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Most inventory depletion analysis has been concerned with the case of a
deterministic field life function. Since it is rarely the case that the exact field
life function of a stock of items would be known, it is more reasonable to treat
the case where the field life of an item is a random variable, X (S), which de-
pends only on the age, S, of the item upon issuance. In this stochastic case, it
is shown that the policy of issuing the oldest item first (FIFOQ) is optimal pro-
vided E[X(S)] = aS + b where 0 = ¢ > —1,b > 0, i.e., where the items have a
linearly decreasing mean value function, and where some additional, but be-
haviorally not restrictive, assumptions are made.

1. Introduction

The inventory depletion problem can be stated as follows: once put in use, an
item from an inventory of n items has a nonnegative field life, L(S), which is a
function of the age, S, of the item upon issuance to the field. The objective is to
determine the order of issue of the n items of differing ages such that the total
field life of the stockpile is maximized. Optimal policies of the form LIFO, last
in first out, or FIFO, first in first out are sought.

Most of the previous papers concerning this inventory depletion problem
require that L(S) be a known function. Thus, these earlier papers were con-
cerned with the deterministic inventory depletion model. An exception to this
last statement is [14]. Zehna considers the problem where the field life of an
item is a nonnegative random variable, X(S), dependent on the age, S, of the
item upon being issued. In this paper we will also consider this case. Further-
more, it should be noted that the total field life, @, of any issue policy is the
sum of n dependent random variables. Let U = E[Q]; i.e., U is the expected
value of Q. Then a policy which maximizes U will be said to be an optimal
policy.

Before proceeding, it will be advantageous to characterize the model explicitly.
It is assumed that: (1) At the beginning of the process, a stockpile has n in-
divisible identical items of varying ages S; < S < -+ < S, where 8; > 0.
The ages S; are called the initial ages of the items. (2) Each item has a field life
X (S) which is a nonnegative random variable dependent on the age S of the
item upon being issued. (3) Items are issued successively until either the entire
stockpile is depleted or the remaining items in the stockpile have no further
useful life, i.e., X(8) = 0 for the remaining items. (4) No penalty or installa-
tion costs are associated with the issuance of an item from the stockpile. (5) New
items are never added to the stockpile after the process starts. (6) An item is
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issued from the stockpile only when the entire life of the preceding item issued
is ended. These assumptions define the model and will be implicitly and/or
explicitly contained in every theorem unless an explicit statement to the con-
trary is made.

If one were to apply the results of inventory depletion theory, it would be
quite important to consider the case of stochastic field life functions, since it
would be an unusual situation where exact knowledge of the field life of an item
would be known prior to issuance. It is more likely that the field life is a non-
negative random variable and should be treated as such (we only consider items
which appreciate or depreciate in field life as they remain the stockpile). For-
tunately, however, for the practioner, the cases investigated in this paper lead
to the same optimal policies which occur for these types of cases in deterministic
inventory depletion theory. It is hoped that all or most of the deterministic
results will carry over to the case of stochastic field life functions; however, a
means for proving this has not, in general, been found.

In the next section it is assumed that although the specific field life function
for a given item may not be known, it is known that any given item must obey
one of a family of field life functions. Under certain conditions it is shown that
FIFO is optimal. In the final part of the section it is assumed that the number of
items in the stockpile, n, is neither large enough nor is the deterioration fast
enough such that any item deteriorates to zero field life prior to its issuance.
In this case it is again shown that FIFO is optimal under certain conditions.

Since Theorem 3 of Lieberman [9] is used frequently, we state this theorem
here: “If (i) L'(8) = —1 and (ii) L(S) is a nonincreasing or nondecreasing
concave function, then FIFO is an optimal policy.” In this theorem L(S) is a
known function.

2. Decreasing Field Life Functions

We now consider the case that, although the specific field life function for a
given item may not be known, it may be known that any given item must obey
one of a family of decreasing field life functions. More specifically, we will
assume that X(S) takes on a value Li(S) = a;S + b; with probability p; (¢ =
1,2, -+ ;2 5 pi = 1,p: = 0). Furthermore, it will be assumed that 0 < Li(S)
< Ly(S) < --- for0 £ 8 < 8o, and Li(S) = 0,for So £ S < »© with S =
—bi/a;foralls = 1,2, - -+ . Syis called the finite truncation point.

