "o .1f P'hasgand P
has ¢’ and since age (¢) < age (¢'), Tiwe = I'ix. If P has one more item than P,
Iiw =2 I'ine.

[an]
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