Chapter 6

A Stochastic Field Life Function

All of the previous results depend upon L(S) being a known
function. In practice; this assumption is often not satisfied. However,
it may be the case that although the specific field life function for a
given item may not be known, it may be known that any given item must
obey one of a finite family of field life functions. More specifically
we will assume that the field life of an item of age S on issuance is
a nonnegative random variable, X(S) . X(S) tekes on a value Li(S)
with probability p, (i =1, 00 5 M, _%l p, =1, p;2 0). Further-
more it will be assumed that O < Ll(s)l; L2(S) < voo < LM(S) for all
se[0, 5)) and L,(s) = L;,,(8) = 0 for all s8e[S_, ) and for all
i=1, ... , M=1,.

Diagrammatically for M =2 and Li(s) concave for Se[O, SO] , We

have

X(8)
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Thus with the other assumpticns of the model (cf. Chapter 1)

holding, the total field life, QA
n

prccess and any policy A is a function of n dependent varisgbles., A

» for any given realization of the

realization of the process is e.g. Sl lies on L2 when issued, 82

lies on L2 when issued, S3 lies on Ll when issued, etc. for Sh
through Sn o

The total expected return from policy A, UA , 1s given by
n

UA = E[QA " . The cbjective of this stochastic process is to find the
n n

issue policy which maximizes Un 5 the total expected field life,

The interpretation of this stochastic model follows easily. We
have n items in inventory each of which deteriorates in accordance
with one of M fieid life functions. It is not known which specific
function an item will fcilows; however, the prcbability of it following
a given function is fixed and independent of the age of the item. When
an item is young, its range of possible vaiues is large with respect to
its actual field life; but as the items age those with lower quality
initially,; do not deteriorate as fast, The process of deterioration
continues until all of the field life functions approach the same
truncation point., When p; = 1 for scme i , this model reduces to the

previous deterministic model.

Theorem 6.%.: Let X(S) be a random varisble which takes on any one value
of the M wvalues Li(S) with probability p, (i =1, 2, oo0 , M,

M

> p, =1, p, > 0), Let v =1 . ZLet Li(s) have the following

i=1 '

propexties:
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(i) Li(S) = a;5 + b, for all Se[O, so] and Li(S) = 0 for
all S > So and 811 i =1, ... , M,

14 > >aoa - -
(i) by > By 4 >b, >0>a >a, > > ey > -1

Then FIFO maximizes the total expected return for all n >2 .

Proof of Theorem 6.1: For any fixed policy there are M* possible

realizations of the total field life from the n items in the stockpile.
Let Qg and Qi be the jth such possible realization by FIFO and
by an a?bitrary pglicy A respectively, where the realizations are ordered
from 1 to M’ on the basis of their probability of occurrence. Thus

the probability of occurrence of Q% , denoted by P(J) is identical
n

to the probability of occurrence of QJ o Thus
An

n
M
- J J ypld) _
Up - U, = ¥ (@ -Q )P =Bl -q 1. (6.1.1)
n n J=1 n n n n

We must prove UF - UA >0 . It is sufficient to show
n n

Q,g, -Qi\ >0 forall j=1, ..o, M.
n n
(6.1.2)
Tet n=2 . Then for two items each realization must take one of these
three cases:
(1) s, lieson &a.8+ b, and S, Llies on ajs + bj for some

1 J J 2

j=l’ona,Mu

1 2
J <k,

(2) S, 1lies on ajS + bj and S, lies on a8 + b, for some
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{ 3) 8, 1lies cn &S + b and S, lies on ajS + bj for some

J<k.

T ] | L = ) =
Note that since J_.j(S ) Lk(S ) =0

b b
= SO = = —'1 = = -—1-2
aJ 8y
= ajbk = akbj for all j, k=1, 200 , M
(6.1.3)
In addition, by lemma 2.1
Lk(s]L + uj(sz)) >0 (6.1.4)
fOI’ all j,k=l’ 00 o ,Ma
Case (1)
. N . L o A = +. Pl . 3 _5_ =
(i) 1If Lj(82+ j(sl)) a,j(s2 ajbl+bj) bj O then
(1) (1) : L Ly s
= =a,5.+b. +a,(8. +a,5. +b,) +b, = a,5. = b,
QF2 QL2 J2 J J( L Ja J) 5% J

