Chapter 5

The Dynamic Inventory=Depletion Model

As mentiorned in the Introduction, we have always been assuming that
new items are never added to the inventory after the process has started..
In many instances this is an ecssential assumption of the model. However,.
a static model of this nature is not representative of actual inventory
systems and it is interesting to ask "What sufficient conditions can be
formulated when the model is dynamic, i.e., new items are continually
added to the inventory, with the result that LIFO or FIFO is the optimal
issuing policy?" The following sections give some answers to this
question.

For the results of the following sections, we remove the assumption
that new items are never added and replace it with this new assumption:

"If a new item is added to inventory, it has age S = 0 and initial

field life IL(0) immediately upon entry to the inventory."

All of the other assumptions of the model, given in the introductory
chapter, remain unchanged.

In addition to the new assumption we will assume that only a finite
number, N , of new items are ever added to the inventory. The ages of
the new items are all assumed to be different and we will denote the ages

by Fl’ F F. where Fi > Fi+

27 *° 2 ¥y

the inventory before item F,

1 means that item Fi arrives at

1 -
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The assumption that N is finite is not necessarily restrictive
since N can be chosen so large as to encompass the "going life" of any
business concern.

We now construct two different problems called (i) the "original"
problem and (ii) the "extended" problem. The original problem is the
dynamic inventory problem of finding the optimal issuing policy for the
n items S, <S5, < ¢ < Sn < SO which are originally in the stockpile

1 2

and the N items Fl > F2 > e > FN which are added at arbitrary times

in the future. The time of arrival of item F will be denoted by T

N
(we are presently at time zero). The extended problem is the static
inventory problem of finding the optimal issuing policy for the N + n
items FN < FN-l < vee < Fl < Sl < oee < Sn where 811 n + N items are
originally in the stockpile and no new items are ever added. If we
consider S < 0 as future time in the original problem, then the extended
problem can be thought of as the original problem under the transformation

L(§) =IL{S +T) i.e., shift the ordinate axis left to the point =-T of

the original problem. Reference figures 1 and 2 below.

"Original Problem"
L(s)

ﬁ

Figure 1
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"Extended Problem"

Figure 2

5.1 L(S) Concave with 0 > L'(S) > -1

Theorem 5.1: Let L(S) be a concave nonincreasing function with

L'(S) >-1 forall 5<S_ . Let v>1. If

(i) FIFO is optimal in the extended problem and

(ii) the arrival of items F in the original problem

l’ o0 e 0 , FN
are timed so that no stockouts occur
then FIFO is the optimel issuing policy in the original problem, i.e.

in the dynamic inventory problem.

Proc?® of Theorem 5.1: Since no stockouts cccur, then the FIFO issuance

of Sn’ too Sl and Fl’ cec FN in the original problem results in
the same total field life as FIFO in the extended problem.

Now let us assume that there exists a policy A in the original
problem which gives a greater total field life than FIFO. Then policy A.

must give a greater total field life than FIFO in the extended problem,

This last statement follows from the fact that the set of all possible
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policies in the extended problem includes all policies of the original
problem. But FIFO is optimal in the extended problem hence we have a
contradiction. Therefore there cannot exist a policy A in the original
problem which has a greater total field life than FIFO. Hence FIFO is
optimal for the dynamic inventory problem.

q.e.d.

Corollary 5.1: Let IL(S) = aS + b for all S < SO and with

b>0>a >=1. Let v >1. If no stockouts occur in the original
problem, then FIFO is_optimal for this dynamic inventory model (the

original problem).

Proof of Corollary 5.1: By Zehna [1l] Theorems 4.1 and 4.3, FIFO is

optimal for the extended problem; hence, by Theorem 5.1 above FIFO is
optimal for the original problem.
q.e.d.

Corollary 5.2: Let L(S) %be a concave nonincreasing function with

L'(8) >~-1 for all S<S . Let v=1.
If no stockouts occur in the original problem, then FIFO is optimal

for this dynamic inventory model (the original problem).

Proof of Corollary 5.2: By Liebermasn [9] Theorem 3, FIFO is optimal for

the extended problem; hence by Theorem 5.1 sbove, FIFO is optimal for

the original problem.

g.e.d.

Corollary 5.3: Let L(S) be concave nonincreasing with L (S) > -1

for all § <8 . Denote by [x] the largest integer < x where X
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is a real number. Then if the number of demsnd sources v has
(= (N~ n + lf;f v <rn and if no stcckouts cccur in the original problem,

then FIFO is cptimal for the original problem.

