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This paper considers the problem of determining optimal order and allocation policies for
a multi-echelon inventory system in which the product is differentiated by its age. The cost
structure includes standard inventory costs as well as a penalty cost for using the product
beyond a certain age. Two age-allocation policies are considered: one where the quantity of
product of a given age shipped from the central depot to the warehouse is proportional to each
warehouse’s order; and one where the quantity is based on a fixed fraction, with the possibility
of re-allocation of excess supply. Optimal inventory levels at the central depot and at each
satellite location are considered for both cases. In addition, conditions for the equivalence of
the allocation policies are derived. Potential applications of the models’ results include central
and regional blood banks, food and chemical product distribution networks, and age-differen-
tiated military logistic systems.

1. Introduction

A large and important fraction of inventory investment for many firms is to be
found in multi-echelon distribution systems containing products differentiated by
their age. Age-differentiated products occupy an intermediate position between
pure services, which are not storable, and most manufactured items which have a
virtually indefinite lifetime. Examples of age-differentiated products include food,
blood, pharmaceuticals, photographic film, chemicals, and certain military
ordnance. In some cases such products are perishable if they cannot be used to
meet demand after reaching a specified maximum age (e.g., 21 days for whole
blood).

* This project was partially supported by Grant Number HS 02634 from the National
Center for Health Services Research, OASH and Grant Number ENG 77-07463 from the Natio-
nal Science Foundation.
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to total demand (summed over all warehouses) for the system.

(2) A fixed fraction of the quantity of central depot stock of each age issued to
meet total warehouse demand is initially allocated to each warehouse. In the
event that a warehouse’s allocation exceeds its total request from the depot,
the excess is redistributed to another warehouse whose request exceeds its
initial allocation.

The first age-allocation policy represents an equitable distribution of the product
since each warehouse receives stock of each age category in direct proportion to its
demand. By fixing the proportion initially allocated, the second policy establishes a
priority rule for each warehouse. For example, if a warehouse’s allocation fraction
is zero, it only receives product after all other warehouses in the system are serviced
by the FIFO issuing doctrine. Consequently, such a warehouse would receive a
higher proportion of younger stock in its shipment, since oldest stock is issued first
by FIFO and the central depot receives only fresh stock. Conversely, the warehouse
whose fraction is one will have its order filled by the older stock first, and will
receive fresh stock only if the entire supply at the central depot is less than that
warehouse’s order quantity. In a central blood bank system, where the warehouses
are hospital blood banks, we often observe that hospitals doing specialized proce-
dures (e.g., open heart surgery) receive a higher priority for fresh blood. Similarly,
in a retail distribution system, it is conceivable that market areas served by certain
warehouses may have higher priority for younger stock due to differences in profit-
ability and corporate marketing strategy.

As noted above, the cost structure for this model consists of shortage, holding,
and over-age, costs. Order costs were not included since order policy is restricted to
the critical-number class wherein the expected quantity ordered per period is a
constant (equal to mean demand).

Several approaches have been used to analyze single-echelon perishable inven-
tories in which a penalty is paid for over-age units where such units are discarded
from the inventory. In this paper a penalty cost for holding over-age stock is used
but such units are not removed from the inventory. By setting the penalty cost suf-
ficiently high, we can ensure that the expected quantity of over-age stock con-
sumed can be made arbitrarily small, and thereby ensure that this approach
provides a reasonable approximation to the multi-echelon perishable problem.
Moreover, the complexity of the problem is reduced, since perishability need not
be considered explicitly in the system transfer equations.

In the next section we relate this model to previous work in perishable and
multi-echelon inventories. Section 3 presents the model notation and assumptions
in detail. Section 4 contains the derivation of expected costs for both allocation
policies. For the case of the random-fraction allocation policy a general condition
to ensure convexity of expected costs is derived. This condition is somewhat unin-
tuitive, but is shown to be always satisfied for the case where product lifetime is
two or three periods and where critical inventory levels are set to equalize the pro-
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bability of shortage at each warehouse or where each warehouse has the same
critical inventory level. We consider the special case where the central depot target
inventory level is either fixed or determined independently of the warehouse stock-
ing and allocation decisions. Such a case allows us to focus on the differences
between the two allocation policies. In this case, convexity of expected costs is
demonstrated for both allocation policies. Comparison of optimal warehouse order-
ing policies between the two allocation systems is carried out for this case in sec-
tion 5. It is shown that it is possible to compute a fixed-fraction allocation rule
which yields an optimal order policy identical to the optimal order policy under the
random-fraction allocation rule. This result is of importance because it demon-
strates the existence of an a priori priorization of warehouses which can achieve
equitable (random fraction) age allocation. The paper concludes with a discussion
of the key results and areas for further research.

2. Literature review

There has been considerable progress in both the areas of multi-echelon inven-
tory and perishable product inventory systems.

Clark and Scarf [39] were the first to formulate and characterize the form of the
optimal policy in a multi-period, multi-echelon inventory model subject to stochas-
tic demands. Gross [87] considered the transshipment decision in a wheel system
with stochastic demands. Zangwill [254] studied a deterministic demand model
structured as an arbitrary acyclic network where the output of any facility cannot
return to the facility either directly or indirectly. Tan [229] considered optimal
allocation policies of a multi-echelon inventory system where the warehouse can
allocate stock to the satellite facilities in each period, but can reorder from an exo-
genous source only after a fixed number of periods. The optimal quantity to be
shipped from a warehouse to each satellite facility in each period is determined by
the system configuration in the period.

