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A BY- PRODUCT PRODUCTION SYSTEM WITH AN
ALTERNATIVE*

BRYAN L. DEUERMEYERY anp WILLIAM P. PIERSKALLAY

This paper considers the optimal control of a production system which is composed of two
distinct production processes, types A and B, that produce two different products, 1 and 2,
having distinct random demands. Production type A produces both products in amounts
determined by a fixed set of production coefficients. Type B can only be used to make
product 2. Costs consist of linear production costs and convex holding and shortage costs.
Each period, the optimal production level of each type must be determined. The criterion is
the minimum expected discounted total cost. Results show that the decision space of each
period is partitioned into four regions by three monotone functions and a point. Extensions

. include capacitated production, nonstationary costs, lost sales, fixed lead times and the
general m process—» product system.
(INVENTORY /PRODUCTION; INVENTORY/PRODUCTION-STOCHASTIC MO-

DELS)
I. Introduction

In many production-inventory facilities it is necessary to schedule the manufacture
of several products on different production processes. Often, the same quantity of
finished products can be made using different combinations of production processes.
In such cases two simultaneous decisions must be made. First, the inventory level of
each product must be determined to best meet (random) demands. Second. the best
(optimal) production level (e.g.. number of runs) must be determined to achieve these
inventories. Often these decisions cannot be made independently because production
capacities or design characteristics of the production lines may prohibit arbitrary
combinations. The system we consider is described in Figure 1. There are two
inventory items, called products 1 and 2, and two different production processes
called types A and B. Type A is capable of making both products, simultaneously,
according to the production coefficients 7, and 1,. When type A is operated at the
unit level (e.g., a single run), n, and n, units of products 1 and 2 are obtained. We
choose to call type A a by-product production process due to its multi-product
capability. Type B is a single item production process and is capable of making only
product 2. In this context, type B is the alternative method of obtaining product 2.

Stochastic

TYPE A

T2
. Stochastic
TYPE B Product 2 Demand 2

FiGure 1. Block Diagram of the Production System.

A variety of real inventory-production systems found in industry can be described
by diagrams similar to Figure 1, although many will be more complicated. By-product
processes themselves occur quite naturally. Transistors are often classified into lots
according to their quality. In this case, n, would be the average percentage of
transistors that are classified into lot j each run. The chemical industry and in
particular the petroleum industry have production processes that are primarily of the
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by-product nature. For each barrel of crude oil processed through the cracking plant,
7; of hydrocarbon j are obtained. Various other blending problems such as the cutting
stock problem (with random demands) can be viewed in this manner. In each of the
above examples, any other means of producing any one single product would fit our
type B.

This system is a specialization of what could be called an n-product m-production
process inventory-production system, where the m processes have to be coordinated in
an optimal fashion to prepare inventories of the n products. The m production
processes would usually consist of a variety of different types of production processes.

In reviewing the relevant literature, one sees that a variety of papers have been
written concerning the control of inventories for several products. The excellent
survey paper written by Veinott [18] reviews the literature through 1965. Among the
topics discussed by him are: substitute products, multilocation systems, ordering and
repair and capital accumulation and production. Veinott [17] developed a very general
-multi-product model that allowed for several demand categories. Evans [7] considered
the control of a by-product production system using two different production cost
structures: under lost sales he used a linear joint production cost and under complete
backlogging he allowed for a fixed set up cost and generalized K-convexity. Evans [6]
considered a multi-product system with limited resources. Shah [15] explic-
itly treated different types of substitutability between products. Johnson [11] pre-
sented an infinite horizon model with fixed set up costs for an inventory system
consisting of several different products. Silver [16] and Goyal [9], [10] considered the
problem of joint replenishment when demands are known. Most of these papers
considered multi-product inventories when the stock items are related in some fashion
(resource limitations, by-products, etc.). A variety of deterministic multi-product
models have been studied using linear programming. A number of these are discussed
in the book by Johnson and Montgomery [12].

Apparently, the model described in Figure 1 has not yet been considered in the
context of stochastic inventory theory.

The model is formulated in §2 and §3 and the analysis of the model is presented
along with the characterization of the optimal policy. §4 prov1des some important
extensions of the model.

