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ANALYSIS OF A MULTISTAGE INVENTORY TASK: COMMENTS
ON A PAPER BY AMNON RAPOPORT

by William P. Pierskalla

Institute of Technology, Computer Sciences Center, Southern Methodist University

In an interesting paper in Behavioral Science, Volume 12 (1967), Amnon Rapoport re-
ported on his tests of the dynamic decision-making capabilities of a group of students. He
found that the students did not perform well relative to the normative results predicted
by two quantitative inventory models he had chosen. It is the purpose of this paper to point
out that the wrong normative models were chosen and that if the appropriate inventory
model had been picked, the students may have performed reasonably well.

N AN interesting paper (1967), Amnon

Rapoport tested and analyzed the dynamic
decision-making capabilities of a group of
students. The subjects were sequentially
given several single product multistage
inventory problems and were required to
determine in each stage the inventory level
on hand after ordering but before the occur-
rence of an unknown random demand. Their
responses to these problems were compared
with the optimal amount on hand after
ordering as predicted by two inventory
models of Arrow, Karlin, and Scarf (1958).
The result of the experiment was that, in
general, the dynamic policies chosen by
the subjects did not compare favorably
with the optimal policies given by the two
models.

It 1s the purpose of this paper to point
out that neither of the two models chosen
by Rapoport reflects the inventory situations
perceived by the students in the experi-
ment, and that indeed if the appropriate
inventory model is chosen, it is believed
that on the average the students may have
performed remarkably well in making near-
optimal dynamic decisions.

RAPOPORT’S RESULTS: SUMMARY

Rapoport used two inventory models.
One, call it Model I, is a single stage in-
ventory model which yields the constant-
level optimal policy ¥ given by the solution

[ 54

to

(1) c+h

h+p+r

where ¢, & and p are the per unit costs of
ordering, holding, and shortage of an item
in inventory, r is the per unit revenue of an
item sold, and ¢(£) is the probability density
function of demand. The second model,
call it Model II, is an infinite stage inventory
model which yields the constant-level
optimal policy y given by the solution to

* c(l1—a)+h
f,, AC e Srwer——

where ¢ 1s a discount factor 0 = o < 1.
In his paper Rapoport sets @« = 1 which
yields the number y as the solution to

(3) [:ws) d —

f:m) dt =

(2)

__h
h+p+r—c’

Technically this value for y is not the only
optimal policy because by setting o« = 1
we incur infinite costs over our infinite
horizon and all other ¥’s also yield the same
infinite costs. Thus all ¢’s are optimal in
that they minimize costs over an infinite
horizon.

In the experiment, the students were
given the problem of choosing the number
of items to produce in order to bring the
inventory of the item up to some level
They were told that the number of decisions
(that is, the number of stages) is unknown,
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and the demand in each stage for each
problem is an unknown independent iden-
tically distributed random variable. Also
they were informed that they would be
given a sequence of such problems; they
were in fact given six. For this work each
received $1.50 <+ $1/5000 of the total
profit obtained by his decisions.

Thus the inventory model primarily
considered by Rapoport was the infinite
stage model with critical number y, given
in (3). However, the actual model facing
the student was one where he knew that
there would only be a finite number of stages
for each problem due to the impossibility
of conducting an infinite stage experiment.
Furthermore, considering the fact he would
play several games for $1.50+, he obviously
surmised that no game could last for many
stages. Rapoport indicates that some of the
students thought the number of stages
would be around. 15.

Some of the conclusions resulting from
this experiment were:

(1) For each problem the two inventory
models predict a constant level of inventory
for all stages. These constants are denoted
by y*(EV) for Model I and y*(DP) for
Model II. ¥*(EV) and y*(DP) are derived
from Equations (1) and (3) respectively.
Let §s = 2yt yi/N where N = number
of students tested and y.. is the inventory
level for student k in stage 7. Thus §; is
the mean inventory level in period ¢ for all
students for a particular problem. Rapoport
shows that for Problems Two, Three and
Six, the average student decisions §; show
a significant linear and nonlinear decreasing
trend over the stages of the problems. For
Problem Five the nonlinear effect is also
significant. He concludes that the students
violate the two inventory models which
predict that there should be no linear de-
creasing or nonlinear effects of the §: on
7. Indeed the violation of the models 1s
apparent from his graphs