Veinott [235] developed a general single-facility inventory model. Optimal
ordering policies are given for a multi-product, dynamic, non-stationary inventory
model, which takes the form of a single critical-number for each period and for
each product. Besseler and Veinott [15] later interpreted the stocks of different
products as the stocks of a common product carried at different facilities in a
multi-echelon system, and hence optimal ordering policies at all facilities are also
of the single critical-number type in each period.

Early work on perishable inventory models was concerned with issuing policy.
Analysis focused on LIFO (last in, first out) and FIFO (first in, first out) policies.
Models have been developed where the field life of the perishable product is deter-
ministic (Eilon, [54]) or random (Pierskalla, [174]), and where there is either a
single demand source withdrawing items from the stockpile (Lieberman, [136];
Pierskalla, [174]), or multiple demand sources (Eilon, [60]). FIFO issuing policies
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are typically optimal under reasonable cost function conditions. Pierskalla and
Roach [175] showed that FIFO was optimal for a perishable product model of a
hospital or central blood bank where the utility of the product is non-increasing
with age. They showed, in particular, that FIFO is optimal for three objective
functions: maximize the utility of the product consumed; minimize the stock-out
probability; and minimize the quantity of stock outdated.

More recently there has been significant progress in developing mathematical
models of single-echelon perishable inventory systems where the objective is to
develop optimal order policies: Nahmias and Pierskalla [165,166] Nahmias [164,
163], Fries [82], and Cohen [41]. Nahmias and Pierskalla [165] developed a model
in which the amount to be outdated was expressed recursively in terms of previous
outdates and demands. The cost function, including shortages and outdates, was
then formulated as a dynamic program. The optimal ordering policy is shown to be
dependent on the age distribution of the inventory, and is thus non-stationary.
Since the optimal solution to the dynamic program is difficult to compute, approxi-
mations on the optimal ordering policies have been studied and evaluated in Nah-
mias [164,163] and Chazan and Gal {26].

Fries [82], independently of Nahmias and Pierskalla [165], also formulated the
problem as a dynamic program. These two models differ in the way that outdates
are counted in the objective function. The model of Nahmias and Pierskalla [165]
counts the quantity of stock which outdates in the current period, whereas Fries
[82] counts the quantity of the current order to be outdated in the m — 1st period
in the future (where the product lifetime is m). The Fries approach led to the
dependence of the optimal ordering policy on the length of the planning horizon
relative to the life of the product. However, the optimal ordering policy is still
dependent on the age distribution of the inventory. (Nahmias [161] compared the
two approaches directly.) Both Fries and Nahmias and Pierskalla also noted that
as the life of the product m approaches infinity the single critical-number policy
becomes optimal.

Since the optimal ordering policy in the dynamic program is difficult to com-
pute even for moderate m, several authors have examined an ordering policy which
is easy to implement, namely the stationary single critical-number policy (Van Zyl
[232], Cohen [41], Nahmias [163]). Cohen [41] demonstrated the existence of an
invariant distribution of the disposition process and developed closed-form solu-
tions for this disposition process for the two-period lifetime case. Numerical proce-
dures were also developed for longer product lifetimes. Chazan and Gal [26]
demonstrated that expected outdates for the stationary critical-number policy were
convex, and developed bounds for the determination of optimal policy for an arbit-
rary product lifetime. In a recent paper Cohen and Pekelman [44] examined the
stochastic process of inventory systems governed by LIFO issuing.

The analysis of multi-echelon, age-differentiated systems is not nearly as well
developed as is the work on single-echelon perishable systems. The model of this
paper and a number of its results (theorem 1 and its corollaries) were developed by
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Yen [245] in his doctoral dissertation. Prastacos [183,181] considered the alloca-
tion problem in a perishable product, two-echelon system in which inputs are
random and not controlled. The perishability process was reduced to a two-period
lifetime process by considering only fresh and old-age categories for the product.
Recently Prastacos [182] considered the same problem where LIFO issuing is in
force. Except for Yen’s thesis [245], this paper, and Veinott’s dissertation [234],
which considered similar problems where demand is deterministic, we know of no
results where ordering decisions, allocation, and product age differentiation are
considered together.

There is also a large literature on the blood inventory management problem.
Although these analyses have occasionally considered multi-echelon systems, they
have, for the most part, been carried out as simulation studies. See Cohen and
Pierskalla [46] for a recent example of this approach.

3. A two-echelon, age-differentiated model
3.1. Notation and model structure

A two-echelon, two-warehouse, age-differentiated inventory system is shown in
fig. 1. A facility, labeled as facility O, supplies two other facilities, labeled facility 1
and facility 2, respectively. Facilities 1 and 2 are subject to non-negative, indepen-
dent stochastic demand from external users in each time period. Facility O does not
have any external users; however, it has internal users in the sense that orders from
facilities 1 and 2 have to be satisfied. Let D;; be the demand at facility j in period
with finite expectation and with the distribution function Fy;(-). Let D; = (Dy;).