2
e.S.+b, ~a5S, + a.,b,
Ja J J 2 JdJ

H

(1 +a,)(a,85. +Db,) >0
1a)ieg, ¢ b))

since 1 + 8y >0 and aj82 + bj >0 by assumption (7) of

the model.
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(ii) 1If Lj(82 + Lj(Sl)) > 0 then

(1) (1) -
e - Qr ajs2 + bj + aj(Sl + aj82 + bj) , bj

- .S. +Db, +a,(s. +a,S. +b,) +Db,
[aJ 1 J aJ( 2 " 85% J) J]

>0 since 32 > Sl o

2
a.J.(S2 - Sl)

Therefore Qél) > Qél) in both subcases.
2 2

Case (2)

(1) 1f Lk(s2 + Lj(Sl)) = ak(82 + ajsl + bj) +b =0 then

2) _ Q£2)

2 2

8, Sy + by +as(S) ~ s, * by ) * by - a8 - by

b

(1 + aj)(ak82 + bk) >0

since 1 + 8 >0 and &b, +Db >0 by assumption (7).

(ii) If Lk(82 + Lj(Sl)) >0 then using (6.1.3)

(2)

O
-
1]

Sy * b +ay(8) + S, ) + by
- [ajsl + bj + ak(52 + ajSl + bj) + bk]
= asa (S, - S7) + ab - ab,

ajak(82 - sl) >0

since ajak >0 and S
(2) 5 of2)
2 L2

2"Sl>Os

Therefore Q in both subcases.

F
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Case {3)
(i) 1If LJ(SE + Lk(sl)) = 0 then
(3) _

(
Q Qr
F, L

3) 4 + + } -
. 85, + by v (S) *aS, +by) vy - g - by

(L + ak)(a,Js2 +,bJ.) >0 .

)

(ii) 1f LJ.(82 - Lk(Sl)) >0 then using (6.1.3)

N
~——
1
O
e~
W
~—r’
|

_ ajsg + bj - ak(sl + aj52 + bj) + bk

- [a.kS1 + b+ aj(s2 + a8 * bk) + bj]

ajak(82 - Sl) + akbj - ajbk

aLJ.a.k(s2 - Sl) >0 .,

Therefore Qéz) > Q£Z)

Hence in all three cases (60102) holds and

in both subcases.

Assume (6.1.2) holds for n , it will be shown that (6.1.2) holds for

n+ 1., That is we must show

+
k -Qi >0 forall k=1, o.M

n+l n+1

Let S*% denote the initial age of the last item issued under policy A

and let S* have realization Lr(S) = arS + br under outcome k.
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Moreover, let x denote the total field life from the first n items

issued under outcome k . Then

k _—
= ; * + +
Q, (x) =x+al(s x) + b
n+l
k
aQ, (x)
and ntl =1l+a >0
dx - T °
k . R R . k . .
Hence @Q (x) is an increasing function of x , and Q is maxi~-
A A
n+l n+l

mized by making x as large as possible. But by the inductive

assumption x is maximized by FIFO; therefore Qk is maximized by

An+l

using FIFO on the first n items issued.

Now if S¥* ¥ Sl then Sl is issued next to last and since

Q% - Qﬂ >0 forall J =1, co0 , M2 then the total field life of
2 2

Qi can be improved by interchanging the order of issue of the last
ntl

two items. Hence Sl is issued last and the first n items are issued

by FIFO by the application, again, of the inductive assumption. Since

k was arbitrary

k +
QHIF{ -Q >0 forall k=1, oo, ML

n+l n+1l

Therefore Uf - UA >0 since A was any arbitrary policy. Thus
n+l n+l

FIFO maximizes the total expected return.

g.e.do
Theorem 6.1 can be generalized to a countably infinite family of

Li(S) = a;5 + b, where X(S) takes on any Li(S) with probability bp,
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o]
and Z: p, = 1, pi=3 O for all i ., This generalization follows
i=1

from the fact that O < QX <K <~ for any policy A and all i , where
n
XK 1is a constant upper bound. Thus;,

p p o 0 o p
" ‘. & Ve k. “k k
k=1 ko=l k =1 Aklk2 k12 n
[e o] 00
<K Z ooo Z ooo p =K<(X)
kl=l k =1 pk1 kn
n
and
1 1 1
Up = Uy = 2 (9 -q )P <=
n n i=1 n n
since also
0< i Qi <K for all i
QFn An .