Prcof of Coroliary 5.3: By Theorem 2.6 FIFO is optimal for the extended

probiem; hernce, by Theorem 5.1 above, FIFC is optimal for the original
prcblem.
q.e.d.

The preceding theorem and ccrollaries were concerned with L(S)
concave with slope > -1 and in the linear case with L'(s) >=-1 . We
now consider the linear case for LF(S) = -1 , and show that FIFO is
optimal for this case also. It is only necessary to prove that FIFO is
optimal for the extended problem and then apply Theorem 5.1.

As was done in all of the preceding work, we assume that the stock=-
pile has n items of initial ages Sl < v < Sn < SO at the start.
And for the time being we do not consider adding any items to the

stockpile.

Lemma 5.i: Let L{S) be linear for all S < 5, and L'(s) = -1 for
all S < SO . Let v =1, Then any issuing policy is optimal and the

total field 1ife of the stockpile for any issuing policy is

Qv =8 -8 = L(Sl) .

Proof of Lemma 5.1: Remember that we are only interested in the static

model with n dtems S < eee < 8§ <S5
L n o
We first note that for any two items in inventory with current age
S, <8S. (<85.) that
1 J e}
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If Si is chosen to be issued first, then at the
expiration of the field life of Si B Sj will have
no field life remaining: (5.1.1)

L(SO) - L(Si)
S - S,
(o] 1

= -1 . where L(SO) =0

= -L(S,) = -S_+ 8,
1 (] 1

= § =85 + L(Si) < s‘j + u(si)

= L(Sj + L(Si)) = 0 since for all $>S8_, L(s) =0,

and

if Sj is chosen to be issued first, then at the
expiration of the field life of Sj s Si will

still have positive field life remaining: (5.1.2)

L(SO) - L(SJ.)

s -5, -1
o~ %3

= 8 =8, +L(s,) >8, + L(s
o = 55 * L(S;) >, + L(s))
= L(Si+L(SJ.))>O since for all S <S_, L(s) >0 .

We now use the above two properties to show: in any issue policy

A= [Si gy eso g Si 1 we can omit any items Si for which there is
1 n J
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some S (k =1, ... , § =~ 1) such that S, < Si , since for

ER ek Y
these Si. , they will have no field life remaining when they are ready
to be issied;
By statement (5...1) above when Si. is issued it has current
age, say St , and Si. has current age Jéi (i.e., if the total field
life cf the items up tg Sij . is Q , then St = Sij . + Q and

S =8, +Q)but S, <S (<S8 ) herce S  has no field life remaining
u lj T u e} u

after St is issued.

Thus of all pcssible policies, we only have to consider pclicies
where each succeeding item is younger than the previously issued item
since any other policy will have tctal field life equivalent to one of
these oldest to youngest ordered policies (where all items with field
iife of zerc have beexn discarded).

Now by statemen® (5.1.2) since 5, <8, forall i=2, ..., n,
we must have that upcn issue at any time, Sl will have positive field
life. But as shcwn above any item issued after S1 has field life of
zero and can be discarded without issuance, hence Sl is the last item
to be issued under all pclicies which we need to consider.

It now remains to be shown that for any policy B = fSi 3 coo s Sl]
where S, > S, , for all j 1in the policy, that B has i total

. 1.,
J J+i

s oaq s ~ _a - 7
fieid life of § - 8, L\Sl) .

Letv policy B ccntain the issuance of k ditems (k = 1, c.. , n) .

Obvigusiy if k=1, then B is LIFO and
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= L(8,) =8, -8 = (5.1.3)

17 9o = -

Let k > 1 and let the total field life of the k - 1 items up to but

not including S, be denoted by x , then S, + x < SO and

1 1

L(sl + x) - L(SO) .
Sl + X - SO B
= L(sl + x) = so -8 -x. (5.1.4)

But the total field life from policy B is

Q,B=L(Sl+x)+x

hence

Qg = L(8y +x) +x =15 -85 =L(s,)

by (5.1.3) and (5.1.4). Now policy B was arbitrary; thus any issue
policy has total field life SO - Sl s hence all issue policies are

optimal,
NOTE: This result means

%o = SpFo = S, - Sy = WSy -

g.e.d.