FACILITY 0
Yio
« FACTORY
i0
FACILITY 1 FACILITY 2
y. y:
“ i2 WAREHOUSES
X|1 xi2
Dy i2

Figure 1
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The generalization of this model to a wheel structure with an arbitrary number of
destination facilities is notationally complicated but conceptually straightforward.
An order for stock may be placed at the beginning of each period and delivery is
immediate. Let y;;, denote the quantity of inventory on hand of age n after orders
have been placed in period i at facility j but before demands. Let y;; = (v;j,) be the
vector of such inventories and let y{‘,-= Zy=k Vijn denote all inventory on hand
which is of age older than or equal to k at facility j in period i after ordering but
before demands and denote by y¥ the vector (yf). Consequently, y}; will be the
total inventory available for meeting demand in period i at facility /. Let y; = (i)
be the matrix which represents the system inventory configuration of all ages at
all facilities in period i. Since y;j =y,l°]- —yk+1 once the matrix (y,’j) is known, y;jx
can be calculated and vice versa. Hence, (y;;) shall also be referred to as the inven-
tory configuration of all ages at all facilities in period i.

After D; is removed from y}, the remainder is carried over to the next period
and its age increased by 1. In the beginning of period i before ordering and after
the ages are updated there will be a vector x;; = (x;j,,) of initial inventories on hand
of age n at facilityj. Let x,l‘j = Z,=kXijn denote the amount of inventory on hand
which is of age k or older at the beginning of period i at facility j. Since no inven-
tory can be of age 1, define x; as the backlogged demand from period i — 1. The
total system inventory configuration of all ages at all facilities before ordering in
period i will be denoted by the matrix x; = (x ;).

There are specified rules by which demands are satisfied and orders are filled. It
is assumed that there is an unlimited supply at an external source to fill orders from
facility 0. After facility O has received its delivery in the period, the amount avail-
able there will be used to fill orders from facilities 1 and 2. In case there is insuffi-
cient stock at facility O to fill those orders, facilities 1 and 2 will still get what they
ordered; the insufficient amount is assumed to be borrowed from an external
source and to be returned in the next period. In this case the borrowed amount will
be indicated by a negative inventory level at facility O and yj; — x}; will be the
amount facility j ordered and received in period i for j = 1 and 2. Demands at faci-
lities 1 and 2 are satisfied by their own stock and excess demands in the current
period are backlogged there. The shortage incurred at facility j in period i,
v;;(D —y), may be expressed as

Uij(D - y) = (Dt] - ytlj)+y j= 09 1, 29 (1)

where 2 = max(a, 0).

It is assumed that the age of all incoming orders for facility O is 1. When
demands arrive from facilities 1 and 2, the stock is then issued according to a FIFO
policy, that is, the oldest stock will be issued first. This issued stock is placed in
inventory at facility 1 or 2 waiting to be issued to its users on a FIFO basis. Because
the FIFO issuing policy is used throughout the system, x,kfll,j may be expressed as

Xkl =k - Dyt j=0,1,2andk=1,2, ..., ®
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xt1j =yl — Dy, j=0,1,2. 3)

The argument of the function x,l‘,- has been suppressed for ease of writing. The quan-
tity of stock remaining against which a holding cost is charged is ;D — y) = (v}; —
D;).

]Once the units to be issued by facility O are determined by the FIFO issuing
policy, it is necessary to decide how to allocate those units between facilities 1 and
2. Let z,’-‘,-(y - x) be the amount of stock of age older than or equal to k allocated
from facility O to facility j in period i, when the vector y — x = (¥} — x}) is ordered
by the system. The sum of allocations of age k or older at facilities 1 and 2 must
not be larger than the total amount age k or older at facility O or the total amount
ordered. This may be expressed mathematically:

2 2
FZ% Zj - x) = min(/§ i = xp). J’Z'Co) ) fork>1 4)
and
2 2
;1: 5 —x) = Z% Oh—xi) . )
= pu

To this point we have defined all relevant variables for the model. In the next
subsection the various components of the objective function are introduced. The
final subsection of section 3 explicitly defines the class of order policies and allo-
cation policies to be considered in the paper.

3.2. Objective function

We assume three types of costs in a period i: shortage, holding and over-age. It
follows from the stationary critical-number policy that the ordering quantity
becomes the demand of the previous period and therefore its expected value is a
constant. The shortage cost p; allocates a penalty for the system to be out of stock
and is charged against expectéd value of shortage v;(D — y). The holding cost ¢;
is charged against the expected value of total stock remaining, #;(D — ). The over-
age cost g; is the penalty paid for having over-aged stock. However, this over-age
cost is charged against x7},,, _; ; rather than xjj because the decision variable asso-
ciated with x,'»’lm_l,]- is y}i which is the inventory after ordering in the current
period. By assuming that x’éj =0 for allj and &, x;‘]— may be expressed recursively in
terms of demand and y}j. These expressions follow from the definition of variables
and FIFO. Their formal proof can be found in Yen [245].
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K-
Vio=xlp = (J’x K+1,0 — ED: no), fork>1landi=zk. (6)
=0 ifi<k.