It was hoped that Theorem 6.1 could be extended to the general case
for Li(s) concave nonincreasing. Repeated attempts to do this have
not been successful. For one thing Q% - Qg _é O for ell j . How=-

n n

ever it is possible to establish a form of Theorem 6.1 for Li(S) con=-

cave nonincreasing when there are but two items in the stockpile.

Theorem 6.2: Let X(S) be a random variable which takes on any one

value of the M wvalues Li(S) with probability p,
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M

(1 =1, 2, coo y M, ¥ p; =1, pi_>o)° et y =1, Let n=2

i=1

items in the stockpile. Let Li(S) have the following properties:

(1) Li(S) is concave for all Se(O, So]
(ii) Li(S) =0 for all Se[SO, w) and Li(S) >0 for all
se[0, so)

PRy [ H o0 o0 1 -
(111) 0 >1Li(8) > Li(8) > >1Ly(s) >-1 for se[0, 8] .

Then FIFO meximizes the total expected return.

Proof of Theorem 6.2: We must show UF - UL _> 0O . Define
2 2

Qij - Qij = 1,(8,) + L(s; + 1(8,)) - [y (8)) + Ly(s, + L.(8,))]

Then
Iy i iy (1)
UFQ ) UL2 =i (QFQ ) QLE)P E[QFQ ) QLz]
M M
= kgl jgl (Q . - QLKj)pka
M s M k-1
k:[:l (py ™ OB k§2 jgl [ x g R 173
(6.1.5)
We will show
QG - Q >0 (6.1.6)

and
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Qij - Qij + Qij - Qij.E O for all j, k; j # k
(6.1.7)

Then (6.1.5) has U, = U >0 since p, >0 for all i =1, ... , M.
F2 L@ - i-

Now (6.1.6) follows immediately from Lieberman [9] Theorem 3. Hence

it is onliy necessary to prove (6.1.7). Let any Jj, k be given such that

J ¥ k ; then
Q - + - =L,(8,) + L (s +L,(s,)) -L(sS.)
Fop Qij Qij Qij 352 S T 5 L {5y
- Ly(8, + Ly (8))) + i (sy) + Ly(sy + L (s,))
- Lj(Sl) - Lk(s2 + Lj(sl)) o (6.1.8)
To prove (6.1.8) is nonnegative, we first establish two relationships:

K o + .
(1) By lemma 2.1, 8, Ljfsz) <5, and S, + Lk(s2) < 8

L.(s ) - L.(s,)
(2) —4—2 J 21>
S -8 =
o 2
= 8§, 2>8,+ Lj(SE) . Similarly
5, >8, * L(s,) .
Case la: S, * Lk(Sl) < So

Then since Li(°) is concave nonincreasing

L,(5y) - Ly(s,) VLt L(83)) - Ly(8; + L (8)))

82 - Sl - 82 - S1
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S 1,(8)) - ,(8)) 2 T(5, + L (8))) - Ly + 3()))

> Lj(82 + L (8))) - Ly(s) + L(8s,))

since S, - §; >0 and Lj(Sl +L.(8,)) > Lj(Sl + L(s))) -

Hence we obtain
Lj(SE) + Lj(Sl + L(s,)) . Lj(Sl) - Lj(s2 + L (8))) > 0. (6.1.9)
Lese 1b: S, + Iy (8y) > 8,
Then

L,(8,) - Ly(8;) . L(s,) - Ly(8) + L (S5))
S, =8 = 5, - (5 T ()

N L(8,) - Ly(8) + L (S,))

- S, - 5

since by (2) above S, - Lk(Sz)-E S, ; hence S, - Lk(S2) - 5

>s

5= 5 > 0 and since L(So) - Lj(Sl + Lk(Sz)) < 0 , But then we

have

4 -+ = > o 60 o O
Lj(Sz) Lj(sl Lk(Se)) Lj(Sl) >0 (6.1.10)
Case 2a: S, + Lj(Sl) <8

Then just as in case la with J and k interchanged, we obtain

Lk(Sz) + Lk(sl + Lj(S2)) - Lk(Sl) - Lk(s2 + Lj(Sl))-E 0 .
(6.1.11)
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. + L ( > 8
Case 2b: S, j(sl) E
Then just as in case 1b with j and k interchanged, we obtain

L (5,) + L (8 + Lj(Sz)) - L(8) >0, (6.1.12)

Then adding (6.1.9) to (6.1.11) or (6.1.12) we see that (6.1.7) holds.
Or adding (6.1.10) to (6.1.11) or (6.1.12), again (6.1.7) holds. But
we have exnasusted all possibilities for (6.1.8), Hence(6.1.7) holds for

all j, k,; J % k since J and k were arbitrary. Therefore

g.eo.do.
This theorem (6.2) also generalizes to the case where M 1is countably
infinite,

A further generalization of Theorem 6,1 can be stated immediately.