(2) There was significant correlation for
each of Problems Three through Six between
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7: and the demands ¢; j = 1 — 1,1 — 2,
-, 2, 1 in the preceding 7 — 1 stages.
Each of the inventory models predicts that
there is zero correlation between the in-
ventory levels and the preceding demands.
(3) In the experiment the students were
divided into two groups—Group A consisted
of students with some prior knowledge of
the demand distribution ¥(¢) and Group B
consisted of students with no prior knowl-
edge. The results showed that after a few
trials (approximately 2 problems) there is
no significant difference between Group A’s
decisions and Group B’s decisions.

TWO ALTERNATIVE MODELS

The next two models to be presented, III
and IV, are more representative of the
actual problems faced by the students.
Model III was developed in a paper by
Bellman, Glicksberg, and Gross (1955).
Since it is a special case of Model IV—to
which more time is devoted—it will only be
presented briefly.

Model III

Model IIT is the single-product n-stage
inventory model with convex costs and
independent identically distributed random
demands in each stage. If the stages are
numbered backward from n, n — 1, ---,
2, 1 the minimum discounted expected costs
for stage j given a starting inventory of x
are

fi(x) = min, » , {¢-(y—z) + L(y)

4+ afia(0) f ) dE+

[ rat—owte g

where
L(y‘):h[o (y—0w() dg—r [ ew(e) de

+ 0 [ Gpwls) e
and fo(-) = 0.
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ProBLEM 2
Period 20 19 18 17 16 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1
y*(EV) 954 254 254 254 254 254 254 254 254 9254 9254 254 254 254 254 254 254 254 254 254
y*(DP) 304 304 304 304 304 304 304 304 304 304 304 304 304 304 204 304 304 304 304 304
y*(Model 304 304 304 304 304 304 304 304 304 304 304 304 304 304 303 303 303 303 303 254
111)
y*(a) 304 304 304 304 304 304 298 2098 207 206 296 205 204 203 201 280 286 281 273 254
) 304 304 304 304 304 303 304 304 299 289 285 281 277 274 270 267 263 260 257 254
y*(e) 304 304 304 304 304 304 304 304 304 304 303 303 303 303 302 30l 299 293 281 254
y*(d) 304 304 304 304 303 303 203 203 202 201 200 289 288 286 284 281 278 273 266 254
ProBLEM 3
Period 20 19 18 {7 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
y*(EV) 977 27T 27T 277 27T 277 271 207 277 277 977 277 977 277 277 277 277 277 211 277
y*(DP) 334 334 334 334 334 334 334 334 334 334 334 334 334 334 334 334 334 334 334 4
y*(Model 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 277
111)
y*(a) 333 333 333 333 333 333 328 326 326 325 324 324 322 321 319 316 313 307 208 277
y*(b) 333 333 333 333 333 333 333 333 328 315 311 307 303 299 205 201 287 284 281 277
y*(c) 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 329 328 321 307 27
y*(d) 333 333 333 333 333 333 321 321 320 319 318 316 315 313 310 308 303 298 290 277
ProBLEM 4
Period 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 9 L
y*(EV) 206 296 206 296 296 206 296 206 206 296 296 296 206 206 206 296 206 206 296 296
y*(DP) 388 388 388 388 388 388 388 388 388 388 388 388 388 388 383 388 388 388 388 388
y*(Model 387 387 387 387 387 387 387 387 387 387 387 387 387 387 387 387 387 387 387 206
11I)
y*(a) 387 387 387 387 887 387 370 360 360 366 364 363 360 360 354 351 344 336 323 296
y* () 387 387 387 387 387 387 387 387 872 351 342 335 320 324 319 314 300 304 300 206
y*(c) 387 387 387 387 387 387 387 387 387 387 387 387 387 387 38L 378 370 360 336 206
y*(d) 387 387 387 387 387 387 360 360 360 354 352 351 347 344 342 336 329 323 313 296
ProsrEM 5
Period 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
y*(EV) 298 208 208 208 208 208 208 298 208 208 208 208 208 208 208 208 208 208 208 208
y*(DP) 358 358 358 358 358 358 358 358 358 358 358 358 358 358 358 358 358 358 358 358
y*(Mode! 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 380 360 299
1LI)
y*(a) 360 360 360 360 360 360 351 351 351 347 347 345 344 343 342 342 334 329 320 200
y* () 360 360 360 360 360 360 360 360 351 337 333 320 325 320 306 312 300 305 302 299
y*(c) 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 353 351 343 320 299
y*(d) 360 360 360 360 360 360 343 343 342 342 342 342 336 334 333 329 325 320 3i1 299