Corollary 5.4: Tet L(S) be linear, with L'(S) = -1 for all s<s, -

Let v = 1 . Then any issue policy
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A = LS 3 o000 Si ] Where Si > Si
1 3 k k+1

(k =1, .o. , J=1)

has a total field life cof

Qu=L5; ) =8 -8
J j

Proof of Corollary 5.4: Let x denote the total field life up to but

not including the issue of item Si »  Then
J
Q, = L(si +x) +x
J

A

and by lemma 2.1 Si + x < SO o

J
Hence
L(Sij *+x) - L(s))
S, +x -8 = -1
1. (o]
J
= Q, = L(s * X) +x=8 = S;
J J
but
L(s; ) - L(s,)
J = =
Cp— = -1
1, Q
dJd
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hence

qg.e.d.
Lemme. 5.2: Let L(S) be linear with L'(S) = -1 for all S<S, .
l} 2) L ] SV

(i.e. the vy youngest items) each to a different demand source is

Let v >1 . Then any issuing policy which issues items S S

optimal and the total field life from an optimal policy, Q¥ , is given

by
. v Vv
Q* = Yy L(s,) =vS_=- ) S.. (5.1.5)
. 1 (o] . 1
i=1 i=1
Furthermore
= Q¥ ,

wro,y = SLIFO,V

Proof of Lemms 5.2: We will first show that any policy which issues

items S 82, soo SV each to different demand sources has total field

l)
life given by (5.1.5). We will then show that any other policy not of

this form has field life less than (5.1.5). Finally we will show

rro,y = SnFo,y = 9 -

Consider any pclicy which issues S SV each to different

l, eoo 9

demand sources say M., ... , M respectively. Hence if demand source
1 v
M, receives the c¢ items [S, , ... , S, ] then by the same argument
J Jy Jy
1 ¢
as given in (5.1.1) and (5.1.2) of lemma 5.1 we only need to consider

the ordering
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Ay = .S, 5 coo 5 S.] where S, >8, .
k+1
Now by corollary 5.4, the total field life obtained from policy AM
J

is QAM = L(S,) = S, - Sj . Since Mj was picked arbitrarily, then

for all j =1, occ 5 v

and

(5.,1.6)

which is (5.1.5) as required.

Now let B ©be any policy which does not issue Sl’ oo Sv each
to different Mlg soo MV . Hence B must issue at least two of the
items Sl’ coo Sv to the same demand source, say Si and Sj are
issued to M_ where 8, <8, < sj < sv . Now by (5.1.1), (5.1.2) and

corollary 5.4 we have

And since S, and Sj are issued to Mk then there is at least one

s

Mt such that the youngest item issued to Mt has initial age St > Sv o
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Hence

by corollery 5.4 and (5.1.1) and (5.1.2).

Thus the total field life for policy B is at most

Qg < % L(s;) + L(s;) = vs

v
-8, - Yy 8,

i=1 °© t i=1 +

i3 i3

; v
<yS. = Zﬁ s, since Sv <s,

in (5.1.6). Thus Q = Q* since B was any arbitrary policy. Now
QLIFO,V issues only Sl’ o ’_SV and each to different demand sources

since for all k > v

+ > + =
8y L(Sv) Sv L(SV) 5,
= I(Sk + L(SV)) =0 .

Hence
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Furthermore by lemms 2.3, we note that FIFO belongs to the class of
policies such that items Sl’ sea Sv are each issued to different

M., »50 Mv ; hence

gq-e.d.

We are ncw able to state:

Theorem 5.2: Let L(S) be linear with L'(§) = -1 for all S<S§_ .
Consider the original problem and the extended problem given in pages
141-142, Tet v >1 . If no stockouts occur in the original problem,

then FIFO is optimal for the original problem,

Proof of Theorem 5.2: By lemms 5.2, FIFO is optimal for the extended

problem; hence by Theorem 5.1 FIFO is optimal for the original problem,
the dynamic inventory model.

g.e.d.
Note that by lemma 5.2 if the Fi are known for all
i=N=wv+1l, oo 4 N then the total field life for the model of
Theorem 5.2 is

v=1
* = = (7
* = Qprpo, igg L(Fyg_y) -

5.2 IL{S) Concave or Convex with Slope < -1

In this section we seek the optimal issuing policy for the dynamic
inventcry model when L(S) is concave or convex and has slope < -1

for all 0<S < SO o The optimal pclicy is found for the case v >1

152



demand sources; however it will be instructive to state the case v =1
first and subsequently to state and prove the case for all v

(L<wv <n). Itis interesting to note that we no longer need the
assumpltion that no stockouts occur; the reason for this will be discussed
later,

We define a modified-LIFO policy (ML) for the case v = 1 1in the
following way: Use LIFO until a new item arrives, then discard the item
currently in use and use the new item immediately.