Corollary 6.1: Let the hypotheses of theorem 6.1 hold. If no stockouts

occur, then FIFO is optimal for the dynamic inventory depletion model.

Proof of Corollary 6.1: As shown in the proof of theorem 6.1, FIFO is

optimal for any realization in the extended prcblem. Since no stockouts
occur then FIFC for any realization in the original problem equals FIFO
for the same realization in the extended problem. Now assume there
exists some policy A which has a greater field life than FIFO for some
realization of the original problem. But then policy A yields a greater
total field life than FIFO in the extended problem since all policies of

the original problem are contained in the set of all policies for the
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extended problem, Since FIFO is optimal for the extended problem we
obtain a contradiction hence A cannot be optimal for the original
problem, But A was arbitrary for any realization hence FIFO is optimal

for the dynamic model.

g.e.d.
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Chap.er 7

Batches of Items of the Same Age in the Stockpile

It has always been assumed that the n items in inventory all have
different initial ages. In general, this assumption is not necessary.
With minor modifications, the theorems, lemmas and corollaries of the
preceding chapters as well as most of the resuits of the papers refer-
enced in the Bibliography can be stated for batches of items of the same

age. More specificaily we modify assumption (1) of the model as follows:

Assumption {1)’: At the start of the process a stockpile has N

S s . e .l . .. .th
sets of indivisible identical items where the items in the 1

set all have the same initial age, Si ; for 1i=1, ... , N . The
initial age of the items in any set,; say the ith set, is different
than the initial age of the items in any other set. Assume
e th
d oo < < t A Y i i .
0< 5, < 82 < Sy <8, and hat the 1 set contains n,

N
items for i =1, veo , N . Then ) n, =n.
i=1

For ease of adapting the previous results to the batch problem we
make the following ordering of the n items.

the next n

Let the first n items be numbered from 1 +to ‘n 5

1 1’

' n + 1 . F ] g items from n, + n, + 1
items from oy 1 to n, ton, the next n5 ems 0 1 -

to ny + n, + 1'1"5 5 etec. until all the items possess a number from 1 to

n and such that Sitf Si+l for all 1 =1, 200 , n - 1 . We note that

there are fT ﬂni)l ways Lo complete the above ordering; hence chocosing
i=L
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any one of these ways is somewhat arbitrary. However the total field
life realized from the n items by any policy under any one of the
II (ni)i ways 1s the same. Thus we choose an ordering and define FIFO
(LIFO) as the policy which issues the highest (lowest) indexed item in
the stockpile each time an item is issued.

We now prove a general theorem which applies to most of the previous

results in inventory depletion theory.

Theorem 7.1l: Let L(S) be a continuous function. If FIFO (LIFO) is
optimal when assumption (1) of the model holds, i.e., when there are no
batches in the inventory, then FIFO (LIFO) is optimal when assumption

(1)' holds, i.e., when batches are allowed.

Proof of Theorem 7.l: We will prove the theorem for FIFO; the theorem

for LIFO follows mutatis mutandis.

Let € = min [S.,,. =S, ,S =8]1>0. e exists since
1<i<N-1 i+l i o SN o
0< Sl < 82 < oo < SN < o ., Consider any € such that

€, >€>0 (7.1.1)
and consider the n items defined by

€
P —|—-—————--——-—‘— ° o
T.j-—S. .'j F 1 (112)

for all j =1, eoo , n, and i =1, .co , N . Then from (7.1.2) we
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T < : < 200 T T s00 oo o . ’ °
< Ill g Il? . < Ilnl < r2l < <T 1 < < TNHN < SO

(7o1.3)
Denote by QF(e> and QACe) the total field life from the issuance of
the n items of (7.l.3) by FIFO and by an arbitrary policy 4,
respectively. Dencte by QFB and QAB the total field life from the
igsuance of the n items in batches by FIFO and by an arbitrary policy
A, respectively.

Since L(°) is a continucus function, then QA is also a continucus

function for any policy A.

