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Chapter I

Introduction

1.1 Introduction and Characterization of the Model

The general inventory depletion problem can be described as the
problem of finding an issue policy which maximizes or minimizes a pre-
scribed function when the inventory itself is changing in gquality over
time. The change in quality may be either an appreciation or a deterio-
ration of the useful life, the field life, of each item in the inventory
as long as the item remains in the stockpile. An issue policy 1is a
selected order of issue of the items in the stockpile when demands for
the items are made from the field.

In 1958 Derman and Klein [2] and Lieberman [9] presented some
analytic results concerning a more specific formulation of the general
model. They obtained optimal policies of the form LIFO, last in first
out, or FIFO, first in first out. The advantage of LIFO or FIFO policies
is twofold. In practice, they are the most easily understood and most
easily implemented policies. Second, they require only a knowledge of
the relative ages of the items in the'inventory and not their exact
ages. However their model contains several restrictive assumptions
which limit the application of the results to most real situations.

It is the primary purpose of this work to eliminate and/or modify
some of the assumptions of the model and still, whenever possible, obtain

LTFO or FIFO as optimal policies.



In order to be more specific as to which assumptions will be

changed or removed, it will be advantageous to characterize the model

explicitly.

The Model

A, Assumptions

(1)

(2)

(3)

(&)

(5)

(6)

(7)

At the beginning of the process, a stockpile has n
indivisible identical items of varying ages
Sl < 82 < oooe < Sn where Sl

called the initial ages of the items.

>0 . The ages Si are

Each item has a field life L(S) which is a known non-
negative function of the age S of the item upon being
issued.

Items are issued successively until either the entire
stockpile is depleted or the remaining items in the stock-
pile have no further useful life, i.e. L(S) = O for the
remaining items.

No penalty or installation cqsts are associated with the
issuance of an item from the stockpile.

New items are never added to the stockpi}e after the
process starts.

An item is issued from the stockpile only when the entire
life of the preceding item issued is ended.

At the beginning of the process each item has positive

field life; i.e., L(Si) >0 forall 1 =1, 2, coo , N .



B. Objective
The objective is to find the issue policy which maximizes the
total field life of the stockpile. An issue policy which
achieves this maximum is called an optimal policy.

Since assumption (2) requires that IL(S) be known, this model is
called deterministic. Moreover for all of the results in the following
chapters, it is assumed that L(S) is a deteriorating field life func-
tion. The appreciating field life function has not been studied since
the mathematical techniques used in the case of deteriorating L(s)
generally carry over to the appreciating case with minor modifications.
In addition, appreciating functions do not have the range of applications
in the inventory context as do depreciating functions.

Many of the earlier results based on the above model are quite
interesting and several of them are used in the subsequent chapters of
this work. Some of these earlier results will now be presented.

Derman and Klein [2] stated the first major theorem giving suffi-
cient conditions for LIFO optimality. However as Zehna [11] pointed
out the statement was not quite correct. Zehna gave the corrected
statement: "If L(S) is a convex monotone function and LIFO is optimal
for n =2 , then LIFO is optimal for all n > 2 ." Shortly after the
Derman and Klein paper, Lieberman [9] presented three theorems which
have been of benefit in further development of inventory depletion theory.
In particular, his Theorem 3 is used many times in later chapters. The

three theorems are:



Theorem 1: (i) If 2_15 =L'(8) >-1 and (ii) LIFO is an optimal policy
when n = 2 , then LIFO is an optimal policy when

n=3, 4, ..,

Theorem 2: (i) If L(S) is a convex monotone function or if

L'(8) > -1 and (ii) FIFO is an optimal policy when n = 2 ,

then FIFO is an optimal policy for n = 3, 4, ... .

Theorem 3: (i) If L'(S) > -1 and (ii) L(S) is a nonincreasing or
nondecreasing concave function, then FIFO is an optimal

policy-

Zehna proved that Theorem 3 can be generalized to "Suppose L(S) 1is a
concave differentiable function. Then FIFO is an optimal policy for
n>2 if and only if L'(S) > -1."