In addition, it will be assumed that there is no penalty cost for

the installation or removal of an item in the field.

Theorem 5.3: Let L(S) be a convex or concave differentiable function
on [O, so] with L'(8) < -1 on [0, so] . Let v =1, Then
modified-LIFO is the optimal issuing policy for the original problem
i.e. the dynamic inventory model.

Since this theorem is a special case (v = 1) of Theorem 5.4, it
will not be proved here. It was presented here in order to introduce
the concept of a modified-LIFO policy and some sufficient conditions
under which ML is optimal. For Theorem 5.4 it will be necessary to
generalize the ML concept. But before so doing we present the follow=

ing useful lemma.

Lemma 5.3: Let L(S) be a convex or concave differentiable function on
(o, so] with L'(8) < -1 on [0, so]o Let there be n items

0< Sl < 82 < 0 < Sn < So in inventory and no new items are ever
added to the inventory. Let v >1 . If X, is the total field life
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contributed by demand source Mi under any arbitrary policy A and if

the X, re ordered x., > > e > ;
i &, 12 x2 2 2 xv s then

x; < L(s;) for all i =1, .o. , v .

By Zehna [11] Theorems 4.2 and 4.3 we know that LIFO meximizes
the total field life. This lemms states that not only is that fact true
but also each demand source under LIFO receives more field life than

from any other policy-:

Proof of Lemma 5.%: Assume to the contrary that Xy > L(Si) for some

i=1 ... , v . Then Xs must contain one or more items Sj < Si for

if all items Sk assigned to Mi under policy A are such that

Sk.f Si , then since LIFO is optimal for v =1 (cfa Zehnsa [11]
Theorems 2.4 and 2.6) we would have L(Si).f x; contrary to the assump-
tion x. > L(S.)

i i

But if Sj < Si is assigned to Mi then there are at most 1 - 2

S's which have 8§ <S8, , k 4 3 , available for assignment to the

i=-1 Mt’s viz. Ml’ soe Mi-l . Hence some Mt , t=1, ... , 1 -1,
does not receive any Sk < Si . Therefore as stated in the preceding
paragraph we must have x_ < L(Si) and
x. >L(S,) >x where t < i .
i i7 ="t

But Xy >x  for t < i contradicts the hypothesis of the lemma.

Therefore

x; < L(Si) for all 1 =1, coo , V -
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ILet A be any arbitrary policy for issuing the n items originally
in the inventory and the N items added to the inventory in the future.
We define a generalized-modified-A policy, GMA;, for issuing items to the
v > 1 demand sources in the following way: Use policy A until a new item
arrives, then discard the oldest item currently in use in the field and
immediately replace it with the new item., When A = LIFO we denote

GMA by GML.

Theorem 5.4: Let L(S) be a convex or concave differentiable function
on [O, so] with L'(S) < -1 on [O, so] . Let there be no penalty
costs for the removal or the installation of an item in the field. Let
v >1 . Then GML is the optimal issuing policy for the original problem,

i,e,, the dynamic inventory model.

Proof of Theorem 5.4: The proof will be by induction on N . Let

N=1. And let the time of arrival of the new item be denoted by *t .
(We are initially at time zero.)

We first show that under any policy A it is always better to discard
some item currently in use and use the new item immediately.

Iet T be the field life remaining to demand source Mi when the

new item arrives. There are three cases:

L(0) - L(T)
-T

L(0) >L(T) + T and it is better to use the new item immediately. For

Case (i): 0 <T < 5, then < =1 implies

J % i the field lives of the other Mj‘s are not affected by this

change.
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Case (ii): S, < T which implies L(T) = 0 . Then

L(0) >L(S,) >T =T +~ L(T) and again it is better to use the new item

1
immediately-.
Case (iii): T = O then L(0O) = T + L(T) and the new item should

be installed immediately on arrival.

In the above we have implicitly assumed for # i that all Mj's
have items currently in use. If some Mj did not have any items left
and if T >0 for Mi the new item would be assigned to Mjo This
last remark is contained in the next two paragraphs.