Equation (6) indicates that stock of age k or more at the central depot before or
after ordering (for K > 1) is determined by the depletion of the sum of ¥ — 1 con-
secutive demands. (Recall that incoming stock at facility O is of age 1 and hence
inventory before and after ordering are equal for k> 1.)

It follows from (6) that the quantity of stock of age m or greater at the depot
in period i+ m — 1 is related to the depot target inventory level in period i by the
following formula:

m-~2

xt+m—-10 (Yzo - E Dy, 0) . @)

The corresponding formula for warehouse j is

k—1 .
Kk
Xij = (yl k+1,5 T 2 Z{c nn](y“x)“ El Di-n,j) s
n=

fork>1,i>k,andj=1,2 (8)

=0 ifi<k.

where it was necessary to include the shipments of quantities of various ages to the
warchouse from the depot. Equation (8) is established in Yen [245] by an induc-
tive argument. The following equation is a direct consequence of (8):

m-—2 m-=2 .
Xitm— I A (yx] n§1 Z?:n%f 0-x- rg Di+n,i) ’
forj=1,2. ®

Equations (7) and (9) define the random variable for over-age stock at the depot
and warehouses respectively. These equations will be used in our derivation of
expected costs.

We have not yet specified, however, the allocation policy in the system. There-
fore, the value of the objective function will vary from one age-allocation policy to
another. Let a;; be an age-allocation policy in period # which (initially) allocates an
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amount of age k or greater to warehouse j, defined by

2
k _ .
Zij(y -x)= Qi mm(? (V}j - x}j),yf-‘o)
j=

for 0<q;; <1, oy ta;; =1 and k=2, ...,m. Note the age-allocation policy is
defined only up to m because we shall charge an over-age cost for units older than
or equal to m. Let o; = (1, &;2), and & = (0);=1,2,...-

Given the system will be following the FIFO issuing policy, and allocation policy
(@, @41, ®iem 1) and an ordering policy (/}, ..., ¥} _1) in the next m periods,
a cost W;(-) will be incurred in period i. W;(*) can be expressed explicitly in terms of
demands and inventory level after ordering by equations (1) and (9):

1 1
wi(yi s s Yiem—1s Dia -~->Di+m—1’ Qs oees ai+m—l)

Mn

= Ls pjoD ~ ¥) + cjhyiD — ¥) + qxiim _1,7) -

7

It
o

Because of the lengthy notation in expressing the dependence of x{{,, _1,; and W;(-)
on (v}, oo Yim—15Dis s Ditm—_1> Qs -r Qiym—1), we shall suppress all of them and
include only those relevent to the development of the various results as needed.

Let G;(*) be the expected value of W;, then

2

Gi(*) =;LZE[P;‘UI';'(D =y) +cihyyD — ¥) +qixiim—1] .

Our objective is to find an ordering policy (¥{,y}, ...) to minimize the sum of
expected, discounted costs,

;’nll;l G(y) = _21 riGi(yl! s '"’yl!+m—l) (10)
Y1,Y2,--) a

where 7 is a discount factor with 0 <r<1 and y} €R3 fori=1, 2, .., and where
the allocation policy « is specified.

3.3. Order policy and allocation policy restrictions

Additional assumptions will be made before proceeding to analyze optimal
ordering policy. We shall restrict the ordering policy to the stationary single critical-
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number policy, that is, the inventory on hand after ordering y,-lj does not depend on
i. Consequently, in each period an amount exactly equal to the demand in the
previous period will be ordered so as to reach the desirable inventory level. Note
this is true only if all excess demand is backlogged and the demand is non-negative
so that the inventory level before ordering is always less than or equal to the desired
inventory level after ordering. Furthermore, the demand in period i for facility O is
the sum of the ordering amounts (the demands) from facilities 1 and 2 in the
previous period, s0 Djo=D;_; 1 +D;_1 , and D;o will consequently be the order-
ing amount for facility O in period i + 1. The demands (D;;);=1,,..., are independent
random variables having a common distribution F;(-) with density f;(*) forj =1, 2.

With regard to the allocation policy, two cases are considered. In case I we
assume that each facility will receive an allocation of all ages proportional to its
ordering amount with respect to the total ordering amount from facilities 1 and 2.
Specifically, for this case, in each period i, o;; = D;_y j/D;o, and for case II a; is
fixed for all i and j, where values may be chosen to reflect relative costs for each
warehouse or a qualitative priority ranking of each warehouse. After initial alloca-
tion to each warehouse, under case II, surplus at warehouse j (if it exists) is re-allo-
cated to warehouse k # (if there is a shortage at k).

We now define the two allocation policies explicitly. Let

n—1

S0 =0,8n= 27 Disro »
k=0

for any n < m we define:

Allocation policy 1
Divo1i .
25 & - %) =2 min(iin0 » (Vio — Sn)) - an
’ Di+n,0
Allocation policy II

28— x) =min{Dys,_y j, Gjdian + [(1 — @) Aian
—Disno — Dina '}, (12)
where
Ajrn =min(Djsp 0, Who — Sn)) .

In both cases I and II, we note that, while each warehouse receives its entire order
(e.g., a total of D; ¢ is always shipped from facility O and hence z,-lf(y —x)=D;_y
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the demand of last period), the age composition of that order may vary due to the
allocation policy.