Note that, in general, if L(S) is a decreasing function of S and L(0) > 0,
then Sy £ + « is a truncation point for L(8) if and only if

Sy = inf {Se[0, ») | L(S) < 0}
and then L(S8) is redefined to be
L(8S) = L(8) > 0 forall Sel0,Si)
=0 forall Sz S (Zehna [14]).

Diagrammatically for the case of two field life functions Ly(S) and Ly(S),
see Figure 1.
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The interpretation of this stochastic model can be given as follows. We have
n items in inventory each of which deteriorates in accordance with one of a set
of continuous nonincreasing field life functions. It is not known which specific
function an item will follow; however, the probability of it following a given
function is fixed and independent of the age of the item. When an item is young,
its range of possible values is large with respect to its actual field life, but, as the
items age, those with lower quality initially, do not deteriorate as fast. The
process of deterioration continues until all of the field life functions approach
the same truncation point. Note that when p; = 1 for some %, this model reduces
to the linear case of Lieberman’s [9] deterministic model.

Before proceeding to the case where the field life of an item is a random variable,
we will state and prove a lemma in which we assume the field life function Li(S),
2= 1,2, - is known for each item Sy, --- , S, .

Lemma 1. Let Li(S) be a nonnegative decreasing function with the follow-
ing properties. Li(S) = a:S 4+ b;,,0 = 8 = Soand Li(S) =0, 8% = S < =,

=12, --- where 0 > a; = —1. Let there be n items in the stockpile with

initial ages 0 £ S1 < 8, - -+ < 8, < So. Suppose the field life function of item
7 18 Li;(8S) and that for each 7, i(7) is known. Then FIFO is optimal.
Proof. Suppose n = 2. Let 72(1) = s and ¢(2) = {. We must show

(L.1) Qr — Qr = Li(S:) 4+ LS + Li(8:))
— L(81) — Li(8S: + L.(81)) = 0,

where Qr and @, are the total field lives from FIFO and LIFO policies respec-
tively.
Note that for any z and j

Si + Li(Se) = S + ;S + b;
< 8 + a;S; + b; < So implies
(1.2) Li(8 + Li(8y)) > 0.
If Li(S: + L(S1)) = 0 then
Qr — Qr = @Sy + by + a:.(S: + aiSe + b)) + b — asSy — bs
= (14 a:;)(aS; + b)) > 0, and (1.1) holds.
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If Ly(8S: + L.(S:1)) > 0, then
RQr — Qr = alS: + b + a.(S: + a:S: + b:) + bs — a8y — b,
~ a(S: + @51 + bs) — be
= @:as(Se — S1) + abe — abs = a:a,(S: — S1) > 0,

since a,b; = ab; and (1.1) again holds. Therefore FIFO is optimal for n = 2.

Assume FIFO is optimal for n items, we must show FIFO is optimal for
n + 1 items. Let Qr(n + 1) and Q4(n + 1) be the total field lives from FIFO
and an arbitrary policy A respectively when there are n + 1 items in the stock-
pile.

Let S denote the initial age of the last item issued under policy 4, and let S
have field life function L.(S) = a.S + b, . Moreover, let z denote the total
field life from the first n items issued. Then Qi(n + 1) = z + a(8 + z) + b,
and [dQ.(n + 1)/dz] = 1 + a, > 0. Hence Q.(n -+ 1) is an increasing function
of z, and Q.(n + 1) is maximized by making z as large as possible. But by the
inductive assumption z is maximized by FIFO; therefore Q.(n - 1) is maximized
by using FIFO on the first n items issued.

Now, if 8 5% S:, then S; is issued next to last and since Q#(2) — QL(2) = 0,
then the total field life of @4(n + 1) can be improved by interchanging the order
of issue of the last two items. Hence, S, is issued last, and the first # items are
issued by FIFO by the application, again, of the inductive assumption.

This lemma in itself can be used as a generalization of the linear case of Lieber-
man’s model in deterministic problems. However, in this paper we use it as a
stepping stone to the following theorem.