We will show that the policy of assigning the new item to the demand
source Mi which loses the least life by discarding the items currently
assigned to it (they all have life zero after time L(0)) is better
than assigning the new item to some other Mj s J % i,

Let Mi be the demand source with the least field life remaining

at time t . Denote this remaining field life to Mi by Tmin o

T >0« Forany j £1i, let Tj be the field life remaining to

Mj . Then Tj_z Tmin . Let @Q be the total field life obtained by all
the Mk“s » k=1, ...,y , if the new item is not issued until the

current items issued to Mi and M, expire., Then

J

Q + L(0) - Tpin > Q* L(0) - Tj , forany j#1i.

Hence under any policy A we obtain

Statement (1): The new item should be issued immediately upon its arrival

to the demand source which must discard the least field

life,



Thus statement (1) says that the optimal policy for the case N=1
must belong to the class of generalized-modified policies.
We now show GML is optimal for N = 1 . Consider any policy GMA

with GMA # GML . Let x, >X,

by Ml’ soo 3 MV under policy A when the new item is not considered.

By GMA the new item will be assigned to MQ since xV is the smallest

> °°°-2 xV be the field life contributed

field life. We consider five mutually exclusive and exhaustive cases.

Recall by lemma 5.3 that x, <L(5;) for all 1.

Case 1 x, = L(SV) and t < L(SV) t is the arrival
time of the new item
Then
v=1 y=1
Qr, = Y L(sy) +t+ (o) > z X, ttt L(0) = Qg
i=1 i=1
Case 2 x =L(S) and t >L(S)
— Y v v
Then
v v
= + =
Qg = L I(s;) +10) > ¥ x; + 1(0) = Qg
i=1 i=1
<L d t <
Case 3 x, S (Sv) an <%,
Then
y=1 y=1
Ao, = 121 L(s;) +t + L(0) > igl x; +t + L(0) = Qg
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Case L x <L(S ) and x <t <IL(S)
e v v v - v

Then

v=1l _ y ,
v, = ,}: L(s;) +t + L(0) > 2 X T L0) = Qn,
i=1 i=1

Case 5 x < L(SV) and t >L(SV)

Then
v o
Qa, = y L(si) + L{0) >

x. + L(0) = q
i=1 i +

GMA

H <
(Oine

In all cases QGML-E QGMA and since A was any arbitrary policy GML
is optimal for N = 1 ,

Assume GML is optimal for aedding N = k items to inventory and it
will be proved that GML is optimal for adding N =k + 1 items.,

We will first establish that the optimal policy must belong to the
class of generalized-modified policies. ILet T be the field life
remaining to Mi when the k + 1St item arrives. Let tk and tk+l
denote the time of arrival of the kth and k + lst items respectively.
Since arrivals are distinct events tk < tk+l and all‘items in use or

in the stockpile, except the k + lSt item, have age greater than zero

at time t, . , then L(0) >T >0, and we have the same three cases
as before:

Case (i) 0<T<s,
Then L(O)_; L(T) < -1
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implies

L(0) >IL(T) + T

Case (ii) 5, ST
Then L(T) = 0
and L(0) > T + L(T)

Case (iii) 0=T
Then L(0) = T + L(T)

Hence the new item should always be installed immediately on
arrival. Now by the same argument given in N = 1 , the new item should
be assigned to the demand source which loses the least field life. Thus
Statement (1) applies also to the case of N = k + 1 and the optimal
policy belongs to the class of generalized-modified policies.

In order to proceed further it is necessary to develop some addi-

i,N

Mi under GML and GMA respectively. In addition relabel the Mi's in

GML and in GMA such that QM N'E QM N and X, N 2'xi+l N
i’ i+l’ l) et 4

i=1, s0o v =1 . It is possible that Ml under GML is not the same

Ml as under GMA but this fact is of no importance in the following.

tional notation. Let QM N and X denote the total field l1life for
i’

for all

= i j ti
| In the case N 1 we showed QGML‘E,QGMA but also in conjunction
with lemmsa 5.3 we showed that the total field life for each Mi under

GML is greater than under GMA i.e., using the notation above



> X, for all i =1, ... , ¥
QMi,l 1,1

(5.2.1)