With the Derman-Klein-Zehna theorem above, and the first two
theorems of Lieberman, the search for an optimal policy reduced to a
seaﬁch for sufficient conditioné when n = 2 . Bomberger [1], Eilon
[7]; and Zehna presented many results establishing such sufficient
ccnditions. 1In addition Zehna presented two theorems for L'(S) < -1
which are often quoted in later chapters. His Theorems 2.4 and 2.6 are
combined in "If L(S) is a convex or a concave differentiable function
and L'(S) < -1 for all S >0 , then LIFO is optimal for n >2 ."

But with the exception of Zehna's Chapters 4 and 5 and Eilon [4],
none of the papers have considered removing any of the restrictive

assumptions of the model. Looking at the assumptions ¢f the model, it



is apparent that there is a broad area of inventory depletion problems
which are not covered by the model.

Assumption (6) implicitly assumes that there is only one demand
source withdrawing items from the stockpile. Zehna and Eilon [4] inde-
pendently approached this problem and both proved the result that if
L(S) =aS +b for b>0 >a >-1, then for a stockpile of n items
FIFO is optimal for one or more demand sources. Zehna also proved
(Theorem 4.2) if L(S) 4is either a convex or a concave differentiable
function with L'(8) < -1 , then LIFO is optimal for two demand sources
and (Theorem 4.3) if FIFO (LIFO) is optimal for one and for two demand
sources, then FIFO (LIFO) is optimal for more than two demand sources.
Moreover Zehna demonstrated that for general L(S) concave and differ-
entiable with slope > -1 , FIFO is not always an optimal policy. In
Chapter 2, however, we are able to show that when L(S) is any concave
nonincreasing function with slope > -1 , the FIFO issuing policy and
the optimal issuing policy have the same upper and lower bounds for
more than one demand source. Since not all policies are included in
these bounds, then FIFO can be called a suboptimal policy in the sense
that it differs from the optimal policy by not more than their common
upper and lower bounds. Furthermore, it is shown that if the number of
demand sources is greater than or equal to one half of the number of
iteme in the stockpile, then FIFC is optimal.

All of the previous papers have assumed that there are no penalty
costs, such as installation or work stoppage costs, when an item is

issued from the stockpile. However, in most real situations, penalty



costs are incurred, and if they are significant relative to the useful
lives of some of the items in the stockpile, the optimal policy may
change when these costs are considered. For example, if the policy
which is optimal without penalty costs says to issue many items which
have very little useful field life, then the penalty cost could more
than outweigh the usefulness of the items. In Chapter 3 assumption (4)
is removed and replaced by the assumption that there is a constant
penalty cest, p , incurred every time an item is issued from the
inventory. Theorems are then proved which reduce the search for the
optimal policy from a search of n! policies to the search of n
policies, When L(S) 1is linear an optimal policy can be specified
exactly.

The most common assumption about IL{S) in the literature and in
Chapters 2 and 3 is that L(S) is a convex or concave function. It
may be the case, however, that in a real problem L(S) may be a concave
function for some period of time and then a convex function after that
time. Curves of this type will be called S-shaped curves and in Chap-
ter 4 a special case of the S-shaped curve is examined and optimal
policies obtained. The special case is L(S) is concave nonincreasing
and strictly positive for all Se(0, t] , L(S) = L{t) = ¢ for all
Se{t, ») , and the left hand derivative of L(S) , L (S) , has
L'(S) > -1 for all Se(0, t]. We then show that for some
i=1, ... , n the optimal policy is to issue the first i items by
FIFO and the remaining n - i items by LIFO. When the concave part of
L(S) = a8 + b then sufficient conditions are given which locate the

specific 1 =1, ... , n which yields the optimal policy.



Probably the most restrictive assumption of the model is assumption
(5). Assumption (5) states that new items are never added to the stock-
pile after the process starts. This assumption makes the model completely
static and not the dynamic representation of a "going concern” which is
what most real inventory problems are. In Chapter 5 this assumption is
removed and the dynamic inventory depletion model is presented. Here
again we consider L(S) concave nonincreasing and L (S) > -1, then if
FIFO is optimal in the static model, FIFO is optimal when N items are
added to the inventory at different times in the future. When L(s) is
concave or convex and L (S) < -1, then a policy called generalized-
modified-LIFO (GML) is optimal. GML is the policy where LIFO is used
until a new item arrives then the new item is immediately issued to the
demand source which has the least life remaining on its item currently
in consumption.