Theorem 1. Let L«S) and the n items in the stockpile be defined as in
Lemma 1. Let X(S) be a random variable which takes on any one of the values
L(8) with probability p: (D imips = 1, p; = 0,7 = 1,2, ---). Then FIFO
maximizes the total expected return for all n = 2.

Proof. Consider any realization of the random variables, i.e., the first item
has realization Lia)(S), the second Liw(S), etc. By Lemma 1, if this realiza-
tion were known in advance FIFO would be the optimal policy. Thus, if we let
all possible realizations K be indexed by £ = 1, 2, - -+ , K (K may be infinite)
and the probability of the kt* realization be denoted by P®  then

Ur— Us= D o2 [QP — QF1PY = 0.

It is possible to establish a form of Theorem 3.1 for L:(S) concave nonin-
creasing when there are but two items in the stockpile.

Theorem 2. Let X(8) be a random variable which takes on any one value of
the values Li(8) with probability p; (5 = 1, 2, -+, 2 fmp: = 1, p; Z 0).
Let n = 2 items in the stockpile. -

Let Li(S) have the following properties:

(i) Li(8) is concave for all S ¢ [0, So
(ii) L:«(8) = 0 for all S £ (So, ) and L(8) > 0 for all S & (0, So)
(i) 0 = L'(S) = —1foralli = 1,2, --- and all S £0, Sd.
Then FIFO maximizes the total expected return.
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The proof of Theorem 2 follows directly by writing out Uy — UL = E[Qr — Q4]
and showing that this difference is nonnegative.

A further and more important generalization of Theorem 1 can be given where
we consider the dynamic inventory depletion model of adding new items to the
stockpile at times in the future.

Corollary 1. Let the hypotheses of Theorem 1 hold. Then FIFO is optimal for
the dynamic model where N new items are added one each to the inventory at the
N different future times Fy, - - - , Fx . The new items have age § = 0 when they
arrive.

Before indicating the proof of this corollary, it will be useful to prove a theorem
for the case of a single known field life function L(S), i.e., the deterministic
case. First some definitions are needed.

A stockout occurs if the customer (demand source for the items in the stock-
pile) demands an item from the stockpile, and the stockpile is empty ; therefore,
the customer must wait until a new item arrives, at which time the new item
is immediately assigned to the customer. A customer demands an item from the
stockpile only when the life of the previously issued item is totally used up.

Theorem 3 following proves that for the case of a single customer and known
field life function L(8), FIFO is the optimal policy provided L(S) is concave
nonincreasing and L'(S) = —1. In a previous paper [10] Corollary 1.2 we had
assumed also that no stockouts may occur in order to obtain this conclusion.
Thus, Theorem 3 removes the no stockout assumption for the case of a single
customer.

Define the dynamic model as the dynamic inventory problem of finding the
optimal issuing policy for the n items of initial ages 0 < S < S < - -+ < 8,
which are originally in the stockpile and the N items which are added one at a
time to the stockpile at age 0 at times 0 < ¢, < f; - - - < &y which are represented
by numbers F; = —t; and can be thought of as future times measured on the
negative half of the S axis (see Figure 2). Thus the item with F; arrives first,
F, second, ete. Denote by L™(S) the left hand derivative of L( - ) evaluated at S.

Theorem 8. Let L(S) be a continuous concave nonincreasing function with
L7 (8) = —1forall S = Spand L(0) > 0. Then FIFO is optimal in the dynamie
model.

Proof. By Lieberman [9], Theorem 3 FIFO maximizes the total field life of

L(s)

L L1 L 1
Fn Fa Fi S Sz Sp So

F1gUre 2
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the first n items in the stockpile. If item F; arrives before the first » items are
consumed by any policy A then by [10], Theorem 1.1, FIFO maximizes the total
field life of the first N - 1 items. [Note that Theorem 1.1 of [10] states that under
the conditions of Theorem 3 above and if, in addition, FIFO is optimal in the
static model where new items are not considered and if no stockouts occur in
the dynamic model, then FIFO is optimal for the dynamic model.]