It is important to note that all costs in period i (shortage, holding, over-age) are
only a function of the critical inventory vector y} = (v}, ¥}1, ¥}2) in period i. More-
over, since as noted above y,-‘,- does not depend on i, by the critical number policy,
it is sufficient to consider minimization of G,(-) for arbitrary i. Finally, since
expected holding and shortage costs are convex, it will be sufficient to examine the
convexity of E[x7,,_;] to ensure convexity of G(y). This particular issue is
addressed in the next section.

4. Optimal order policies

The following properties can be easily established (see Yen [245]), and are im-
portant for the determination of an optimal ordering policy.

Property 1
(D — »), Evii(D — y), hyi(D — y) and Eh;(D — y) are convex functions of yi
over R forj=0,1,2.

Property 2
Xitm—1,; is a continuous function of y! forj=0,1,2, forallocation policies I
and II.

The following theorem, first derived in Yen [245], demonstrates that, for allo-
cation policy I, it is possible to establish convexity of expected over-age stock in
the system under certain conditions on the demand process (see appendix for all
proofs). This condition cannot be easily demonstrated to be true for all values of

W& 1, v3).

Theorem 1.  For allocation policy I,

2
D..
If E E[BL‘ FM=1"1 (vl - Dy - Dil)Jf{)(tho)

i1 tDiz

WV
e
oy

Di]' I —1/.1 m—1/..1
. S— L~ D: — D; F! X
I:D“ Di2 0 (J/,, il 12) j (Vu)

then ZZoEx{im_1,; is convex in y;.
Corollary 1. If m =2 or 3, then ZXoEx[%p, 1, is convex in y}.

Corollary 2. If the events D;; < v} are equivalent (equal probability) forj =1, 2,
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then 2% oFx[},,_; ;is convex in y}.

Corollary 3. If D;; are independent and identically distributed and if y}; =y},
then TLoEx i,y ; is convex in p/.

Lemmal. If Ef:oEx,'-Zm_l,j is convex, and if g, = q,, then G(+) is convex.

Theorem 1, its corollaries and lemma 1 indicate that when over-age costs are the
same for the warehouses, and when demands at the warehouses are independent
and identically distributed, then the over-age quantity function is convex in the
critical-number decision variables. Yen [245] also derived a general condition for
the optimality of allocation policy I and showed that this condition is satisfied for
the same special cases noted above which were needed to ensure convexity.

The following theorem establishes convexity of expected over-age stock for both
allocation policies when the level of stock at the central facility is fixed. As noted
previously, this case may occur if depot stock ordering is controlled at a higher level
or is uncontrollable. The restriction allows us to focus on the differences between
warehouse ordering policies under each age-allocation policy.

Theorem 2. If y}, is assumed to be fixed or determined independently of y}, and
¥1, then Ex{im_1,jis convex forj =1, 2 and for allocation policies I and II.

Given the convexity of ZXoEx/l,, 1 ;iny},and since Ev;(D —y)and Ehy(D —y)
are also convex in y}! for all j, the mathematical program given by (10) is a
convex program. Consequently, optimal policies exist (level sets for the expected
cost function are bounded since over-age costs increase as y; increases and short-
age costs increase as y} decreases to zero), and nonlinear programming codes can be
used to obtain the optimal y’s.

Analysis of the general case (where y}, is variable) for allocation policy 11 was
also carried out and led to results similar to that of theorem 1. Again, uncondi-
tioned convexity cannot be easily established. For the special case where y/, is a
constant, theorem 2 indicates that solution of the first-order condition equations
for both cases I and II will yield unique optimal inventory levels for each ware-
house. In the final section we examine the sensitivity of these optimal levels to
parametric changes and we compare the relative magnitudes for each case under the
assumption that y); is fixed.

5. Comparison of optimal policies
From the proof of theorem 1 (see appendix equation A4) and the definition of

G,(+), we note that for the allocation policy I, optimal inventory level at warehouse
j, after ordering, for the case where central depot stock is fixed, is the solution to
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the following equation:

Qj{f;;"_l(}’ilj){l — Fo(io)} +Fi0DFE 0k
y.l
/

i0
e Fy(v) =pj . (13)

m—2
+ 20

=1

[ [ Eri o0 Fide) Fulde) Fideo)
0

pi(¥)

By theorem 2, when y}), is fixed, (13) is also a sufficient condition for the optimal
policy. Let y| be the unique value ofy}]- which solves (13) (where I refers to alloca-
tion policy I).

The solution to the following equation yields the optimal inventory level for
warehouse j under allocation policy II (for the case where depot stock is fixed):

q; {ij— 'O = Folo)} +FoDFE 1 vk)

m-—2 yilo oo 0o
* FZ; [f [ [ Ert ok ey0) - g)Far)
0

YY) vi(»)

v 70

XF@t)Fo@)+ [ [ [ Er ok 0,00 ) Fi(dep)

o O pj(»)
1
Yio e ¥i(¥)

XEdn) Fodro)+ [ [ [ Fp= = oh) Fidy
0 k() pi(»)

XFk(dtk)F(l)(dtO)]} +(p; + ) F;(v)
=p;. (14)
where
jFkj=1,2;
7 ®) = a;(io — to).
") = @i (io - 1) ,

Pi) =ylo —to — 1y .
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Again by theorem 2, the value of yj;, to be denoted by y1j(ey;) which solves (14) is
the unique optimal solution for allocation policy II when yJq is fixed. Note that we
have explicitly included the dependence of the optimal inventory level under alloca-
tion policy II, on the value of ay;, the initial allocation fraction for warehouse ;.