ProBLEM 6

The results for this problem are the same as for problem %6 since the costs functions are identieal.

The optimal policy for this model is a

Actually the easiest way to obtain y," is

. o, . % . > . . .
single critical number y,;”, for each stage j. to use either Fibonaccl or Lattice search on

Yy j* 1s the solution to:

¢+ h — (h+p+r) f

v

(5)

o [ faly=pu(e) d = 0,
() = df(z) _

dz

where f !
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Y(§) d

the expression in the brackets in (4) (see
Wilde, 1964).

An interesting characteristic of this model
is that the stage by stage critical numbers
3 . . .
Y; ,J =1, -+ ,n are nondecreasing. That is,

YI(BV) =y = ' <

(6)
< ey Syt £ YN (DP).



Anavysis oF A Murtistage INnvenTORY Task

It is easy to see the implications of (6) in
relation to the students’ performance. As
the experiment begins, ,* is the largest
critical number chosen. As the experiment
proceeds, nonincreasing numbers y;" will
continue to be chosen until Stage 1 is reached
—at which point y;*is chosen and the process
terminates at the next step. In general this
choice of critical numbers is consistent with
the 7,’s chosen by the students. However,
the students did not know n! Because of
this, Model IV is more representative
of the situation they faced than either of
the Models 111, II or I.

Model IV

Model IV has the same assumptions as
Model IIT except that it is now assumed
that the length of the horizon »n is not known
but is a random variable with known (a
priori) probability mass function TII;,
j =1, -+, M. M represents the total
number of stages and is the largest number
chosen by the experimentee such that with
probability one, the experimentee believes
(or knows) that the problem will terminate.
It is also assumed that the length of the
horizon is independent of the distribution of
demands, ¥(¢). This model represents the
problem facing the students. They were,
in reality, faced with a finite-stage single
product convex cost inventory problem
had fixed the
number of stages n in advance but to them
this number n was an unknown random
variable independent of the demands &,
in each stage.

In an early paper, Barankin and Denny
(1960) presented the essential elements of
Model 1V; however, they did not develop
its properties. Let w denote the period in
which obsolescence occurs and let p, be the
conditional probability that the problem
terminates in stage r < ¢ £ M, given that

where the experimenter

the problem has not terminated in stages

Behavioral Science, Volume 14, 1969
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M,M —1,---,t+ 1. Then
Pr=Plw=r|w=t
_Plw=r and w <t}
(7) - Plw =t}
T s e
2 I,
=1
Of course 1 — p, is the conditional prob-

ability that the problem will not terminate
in stage r, given 1t has survived to stage t.

The optimal critical numbers y; may be
obtained by solving the minimum con-
ditional expected cost function

fi(x) = mingz, {e-(y — x)
+ L(y) + (1 — p))
E|fj-1(maz(0,y — £))]},
where L(y) is the same as before and

Eij—1<ma$(0a Yy — £)] = fj-1<0)

(8)

e @+ [ Tty — Dw(o) .

The y} is obtained by differentiating the
term in brackets in (8) and setting the
resulting expression to zero. Since the term
in brackets is convex in y the resulting y;
yields the minimum. If it is assumed that
the conditional probabilities (1 — p;) are
an increasing function of 7 or equivalently
that the TII; is an increasing failure rate
distribution then it 1s not difficult to show
that

It should be noted that Model III is a
special case of Model IV with II; = 1 and
o, =0,j=2,---,n

Is it reasonable to assume that 1 — p;
is an increasing function of j? To a student
faced with the previously described experi-
ment it could easily be reasonable since the
following distributions all have the required
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property:
(a) the equally likely distribution

(1

jp o for =T
=
(

T

0 otherwise.