If there is some policy A such that all n items are used up before F arrives,
then we must show FIFO is still optimal for the n + 1 items. Let zr and x4
denote the total field life of the original n items in the stockpile when issued by
FIFO and by policy A4, respectively. Let Q@ and Q « denote the total field life of the
n -+ 1 items issued by FIFO and by policy A respectively.

Case 1
4 < —F; and zr < —F
Then since zr = 4 from Lieberman [9] Theorem 3
Qr = zr+ L(0) = z4 + L(0) = Q4.
Case 2
24 < —~F, and zr= —F,

LetVi=2r,+F,=20and Uy = —F; — 24> 0then Vy 4+ Uy = 2p — 24> 0.
Since L( -) is concave nonincreasing with L7(S) = —1 for all S £ S and by
Lemma 1.1 of [11] L(xr + Fy) > 0 and since Sy > 0, L(—U;) = L(zs + F1) > 0
then

[L(zp + F1) — L(za + F1)]/(zr — 24) = —1 implies
L(ze + F1) + 2r = L(zxs + F1) + 24,
but L(-) is nonincreasing and 0 > z. + Fi,
Qr = L(zr + F1) + zr =2 L(0) + 24 = Qu.

Hence if one item is added at time F; then FIFO is optimal.

We now assume FIFO is optimal for adding N — 1 items. Now let zr and x4
denote the total field life of issuing the first n + N — 1 items by FIFO and by 4,
respectively. Let Qr and Q4 denote the total field life of issuing the n + N
items by FIFO and by A, respectively.

Case 1
Ta < —Fy and zr < —Fy.

By inductive assumption zr = 74 and Qr = zr + L(0) = za + L(0) = Q4.

Case 2

T4 < —FN and a:pg —'FN.

Use the same argument as Case 2 above.
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Case 3

2342 —FN.

Now Fy might arrive while there are still items in the stockpile. In this case
we must consider all possible policies A and not just those which issue Fy last.
If no stockouts occur, then by Pierskalla {11] Theorem 1.1, FIFO is optimal. If a
stockout did occur at some time, then we know that item S, (the oldest initial
item) could not be issued last. Let F denote the initial age of the last item issued
Fe{Fy, - ,Fy}butF = 8, (infact F ¢ S;,72 =1, --- ,n). The remainder of
the proof for this case directly parallels the proof given for Lemma 1 above,
and FIFO is optimal for the dynamic model.

Now the proof of Corollary 1 follows directly from Theorem 3. It is only
necessary to show that FIFO is optimal for any realization of the dynamic
stochastic model, for then we just weight the realizations by their probability
of occurrence and sum them. But FIFO is optimal for each realization by using
the same proof as for Theorem 3 where we consider the special subcases as given
in Lemma 1.

In the previous theorems and corollaries of this section the finite truncation
point S, played a major role in the proofs. It is precisely this point So which makes
extensions of the results to other types of decreasing mean value functions very
difficult. This problem can be avoided if it is assumed that regardless of what-
ever issuing policy is being followed, no item ever reaches zero field life prior to
its issuance. Actually we will assume:

Assumption 1: If x; is the total field life of the first 7 items issued under
any policy then Siyy + 2; < Soforalle =1, --- ,n — 1
where S;;1 is the initial age of the 7 4 1%t item issued.

This assumption implies (1) the amount of inventory on hand is not large relative
to its age in the stockpile and to its rate of deterioration and (ii) no item in in-
ventory ever has an excessively long field life on issuance, i.e., there is a finite
upper bound to the actual field life that an item can have. Thus, for example,
we would not permit the gamma distribution to represent the distribution of
X (8); however, a truncated gamma distribution may be acceptable provided
its upper bound does not conflict with the requirements of Assumption 1.

Now Assumption 1 is not a particularly restrictive assumption. In a practical
situation we would not want to procure so much inventory that some of it would
deteriorate to zero in the stockpile. Secondly, the types of items we are considering
such as tires, batteries, industrial chemicals, etc., do not deteriorate at a rapid
rate. For example, if we represent the distribution of X(8) by the uniform dis-
tribution and if we assume a linear mean value function we obtain a deterioration
graph (see Fig. 3). Then when Assumption 1 holds E[X(8)] = aS + b where
X(8S) has probability density f(¢) = 1/[2(b — bo)] for aS + by < t <
aS -+ 2b — boand b > by > 0,a > —1, and f(¢) = 0 otherwise.