It is important to note that the solution of (13) and (14) is feasible since we
have reduced the optimization problem to one of minimization of a one-dimen-
sional convex function.

In the following theorem we demonstrate the relationship between the optimal
inventory levels associated with each allocation policy.

Theorem 3.  Assume yj, is fixed:

Let y1(0) = 1%1_{10 yir(e))

C!l‘]
and

yu(1)= hml yiley) ,

ajj
then

@ yin() <y <yn(),

(ii) yii(ey;) is continuous in aj,

(iii) there exists an &; € [0,1] such that yf = y11(&;;) and moreover &; is the solu-
tion to the following equation:

1
[T f°
=1 0

[ [ B0 o) Fide) Fedn) Fi(dro)
o p;(»)

1
Yio oo

—[ [ [ o1 +w0) - ) )P Fidto)
0 7k 7O

vlo 1k0)
= [ [ [ ETIT0h 0 — ) Fildn) Fiddne) Fo(dto)

0 0 pj(»)

Yho 7i0)
— f f f ij_'l_l (y:)Fj(dtf)Fk(dlk)F(l)(dl‘o):' =0, (15
0 Yk0) pj0)
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where

t

B,-(y*)=yI+ +]t Gl —to) - t.
k

L

Equation (15) indicates that it is possible to compute an allocation fraction (and
hence an a priori warehouse prioritization) which yields the same expected costs
and optimal warehouse order policies as that of allocation policy I. As noted
previously, allocation policy I is equitable and under certain conditions is also opti-
mal. Allocation policy II, on the other hand, may be easier to implement in those
situations where consistent (rather than random) allocation rules are important.
The equivalence of these two allocation policies has important managerial implica-
tions. Further research needs to be undertaken to investigate the sensitivity of the
optimal order policy yfi(ay;) to changes in ¢; and to evaluate the magnitude of the
difference between yyy(ay;) and »1 asa function of a;;.

6. Conclusions

This paper has examined a specific class of multi-echelon inventory systems
where the product can be differentiated by age. The interaction between optimal
order policies and age-allocation policies was examined for the case of stationary
critical number ordering and both random and fixed-fraction allocation rules. The
random allocation rule can be viewed as equitable, and the fixed-fraction rule
allows for prioritization of each warehouse. A general condition for convexity of
expected costs was developed for the random fraction allocation rule model. Since -
this condition was shown to be satisfied for a number of special cases, we conjec-
ture that the condition may, indeed, not be needed. Proof of this conjecture
remains for future research.

Consideration of the cases where the central depot stocking level was assumed to
be fixed or determined independently of warehouse stocking levels led to the
derivation of closed form results for optimal warehouse order policy for each age
allocation rule. It was also possible to prove the existence of a fixed allocation frac-
tion value which makes the two age-allocation systems equivalent. Further research
is needed to explore the general validity of convexity and to apply one-dimensional
search algorithms to solve the necessary condition equations associated with the
fixed depot stock model. Investigation of the equivalence between the age-alloca-
tion policies should also be carried out. Analysis of the more general problem where
perishability (finite lifetime) is treated directly rather than by means of an over-age
cost in an age-differentiated model, remains as a challenging research problem in the
context of multi-echelon systems.
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Appendix
Proof of theorem 1
It is sufficient to show that the Hessian for E,?:(,Ex,f'im_l,]- is positive semi-defi-
nite. Denote by DiEx{},,_y; the partial derivative of Ex{},,_;; with respect to

yhtforj, k=0,1,2. Let

n—1

So=0andS, = 27 Dyxo -
k=0

Define
N@) =sup{n: S, <yio} .
By conditioning N(»), Ex},, _, ; forj =1, 2 can be expressed as

m-—2

+
Ex{im_1; =E{(}’}f - Z?) Di+n,j) sNO) =00 +E{pl — Divm_2)";
P

Ditg_1j ,.1
—2 (yio — SD
Divko

m-—2
NG)=m -1} + ; E{(y}ﬁ

2

-z Di+n,f)+;zv<y>=z]. (A1)

n=1—

Because of the equivalence of the events (N(y)=1) and S; <yl <Sp4) for I=
0,1, ..., m-2 and of (N(»)=m — 1) and (S,,,_; <y},) and because of the indepen-
dence of random variables Z;25°Dy4p, j and Do and of Djyp 3 ; and Sy, _y for j =
1,2, (Al) can then be rewritten as
v
Exfim-1j= [ Oh— DFP=1dt) {1 - Fo(rlo)}
0

1
Vij

+f Ok~ ) Fatp{Fg i)}
0
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m=2 yjg w o« Fi) .
+ Ly b -
= Of f f { Uy tk(Vzo IO) L u}
p](y)O
X '~ (du) Fy (dty) Fi(dey) Fo(dto) (A2)

where j £k, j = 1,2;p;(0) =yl — to — tx and B;() =y} + [1/(t; + 1)) Who —to) —1; -