It will now be proved that
zx. fOI‘ all i=l, s 00 ,V

QMi,k+l i,k+1

(5.2.2)

where we inductively assume
QP’I, _> xi,k fOI‘ a.Ll 1 = l, coo0 g Voo

i,k

(5.2.3)
Now (5.2,3) and Statement (1) inform us that the k + 150 arrival is

.  nt . , > .
immediately assigned to MV We only need to show QMV = xv,k+l
s

+ . . X .
let TGML and TGMA be the total field life remaining to Mv at time

te47 When OML and GMA are being followed respectively. By (5.2.3)

TGML-? TGMA-E 0O . We again consider the five mutually exclusive and

exhaustive cases:

Lase 1 X,k T QMv,k and Tyyy I QMV’k
Then vak = QM implies TGML = TGMA and
9 Y,k
QMv,k+1 ) QMv,k " Tow * L(0) = ok T Toma * L(o) = %y, k+1
Case 2 X k" QMv,k and t, .4 > QMv,k
Then QMv,k+l = QMv’k s L0) = x, o+ L(0) = X
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: <
Case 3 xv,k < QMQ . and tk+l-5 xv,k
b4

Then QM - xv,k = TGML - TGMA
v,k
and Q = =T + L(0) = x - T + L(0) = x
Mv,k+l QMv,k GML v,k GMA v,yk+1
Case 4 X < and x <t <
v,k Q’Mv,k vok kel S QMV,k
Then TGMA = 0 and QMV . - xu,k > TGML - TGMA = TGML
2
Q = - T + L(0) >x + L(0) = x
Mv,k+l QMv,k GML Y,k v,k+1
Case 5 xv,k < QM and tk+l > QM
V,k V’k-
Then Q = + L(0) >x + L(0) =x ... .
Mv,k+l QMv,k v,k v,k+l
Hence in all cases
> x ) (5.2.4)
QMV}k'*‘l vyk*l

Now since the field life for the other Mi i=1, 00 , v =1 are

unchanged then by (5.2.3)

QM. = QM > xi,k+l = xi,k (5.2.5)

for all 1i=1, ... , v = 1,
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Combining (5.2.4) and (5.2.5) we see that (5.2.2) hoids for all
i:lg ooo,v

But GML for N =k + 1 yields

v=1
o = 5 &+
U R

and GMA for N = k + 1 yields

ve=l
Wma = izi X3,k T Xy, k4L

Q where A was any arbitrary

Hence by (5.2.4) and (5.2.5) QMA

>
QGML -
pclicy. Therefore by induction GML is optimai for all N .

g.e.d.

5.3 The Problem of Stockouts

In the results of section 5.1, it was assumed that the ordering
schedule for new items was arranged so that stockouts did not occur.
This assumption was essential for FIFO optimality as the following

example shows:

L(S) ===8S +3 for se[0, 9]

for Se(9, «)

162



= =2,3956 Sl =1

= -2,6667 S, =5

4%7 83 =6
85 =8

1
as compared to A = [85’ S), s S3’ 8,5 Fl 5 895 F2] which yields

Then FIFO = [85, 83, S5 Fp j Sy S5 F ] which yields Q = 10.9883

Q, = 11.0623 is definitely not optimal.

In the case of FIFO, however, & stockout occurred because the total
field life for [Sh’ 52] is 1,7781 whereas item Fl does not arrive
until tl = 2.3956,

It is interesting to note, however, thgt the results of section 5.2
do not require the assumption of no stockouts. The reason for this is
essentially contained in lemms 5.3 which states that each demand source
receives more field life under LIFO than from ény other policy. Thus
if we followed & non-LIFO policy, say GMA, we could expect stockouts to
be more frequent and of a much longer duration. But, the new arriving
item under any generalized modified policy is used to its fullest extent.
Therefore the policy which minimizes the total stockout duration will
maximize the total field life; and as shown in section 5.2 this optimal
policy is GML for the dynamic depletion model.

As the concluding statement in this chapter, it should be noted

that results were not presented for the case L(S) convex decreasing
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with slope L'(8) > -1 . Even if ve assumed that LIFO was optimal for
the static depletion model, there are numerous counterexamples for
v=1, n=2,and N =1 in the dynamic model where neither LIFO nor
modified LIFO nor any of the other possible policies is optimal in all
cases. If we desire to find the conditions in this simple case where
LIFO or ML is optimal, it is necessary to make very restrictive assump-
1 82 and Fl . We have not done this because the transi-

tion to general n and N even keeping v = 1 does not appear to be

tions on S

interesting from a practical point of view.
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