We now demonstrate a theorem which gives the optimal policy for this case
among others. ‘

Theorem 4. Let X(8S) for 8 = 0 be a nonnegative random variable. Let
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x(S)
2b-b, aS+ 2b-be
b aS+b
bo aS+b,
(o] S

Figure 3

E[X(S)] = aS + b where b > 0, ¢ > —1. If Assumption 1 holds, then FIFO is
optimal forn = 2.
Proof. Let
T; = the age of the 7** item issued when it is issued to the field,
Y; = the field life of the #** item issued after issuance to the field,
Z; = total field life of the first 7 items issued.
Then we have
Yy =7, = X(T1)
Yi=X(T:i+ Z:s) for 2> 1
Z¢= Y,'+Z1:_1 for 7> 1.
Let E[X(T)] = g(T) = aT + b.
Since

Z; = X(T; + Zi1) + Z;—y then
ElZ] = El[Zi) + EIX(T; + Zi-)]
= E[Z:.) + ElE[X(T: + Zi4) | Z:]]

= ElZ;4] + fE[X(T; + Zia) | Zia = u) dFz,_,(u)

= Bz + [ 1g(T) + au] dFs,_,(w)

= (1 + a)E[Z;~] + ¢g(T;) by Assumption 1
= 2% (1 + a)’g(Tiy).
Since (1 + a)’ is increasing in j, E[Z] is maximized by ordering the T’s so
that g(T1) = g(T2) = -+ = g(T:). But this ordering is just the FIFO ordering.
Thus, for the example of the uniform distribution given above, FIFO is
optimal. Another interesting example would be the case Li(S) = aiS + b;

where a; > —1, b; > 0 for all 7 and p; is the probability of occurrence of L:(S)
but without the restriction that Sp is the same for all <. Then, if Assumption
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1 holds, we have E[X(8)] = > :Li{(S)p: = 2 i (asS + b)p: = > ;apS +
Dibpi=0aS +bandd > 0,a > —1; we merely apply Theorem 4 and see
that FIFO is optimal. ’

Again a further generalization of Theorem 4 can be stated.

Corollary 2. Let the hypotheses of Theorem 4 hold. If no stockouts occur, then
FIFO is optimal for the dynamic model where N new items are added to inventory
one each at the NV different future times £, - -+, ¢ty . The new items have age
S = 0 when they arrive.

Proof. By Theorem 4 FIFO is optimal for the static model. The remainder of
the proof is the same as for Theorem 1.1 of [10].

For the case of a linearly decreasing mean value function with slope = —1
and Assumption 1, FIFO is the optimal poliey. It is not known if FIFO is optimal
when 0 > a > —1 and Assumption 1 does not hold; however, in this latter case
and for most real problems, if FIFO is not optimal, then it must be ‘“‘close” to
optimal. And since FIFO is easily implemented, in general, it would be reason-
able to use FIFO whether or not Assumption 1 applies at all times.

It should be mentioned that the preceeding theorems, lemmas, and corollaries
generalize to the case of batches of items of the same age in the stockpile. That is,
at the start of the process a stockpile has M sets of indivisible identical items
where the items in the 7** set all have the same initial age, S;,for< =1, --- , M.
The initial age of the items in any set, say the 7** set, is different than the initial
age of the items in any other set. Then if we assume 0 £ S; < S < -+ <L
Sy < Sy and that the 7t set contains n; items for 7 = 1, ---, M, then

Xin; = n. The same modification holds for adding batches of items of the
same age to inventory at the future times #;, ¢, --- , {, . This extension of the
preceding results follows directly from Theorem 2.1 of [10] [viz. Let L(S) be a
continuous function. If FIFO (LIFO) is optimal without batches of items, then
FIFO (LIFO) is optimal when batches are allowed].

The author would like to express his gratitude to the referees for the helpful
comments and suggestions they made.
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