Since the integrands in (A2) are continuous and differentiable between the limits of
integration, the first-order partial derivatives can be calculated by the chain rule:

1.
Vi

DoExfim 1= [ Gl - DF ™ @) {~Foio)}
0

1.
yi]

+ [ ok - EAy) - 18T 0k}
0

MmM—2 o o yill—t/
v D [ [ 0h - wE @) Fe) Fe@no fo(vk)
Fl g 9 o

m-—2 }0 11]

o YV
[ [ 0h—wFm = @ ek - -t
0 0

1
m—2 yjo

X F(dr) Fodt) + 20 [
=1 0

[ 7 B AR TO)

o P](y

X F;(dt)) Fie(dty) Fo(dto) - (A3)

It is noteworthy that the first four terms can be cancelled out because the third and
fourth terms are equivalent to

1
m—2 yj

2 [ 0 FEr @i ook
- 0
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and

1
m—2 yj

2 [ G- wF T @ 5 o)
T oo

respectively. The other first-order partial derivatives are calculated as follows:

D]'Exmm~l,j =F}"_1(y};){1 —Fo(yilo)} +Fi(y}j)F:)n_l(yt!0)

1
0

j{’x
0

Dy ExT_1=0, fork#jandj+#0,
J

m-—2

+ 2
=1

[ [ Frt GoDEi) Fu@oF(dte) . (Ad)
0 pj»

m —_rm-—1 1
DoExitm—-1,0 =Fo  (Uio)»
and

DkExmm_l’o :0, for k = 1, 2.

The second-order partial derivatives can be calculated by taking partial deriva-
tives from the first-order partial derivatives. Again by the chain rule,

m
DoDoExiim_1,j

m—2 oo oo
t.

=T [ e - )E ) Fu@n) 0k

=1 53 1ty

1

m—2 Yi0 = N
D Aok - - 00 FAn) Fudn) FPI )

=1 g [t

. 2
( ;Lk) 1" G0N Fide) Fi(dt Fo(dro)
y

(AS)
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m — m
DiDoExtm—1,j = DoDiEX{tm 15

m—2 Y0 o oo )
N ,2 S J t'i]tk ;NGO F(dep Fi(dt) F (dto)
0 0 p;0n’

(A6)

DiDiEXT 1 = O {1 — FoGlo)} + HONFE 0lo)

1

M—2 Pig o o
+ 2 ’ [ [ 5 GoDFdFde)Fhdte), (A7)
“lo o pm
DyDiEXTL_1;=0, fork#jandj=1,2, (AB)
and
DoDoExfim—_1,0 =15 ' 0lo) - (A9)

Now from the hypothesis and the following relationship:
1
0

P

< max (£ (7))

7

i
f]‘ + 1y

2
4 1872 0o ~ t; — 1 Fi(dt) Fi(dt) F; )

/=1

1
i

(=]

Ji
fi + 15

Me

820k -t - L) Fi(de) Fi(dey)

il
—

/

x
0\3!

J
= max {Fioip} - 8 0lo) £ 1871 00ko)

we have

FT (rer oo
0 p

X Fy(dtp) Fi(dtx) Fo(do) -

The Hessian is then positive semi-definite by the Schwartz inequality, that is,
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[ [ -3 fi’"""‘(ﬁ,-(y)F,-(dr,-)Fk(drk)F{)(dro)}2
o

)[]'+Tk

Cd d m_2
[ [ () Z et aovsen
h =

X f§ (to) dt; dr dt(,:l2

1
Yio & o= £ 2m—2
< ] m—I—
:of ofp]f.(y)(ti‘”k) Efj LB £;@) frltr)
X fo(to) dtj dty dto
yio = o m=2
[ [ [ Z "GO i) fult fi(eo) dt; dic dro
0o 0 Hm"!
y}o © o mM—2
<[ [ 2 o0 5 fld fito) dro drrc dro
o 0 pn ! QED

Proof of corollary 1

When m =2 or 3 the hypothesis of theorem 1 is satisfied. Furthermore, when
m =2, Ex[iy,_y, is reduced to E(y}; — Dy)" for j=0, 1, 2, which is convex and
represents the inventory on hand at the end of period i which will become age 2 at
the beginning of period i + 1.

Proof of corollary 2
From the hypothesis we have F*~*(y},) = F§*~!(»},) for 1 =2, ..., m-2. Since

m—i—1
D;; D::
F\ —4— pm—1 !-—D--)=E(—-—-—" . 23 DijniS .1.)
(Dil +Di2 ! (yl] U) Dil +Di2 n=0 itnj yl]
we have
é D m—I—-1
E(_—i’— Do < yh) = Fm-lgly .
j=t \D;jiDip’ n=0 = Vi ;o)
Therefore the hypothesis in theorem 1 is satisfied because

2

D[ e(5-20 Fpr 10 - D) 6)

£ j
i=1 i1 ¥ Dip

D;: . -
_E(—D—”— o '0h — D ~Diz))Fim I(V}i)}

i1 *Diy
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2
= D P ODROL - BEE o)
=0, forl=2,...,m-2.