(b) the truncated ’oisson distribution

(< )\j—l ) ( T )\k—l >—1
(j — D! gm—m

II7=‘-J] for .7= 17"'7T
|
L

A>0

0 otherwise.

(¢) the truncated geometric distribution

) T -1
qj—l (Z qk_l) for j=1,---,T

(

( =

241 0<gx1
L0 otherwise.

(d) the discrete trmnguhr distribution

The number T is the number chosen by
the student such that the probability of
termination I, first becomes positive (7' =
M).

Any of the probability mass functions
(a), (b) or (d) might be a reasonable prior
distribution for the student to choose. (¢)
would not be reasonable since it geometri-
cally weights the final periods heavier than
the earlier periods and would not coincide
with some students’ prediction of termina-
tion in about 15 periods. Probability mass
function (¢) was included in this study to
give a more complete analysis of the behavior
of the ecritical numbers under different
distributions for the obsolescense random
variable, 7.

Whether or not any students picked
(consciously or otherwise) any of these
prior distributions is not and cannot be

for j=1,---,T

otherwise.

,_w_./
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known. It is the author’s opinion that these
distributions represent the types of dis-
tributions which persons bring to uncertain
situations of this type; however this opinion
has not been statistically validated.

OPTIMAL POLICIES FOR MODELS
III AND IV

In keeping with Rapoport’s decision to
draw his samples for a normal distribution
with mean 251.51 and standard deviation
77.58 but to restrict the actual values to
integers between 000 and 999, the following
computations were obtained' using the
same normal distribution but ignoring the
probability of a sample in the range —
to 0. That is P{X =< 0} = .00059 was
ignored. Furthermore the search for the
optimal policies in each stage y7 was confined
to the integers 000 to 400 and lattice search
was used. IFor these two reasons the actual
YT obtained vary a slight amount from the
optimal policies obtained by differentiating
the expressions in brackets in (4) and (8)
for Models I1I and IV respectively.

For Model TV the four distributions listed
in section 3 above were used. These four
distributions will be denoted by a, b, ¢ and
d corresponding to their lettering in section
3. The numbers M and T were chosen as
M = 20 and T = 14; thus for the first
six stages, numbered 20, 19, ---, 15, the
probability the process will terminate is
zero. This assumption that the problem
will last at least six stages without ter-
minating is completely arbitrary but tends
to go along with some student comments
that they expected the problem to last
about 15 stages. M = 20 was chosen arbi-
trarily also as a maximum limit & student
would believe the problem to run. Other
assumptions on M and T could be made
but with the types of distributions given
by a, b, ¢ and d the qualitative results
would be about the same. That is, we will

1 The computation weie made on the Case In-

stitute of Technnlogy digital computer UNIVAC
1v07.
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Figure 1

find that the optimal critical numbers
decrease from s to %1 in an interesting
manner. Obviously it would be interesting
to check other values of M > 20; however
if 7" is unchanged the additional values of
y; would be just the numbers vy (DP)
since the steady state is reached prior to
the 20th period (numbering backwards).

TFor distributions a, b, ¢ and d Figures 1, 2,
3 and 4 indicate the choice of parameters and
the behavior of the = distributions over the
20 stage horizon.

As mentioned carlier the critical numbers
obtained using Model 1V and distributions
a, b, ¢ and d are quite interesting. These
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Ficure 3
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results appear in Iigures 5-8. (The actual
critical numbers are tabulated at the end
of this article.) An examination of the results
shown in these figures, reveals that had
the students known the actual termination
stage n, they would have used Model III.
The results of Model III essentially show
that the best policy is vy (DP) up to the
terminal stage and 3y (EV) is optimal for
the terminal stage. That is, the ecritical
numbers given in (6) rapidly achieve the
steady state number y™(DP).

But we know that the students did not
know #n. Furthermore, given either of the
priors b or d (the author believes that b

151
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20 14 10 5 1

stages

Distribution d

Ficaure 4
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y*(model 111}

1

1 L1

1
15 10

Problem

Critical

2 periods

Numbers

Ficure 5

and d appear the most likely priors which
would be chosen from the list of four priors
given previously) the critical numbers 4™ (b)
and y*(d) decrease rather rapidly after the
probabilities II; are introduced at a positive
level.