Hence for any & >0 and ® sufficiently small there is an € > O

such that ¢ satisfies (7.1l.1) and such that

Qplel]| <8

IQFB

and

IQAB - QA(E)! <5 .
Then

o, 707 Qe (7.1.k)
and

le) >qy -5 (7.1.5)
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By hypothesis however
ap(e) >q,(e) (7.1.6)

for all ¢ satisfying (7.1.1). Thus

Q. >q, -25. (7.1.7)
FB AB
Now (7.1.4), (7.1.5), and (7.1.6) hold for all & > 0O where: QF(e) and
QA(e) are defined by the issuance of the items in (7.1.3). And since
8 >0 can be made arbitrarily small, we have

>Q
Q‘FB— A

for any arbitrary policy A.
g.e.d.

The foregoing proof also holds when we consider the stochastic case
since UA is the sum of continuous functions, QA. 3 hence UA is also
continuous. In the case of Chapter 6, the continuity of UA in the
countably infinite case follows from the dominated convergence theorem,
i.e.
- Q, (e) p(1)

Q
AB,i i

o0
lu, -ule) < Y
Ag N T i=1

=]

but since Y |Q - q, (e)
i=1! A4 Ay
all QA and any A , then there exists an N such that

P<1)‘§ 2K where K 1is an upper bound for
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o0 .
z: P‘l) < = ard we have
N

, & Ly
1=N+1
o0 (_-)
U, - Uger] < Y lQ - q, ()P’
AB A i AB,i Ai
N \) N
_ l - / 1 + € ,
< Tley -y tele 2K<1;1—<)
i=1 B,i i
But QA is continuois hernce we can choose
- (e <.fi
lQAB - e <5
51 i
then
|y, - e)| < ng - Q (€)|P(i) + =
Py T A 2 19y A 2
=1 Byi i
N
(i) € | €
= "E: F 2N 2
i=1
€ € _
<N B *?2- € o

We will now consider the batch problem relative to the results of
each of the preceding chapters. As mentioned previously certain modifi-
cations to the hypotheses are in order. In the theorems, lemmas and
corollaries where it was assumed that L (S) > -1 for all Se(O, SO]
we wiil now assume

L(s) - L(so)

= So > -1 for all Se[O0, SO) .

(7.1.8)
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This assumption guarantees that none of the items under FIFO deteriorate
to zero field life prior to issuance. Thus lemma 2.1 holds for the
batch problem. Rather than restating and proving all of the results of
the preceding chapters, we will just prove Lemma 2.1 under assumption
(701.8) and for the remainder of the theorems and lemmas we will merely
point out certain changes which are required in order to complete their
proofs for the batch case. Some of the changes will not be listed since

they are quite obvious when going through the proofs.

Proof of Lemma 2.1 assuming batches and (7.1.8): The proof will be by

induction. Assume N = 1 . Thus there are nl = n items of the same

age S, , 0<8, <S8 . Now L(Sl) > 0 for the first item issued.
Let x denote the total field 1life from the first k = 1 items issued
by FIFO. Assume the lemmas is true for the first k items issued, then

L(Sl + x) >0 by the inductive assumption. By (7.1.8) we have

L(SO) - L(sl + x)
SO - Sl - X

> =1

which implies S, + x + L(s, + x) < sO . But sl + x + L(sl + x) is

1
the age of the k + lst item upon issuance; hence

+ + .
L(sl x + L(sl x)) >0

Now assume the lemma is true for N - 1 . It will be proved true
for N Dbatches. Let y denote the total field life from the first
N = 1 batches issued by FIFO but not including the last item issued in

the last batch, i.e., y is the total field life from the FIFO issuance

of the items indexed from n down through item ny + 2 .
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Then by the inductive assumption

for item n, + 1 in the n2nd batch. By (7.1.8)

(e Y - T(E 4w
Lis, L{S, y)

—— > -1
So - 82 y
implies
+y + +
S, >S5, +y * LS, + )
>s. +y + LS, +y) - (7.1.9)
1 2
But S, +y + L(S2 + y) 1is the age of the first item in the nlSt set

issued by FIFO; hence L(sl +y + L(s2 +y)) >0 . In addition (7.1.9)
says that at the time of issue of the first item in the nlSt set all

of the items in the nlSt set have age strictly less than SO . Hence
by the same argument given in the first paragraph of this proof all of
the items in the nlSt set have positive field life on issuance by
F1FO.