Proof of corollary 3

Since the events {D;; < y,-lj} are equivalent from the hypotheses, therefore the
assertion is true from corollary 2.

Proof of lemma 1
Since the sum of convex functions is convex, consequently G(*) is convex in y}.
Proof of theorem 2

Allocation policy I
By (A7) from the proof of theorem 1 we note that DijEx,f'lmﬁ 1, = 0. By (A8)
we note that DkDJ-Exﬁm_u =0for k #jandj=1,2. Convexity follows trivially.

Allocation policy IT
By an argument similar to that in the proof of theorem 1 for case I, it can be

demonstrated that

1
Yij
Exfim_1;= [ Ok - DEP™I@ds) + (1= Fo(lo)}
0

1
Yij

s [ Ok - Fy) - FE k)
o

f f f f [yilj+7j(y)“tj_“]

1 1
m-—2 { Yio oo oo y,-]'+'yl-(y)—tj
0 k(v 0

X F' 1 (du) Fy (de) Fie(de ) Fo (dio)

vio (G) = y}i+pj(y)—tf
LS Dl + 10 = P )
0 0 pj(» 0
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X F;(dt)) Fi(dty) Fo(dto)

1 1
Yig o Yij

]
s [ [ [ bl FPR (@) Fy@n) Fr @Fidt) )

0 vk pj(»
(A10)
where
70 = a;(vio — to) ,
YO = @ (lo — t0) 5 k#7],
p; () =ylo—to —tx .
The first-order partial derivative with respect to yilj is

DiEXT 1 =F 1o {1 - Folo)} +Fio Fg ' 0lo)

i
Yio o oo

m-2
¥ g { f f Ffm_l_l(yilj +'7/'(V) - t]')

0 vk 7i(»

1

X F;(dt)) Fi(dti) Fg (dto)
Yio
+f

0

fy
0
1
Yio oo i(»)

s [ [ [ BTl F A F@id Fh@)|
0 Yk pj(»

k() e
[ Pt 0k + 0,00 - 1) () Fi (i) Fi(dto)
pj(»¥)

and
DyExTim_1;=0, k#j,j#0.
It follows then that

m-—2

_ I il
DiDiEXT} 1 = P aifoio) Fi' 1 ip)
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1
Yio
+(1 — o) e f fi(@ixto) Fo(dt) F" ')} 20
0

and henee convexity is established. QED
Proof of theorem 3

Let oy; = 0, which implies that oy = 1, 7;(¥) = 0, pj(¥) < 7i(v)- After eliminating
common terms, we ignore the outer integral, with respect to #o, in (13) and (14)
and note that the three inner integrals in the summation in (14) become

[ [ B ok - EaFddn)

RZ1RY
Tk0) =
[ [ EPRT Ol ei0) - ) Fj(de)Fi(dee)
0 20
_f / Ff' = ol Fi(dt))Fy (dry) -
k) 0

By decomposing the first integral above into two integrals, we get

o pj(»)
FP==4 ok — 1) Fy (@) Frdte)
T (¥) 0

+ f f FPF1 (ol — ) Fy(de)) Fie(dey)
Y pj()

Te(V) =
s [ [ Er o)+ 000 — DFd) Fi(dne)
0 pj(»)
oo P]'(y)

[ [ Rl ODF@)F(dn)
Yk(¥) O
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Fim—l—l Ol + ;)" — 1) F(dey) Fr(dty)
»)

A
0\8
%8

©
~

i

FP = GOD F () Fe(d)

A
\8

©

ji2)

which is the inner integral in the summation in (13).
The final inequality follows from the monotonicity of F;( - ) and,

B 2 vl + (o;ON — ¢
since

il
Ltk

o—te)2 (o —to — )"

if and only if
Yo—to—t=pi(M) =4,

which is true by the region of integration.

Given the convexity of the expected over-age stock function for each allocation
policy and the equality of the expected shortage function, the above relationship
is sufficient to prove that y{(0) = »f.

We now let a;; = 1 and show by a similar argument that y1;(0) > yi(1). Looking
at the three inner integrals with «;; = 1 we see that

oo

f f F'=H 0k + 400 — 1) Fj(dt) Fie(dty)
0

vi(»)

o 7j(»)
+ [ [ ErlohF @) Fide)
0 i

éff F=EY ok +p;0) — t)) Fr(dty)
0 pi(y)

and hence the lower bound for a;; = 0 is the upper bound for a;; = 1, which estab-
lishes that y;7(0) = y1;(1).
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Finally we note that

oo

f f FM==1 (b4 y,(0) — 1) Fj (dt) Fre(dtx)
0

27169

> [ [ FrRl el Fidn Fildn)

2 [ [ Frt Go0E ) Fudn)

0 p;(»
since

Ji
t]'+fk

(Go—to)= ¢

if and only if
Yo—to—ti=piM= 14,

which is true by the region of integration. Thus y§j(1) £ y§ =

y ikl(o)-

We next observe that ypj(ay;) is continuous in q;; since (14) is the sum of con-
tinuous functions of ¢;;. Hence there exists an &;; such that ¥ =y11(é;;) and more-

over &;; is the root of (15).

QED