RESULTS

The results ¥*(b) and y*(d) have been
superimposed on Rapoport’s Figures 1, 2,
3, 4 and 5 of §; for each problem. It should

Behavioral Science, Volume 14, 1969

be pointed out again that perhaps none of
the distributions a, b, ¢, and d reflect the
distributions brought to the situation.
Hence in this regard it may be misleading
to plot 4™ (b) and y*(d) against the students’
average choices since this would imply that
the average prior was y*(b) or y*(d), whereas
the average prior could conceivably be
quite different. The plotting was done not
to suggest that b or d was the average of the
actual students’ choices but to show that
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there arc distributions available which
could reasonably have been selected by the
subjects and which yield a decreasing choice
of y’s. Indeed, it is mathematically possible
to find a prior distribution which would
very closely fit the subjects’ data but that
would just be fitting the model to the data
and is unjustified in a study of this nature.

Now note that the §;’s in general depict a

Behavioral Science, Volume 14, 1969

convex decreasing trend, whereas the y*(b)
and y*(d) show a concave decreasing trend.
Thus the average student choice, although
decreasing as appropriate, does not decrease
at an appropriate rate for the choice of
priors b and d. We can conclude that either
the students failed to comprehend the
underlying dynamic stochastic process thor-
oughly or the choice of priors b and d were
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wrongly chosen to be representative of their
priors, or both. From the available data it is
difficult to say which conclusion is more
accurate—most likely, it is some combina-
tion of the two. Furthermore, as noted by
Rapoport the aggregate §,’s are too low.
If the §; curves were shifted upward, they
would represent better choices.

Both Model III and Model IV predict
that there should be zero correlation between

Behavioral Science, Volume 14, 1969

7; and the demands for the stages preceding
stage 7. Thus, Rapoport’s conclusion that
the students did not react appropriately
here in relation to the problems they faced
still holds for these models. In addition, the
fact that Group B students adapted to their
original lack of knowledge of ¥(¢) rather
rapidly is also independent of the choice
of Models IIT or IV, and Rapoport’s con-
clusions in this regard remain unchanged.
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critical
numbers
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CONCLUSION

It appears that the students did not accept
the infinite period model but rather that
they substituted a model of the form of
Model IV for their decision making. With
regard to their aggregate choices 7;, the
author believes that they acted very dy-
namically and impressively due to the fact

Behavioral Science, Volume 14, 1969

that they had little or no prior knowledge
of inventory theory. The 7; curves decrease
as the model predicts; however, they de-
crease at the wrong rate for some choices
of prior distributions, and are in general
deflated.

This paper suggests that work needs to
be done on second-order conditions on the
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Mean Stock Level Plotted as a Function of Trial
Number for Problem 4.
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Mean Stock Level Plotted as a Function of Trial
Number for Problem 6.

rate of change of the subjects response to
problems, and on the prior distributions the
subjects bring to problems. Another in-
teresting question is why the 7,’s are deflated
in relation to the optimal y™s. Is it because
the subjects have a very different and un-
usual prior distribution of the terminal
point of the problem, or is it because the
subjects are essentially conservative in a
testing environment of this nature, or some
other reasons entirely? The foregoing
suggests that more research needs to be
conducted on the topic of whether people
can and do think dynamically.
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Certainly, style is not affectation. Conscious though it may be,
when self-conscious it is an obstruction. Its purpose, to my way of
thinking, is to give the reader pleasure by sparing him the work
which the writer is duty-bound to have done for him. Writers,
notwithstanding their hopes or ambitions, may or may not be
artists. But there is no excuse for their not being artisans. The
style is the man, we are told. True in the final and spiritual sense
as this is, style is more than that. It is the writing man n print.
It is, so to speak, his written voice and, if it is truly his voice, even
in print it should be his and his alone. The closer it comes to the
illusion of speech, perhaps the better. Yet the closeness of the
written word to the spoken can, and in fact should, never be more
than an illusion. For the point of the written word is planning, as
surely as the charm of the spoken one is its lack of it.

Joun MasoN Brown, Still Seeing Things
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