g.e.ds

All of the theorems, lemmas, and corolliaries of the preceding

chapters can be adapted to the batch case using (7.1.8) when appropriate.
If a theorem, lemma, or corollary is not mentioned in the following
paragraphs it is because either the result needs no modification’ or else

the modification is very slight and quite obvious. We will proceed

chapter by chapter.
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In lemmas 2.4 and 2.5 it must be assumed that the number of items
in each batch for set I is the same as the number of items in the
corresponding batch for set II. 1In theorem 2.5, it is necessary to
consider several more cases since Sj < Sk . And in this theorem as

1 .2
well as elsewhere whenever the fact Si < Sj is used in

L(s. + x) - L(S. + x)
J = > -1 (7.1.10)

S, - 8, -
J i

to obtain L(Sj + x) + Sj-E L(Si + x) + S, » then this latter inequality

will hold even when S; = 5. and it is not necessary to use (7.1.10).
Most of the results in Chapter 3 are valid only with the addition

of (7.1.8). However in lemmas 3.3, 3.4 and 3.5, it is necessary to allow
< 8. for all k=1, ... , i = 1 . For theorem 3.6 the augmented

S, <

e T dk+l

set will now be 0 <5, <5, < -°° <85 < Sn+l < oo < Sn+v ; etc. In
lemma 3.6 we can permit 8, <8, and the conclusion L+(S2 + L(Sl)).f -1
is still valid. Finally, as in lemmas 2.4 and 2.5, we must assume for
lemms 3.7 that the number of items in each batch for set I is the same

as the number of items in the corresponding batch for set II.

For Chapter 4 we make the following changes. In lemmas 4.5 and 4.7
c - b(1l + a)l-l

o1 . PFurthermore in lemma
a(l + a)

and in theorem 4.3 assume 5; <

, i
S e b(l + %>

> - T and in part
a(l + a)

4.7 and part (c) of theorem 4.3 let 841

[asd
. ¢ -b(1+a) VY

8) of theorem 4.3 let S. <= -
(a) T )

a(l +a) V
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In Chapter 5 we medify (7.1.8) +o

for all Se(-~o, so) .

(7.1.11)
Alsc batch additions to the inventcry are permitted where each item in

a given batech has field life L(O) wupon arrival at the stockpile. In
L(3,) - L(8,)
the prcof of lemma 5.1 note that if Si = Sj then ; =3 = =1
i o

implies L(Si) + 8, = L(Si/ + s‘j = S_ ; hence all items older than or

the same age as Si and issu=zd after Si has been issued can be omitted
from consideration. The prcof then goes through. In corollary 5.k

assume S, > S, for all k=1, co0 , jJ - 1 . Theorems 5.3 and 5.4

x T kL
need a slight change to the definition of generalized modified policies.

GMA now becomes "when a batch of items of size n, arrives at the
stcockpile, then immediately issue all n, items to those demand sources
which have the least useful life remaining in their items currently in
use; if ny >4 +then immediately issue v of the new items, one to
each demand source.'

For Chapter 6, it is only necessary to assume {7.1.8). The two

theorems and their extensions tc “he countably infinite case then follow.



Chapter 8

Summary and Conclusions

In the preceding chapters we have presented a considerably more
general model than was originally formulated in earlier papers.

In Chapter 2 we have carried on the modification of assumption (6)
which was started by Zehna [11] and Eilon [4]. For L(S) concave non-
incréasing and L (8) >-1 for s8< §, » common upper and lower bounds
for FIFO and for the optimal policy were obtained when there are several
demand sources. And if [% (n+1)] <v <n, then FIFO is optimal,

In Chapter 3 the assumption (4) of no penalty costs was removed
and optimal policies were presented. For L(S) convex nonincreasing,
if LIFO maximizes the total field life for any 1 items in inventory
then the optimal policy must be one of the n policies L(i,v)*
i=1, oo , n which says issue the i youngest items by LIFO and
discard the remaining n - i items. For L(S) concave nonincreasing,
if L7(S) >-1 for 8 < s, end if FIFO is optimal for i items in
inventory then the optimal policy must be one of the n policies
F(i,v)* . When more restrictions were placed on L (S) and on L+(S)
we were able to reduce the search even further. In particular, if
L(s) = a5+ b where b >0>a >-1 for S < S, then the specific
optimal policy was obtained.