For Chapters 3, 4, and 5 the results are given for one or more
demand sources. Also, in Chapters 2, 3, &4, and 5, we have been concerned
with the deterministic model, i.e., L{S) is a known function. Zehna
considered the case where the field life of an item is a nonnegative
random variable, X(S) , dependent on the age, S , of the item upon
being issued. In this case the objective function now becomes: maximize
the total expected return {(utility) of the stockpile. Zehna obtained
two theorems for this stochastic model. The first theorem (5.1) holds
only when the distribution of X(S) has an increasing mean value func-
tion as S increases. The second theorem (5.2) holds when the mean

value function is decreasing and since this work is concerned with



deteriorating inventories we state his Theorem 5.2: '"Suppose for each
S >0, X{(8) has density

X
L fa e LfS) for x >0

. NoZ N )
(L(s)]" T(a + 1)

ks

where L(S) =e -, k>0 and integer & > -1 . Then LIFO is optimal

when n =2 ," The stochastic model presented in Chapter 6 differs

somewhat from Zehna's medel. In Chapfer 6 X(S) can take on any one

of a countable numﬁer of values, Li(S) with probability p, where

i=1, ... , M, 'Zi py =1, and p, >0 (M may be replaced by +x).
i=

If Li(S) = a;8 +b, where b, >0>a, >-1, Li(s) < Li+l(S) for

all i and any S < 5, (where S, 1is defined in the next section),

(S) =0 for all i , then FIFO is optimal for n

L, ( =
and l(SO) (8_

Li+l
items 4u the stockpile and one demand source. This result says that if
we know that each item deteriorates according to some linear field life
function then even though the specific funetion is unknown for any item,
FIFO is a policy which maximizes the total expected return. If we change
Li(S) = a8+ bi above to Li(S) is concave and differentiable with
0>1Li(8) >L},,(8) >-1 for all i and S < S, » then FIFO is optimal
for n=2 |
In Chapter 7 we consider the case when there are batches of items
of the same age in the stockpile. Eilon [5] considered this problem
in regard to the obsolescence of commodities which are subject to

deterioration in the stockpile. However he did not consider the batch

assumption's effect on the optimality of LIFO or FIFO. 1In Chapter 7



this latter consideration is made. A general result is proved: If
LiS) is continuous and if FIFO {LIFO) is optimal in the case of no

batches, then FIFO (LIFO) is optimal when tatches are permitted.

1.2 The Truncation Point §j

Assumptioﬁ (2) of the model requires that L(S) be a nonnegative
functicn of S . In the case wheré we assume that L{S) is a concave
decreasing function then there is a point, say So , such that
L(S) >0 for all 8¢'0, so) and L(S) < 0 for all § > S, - Thus for
all §2>8_ , L(S) must be redefined to be identically zero and 5,
is a finite truncation point. In another case, e.g., L(S) = é for all
S>0 thenas S -+, L(S) -0 and SO = + o 1s called the
truncation point.

In general, if L{S) 1is a decreasing function of S and L(O) >0,
then SO<§ + o is a truncation point for L(S) if and only if

8, = inf (Se{0; =)|L(8) < 0} and then L(S) is redefined to be

L(S) >0 for all Se[O, so)
L(s) =

0 for all S >8,

(Ref. Zehna [117].)

From a practical point of view it makes little sense to permit
L(S) to be arbitrarily large for some S . Hence we will assume that
there is some number k < » such that L(S) <k for all S of interest.

If L(S) = é , as shown in the example above, we will assume this L(S)



aprlies only tc those S > 0O such that L(S) = é <k

- Then if a
finite number, n , of items are issued by any policy A, the total field
life, QA , 1s bounded by O < QA < nk =K for all policies A and any

i < < o0 >
n items O < Sl <S2 < Sn
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