In Chapter 4 we considered an S-shaped field life function, L(S)

concave nonincreasing for S<t , L(S) = L(t) =c >0 for S>t,
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and L'(S)_f -1 for S <t ., In this case the optimal pclicy is one

of the n policies FiL s, 1=1, .. , n , Where FiL says to issue
the 1 ycungest items by FIFO and the remaining n - i items by LIFO.
If L(8) for S <t is linear, then the specific optimal pclicy was
obtained. Alsc we showed, if L(S) is convex or concave decreasing,
L(s) < -1 for ail Se(0, t] and L{S) = L(t) = c >0 for all S>t,
then LIFO is optimal.

In Chapter 5 the assumption (5) of a static inventory depietion
model was removed and a dynamic model was introduced. It was seen that
if L(S) is concave nonincreasing, L-(S).E =1 for S < SO , if stock-
outs did not occur then if FIFO was optimal in the static model; FIFO
was optimal in the dynamic model. And if L(S) 1is concave or convex
decreasing and L (8) < =1 for S < 8, » then GML (generaiized-
mcdified-LIFO) is optimal.

In Chapter 6 we again locked at the field life function but now
from the viewpcint of a stochastic model. It was proved that if X(s)
is a nonnegative random variable which takes on any one of a countable
number of nonincreasing Li(S) with probability Py and if
0>L/(s) >L . (8) >-1 for all i and any S<S§S_ , then (i) if
Li(s) = a,8 + b, , FIFO is optimal for n >2 items and (ii) if Li(S)
is concave ncnincreasing, FIFO is coptimai for n = 2 items.

In Chapter 7 the batch probiem {where one or more of the n items
have the same initial age) was considered and the general result was
presented that if L{S) is a continuous function and if FIFO (LIFO)

is optimal without batches, then FIFO (LIFO) is optimal with batches.



Consideration of the batch case led to the modification of assumption
(1) of the model.

This work has presented changes to assumptions (1), (2), (&%), (5)
and (6). We did not consider field life functions which become negative
since they do not seem to have a nice interpretation in the inventory
context of the model. However it may be possible that negative IL(S)
would be an interesting representafion of some other model based on
costs or profits.

Also we have not sought to change assumption (3). Assumption (3)
in conjunction with assumption (6) defines the demand function on the
inventory and this assumption is what gives this particular model its
interest and its problems. It makes any current decision as to the
optimal issuing policy entirely dependent upon all past decisions. Other
authors have removed assumption (3) and assumption (6) to make the
demands on the stockpile independent of the ages of the items in the
stockpile. They have obtained some very interesting results (ref. [2],
(3], [5], [10], and [11] in the Bibliography) .

It should be noted that the theorems presented in the preceding
chapters do not exhaust the possible changes to the model nor do they
exhaust the possible variations on the changes already suggested. For
example, the stochastic models presented in Chapter 5 of Zehna [11] and
in Chapter 6 of this work are stated only for the case vy = 1 and for
special probability density functions and Li(S) . Since the stochastic
case is very important from a practical point of view, extensions to

v >1 and other field life functions would be desirable. It should be
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mentiosnec that these extensions appear to be difficult since the trunca-
ticn poiut So makes mos®t proofs rather compiicated.

Somne other areas of future research should ve

(i) for the case v >1 rind the optimal policy for various

L(S)‘s and/or find more sufficient conditions for LIFO or
FIFO optimality,

(ii) dinvestigate othker types of S-shaped functions,

(iii) consider the dy-amic depietion mcdel in relation to removing
other assumptions of the model,

(iv) 1investigate appreciating field life functions, and

(v) look at a fixed {or minimum) spscing, ©® , between the initial

ages of the items, i.e., Si+l E‘Si + 3 .

This last area would correspond tc the case when inventory items arrived
at the stockpile in some fixed pattern as would be the case, e.g., if
the production facility was turning ocut one item every time period.

As a Tinal consideraticn some research should be devoted to differ-
ent types of cbjective functions. An important case of this is pointed
sut i1 Bilon [6] and Eilon [5!. He suggested that if we are a seller
(rather than consumer) of the items in the stockpile and if the holding
costs per item are high, then we may wish to minimize the time the items
spend in inventory. This type of objective fuaction is, in a sense,
the polar image of the objesctive function considered in the preceding
chapters since we now wish to minimize the total field life of the
stockpils (at least of the first n - v items issued from the stockpile).
Hewever it is not, in general, true that if PIF0 (LIFO) is optimal for

the one onjective function that LIFO (FIFO) is ovprimal for the other.
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