2. Model Formulation and Assumptions

The model is of the periodic review type, where the planning horizon is N periods
long. At the beginning of period n, n=1,2,..., N, the initial inventories (before
production) x, = (x, , x, ,) are reviewed, where x,, ; 1s the initial inventory of product
J» J=1,2. Then, the starting inventories (stock levels after production but before
demand) y, = (), 1 Vs 2) @nd the production levels p, = (p, 4 p, ) are jointly de-
termined. y, ; is the starting inventory of product j, j = 1, 2, in period n and p, 4, p, 5
the production levels of types A and B, respectively. Then, a random demand

=(D, |, D, ,) is realized. We use a reverse recursion numbering scheme so that
- index N refers to the first period and 1 refers to the last period. When focusing
attention to quantities within a period, we frequently drop the period index on the
above quantities.

The following is a list of specific assumptions governing the development of our
model. §4 provides a discussion for generalizing many of the assumptions stated
below.

1. Production Processes

It is assumed that each production process is controlled by specifying the produc-
tion level. For type A this level is p,; for type B it is pg. Thus, the amount of each
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product produced is (0, p5, Ps + 12P4). We assume that 9, and 7, are constant; they
are not decision variables. For the present, we assume that there are no lead times and

that there are no upper bounds on production.

2. Demands

We assume that D,, n=1,2,..., N, form a sequence of nonnegative independent
and identically distributed random vectors with a continuous joint density function
f(+) and finite expected value. Although we allow dependencies among demands
within a period, we do require that D, ; be satisfied only from inventories of product
J»Jj =1, 2. It is further assumed that unsatisfied demands are backlogged and are not
lost.

3. Production Costs

(@) c, (cp) is .the unit production cost on A (B), and it is assumed that 9, ea~

n5¢p) > 0.
(b) there are no fixed costs of production.

4. Inventory Costs

Let g(-) be the holding and shortage cost for product i, i = 1, 2, over any single
period. We define the expected total holding and shortage cost over any period as

L(y) =f0°°fo°°[ gy — 0 + gy, — w) ] f(1, u) dt du.

We assume that

(1) L(+) is strictly convex over R,;

(2) L(*) has continuous second partial derivatives;

(3) (ca = Mea)1/M + cgys + L(y)— *oo whenever || yl| > * oo (where || - | is the
Euclidean norm). (3) assures the existence of an optimal policy.

S. Discount Parameter

Let « €[0, 1]. « denotes the parameter which relates costs in future periods to the

present. »
We use the following notation for derivatives and partial derivatives of functions.

Let h(-) be a twice continuously differentiable scalar function, then A’(-) and A”(*)
represent the first and second derivatives, respectively. Let g(-) be defined on R, with
continuous second partial derivatives. Then

oo 2 -
§7() = 3, 8(»), =Lz

2

g (x) = T 0% g(x), Lj=12...,n

The problem is to determine a policy that leads to the minimum expected dis-
counted cost over the N period horizon. This leads to an optimization problem that is
most easily conceptualized as a dynamic programming problem. Before formulating
the dynamic program, we first describe the relationship between a feasible set of
production levels p = (p,, pg) and starting inventory levels y = (y,, y,) given any
initial inventory x. Given p and x, the starting inventories y must satisfy

Y1=mpat Xy (2'1a)
V2 =Mpat ppt+ X, (2.1b)
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Given y and x, the production levels p are determined by

|
Pa= —(yi—x) ‘ (2.22)
™
M2
Pe=)2— »(Xz + "7_1 (- Xl))' . (2.2b)

Although the dynamic program is most easily defined in terms of p and x, we favor
using y and x since they characterize the optimal policy.
The dynamic programming recursion is given by

. I .
Cux) = inf{ G,() = - (en = mew)x, = cua (2.3)
subject to ;
| Y12 Xy, (2.3b)
L] .
Y22 X3+ ;: »—x) (2.3¢)
for
1
G,(y)= n (ca—meg)y + cgyat+ L())
+afwwa,,_l(y, = t,y, — u)f(t, u) dt du (2.3d)
o Jo
wheren=1,2,..., N,y €R, and Cy(x) =0 for all x.

3. Analysis of the Optimal Policy

The first result is of a purely technical nature, but provides the properties of C,(+)
and G,(-) crucial to the characterization theorem.

THEOREM 3.1.  Under the assumptions made in §2, the following hold.

1. G,(-) is continuous and strictly convex.

2. All sets of the form Q,(B) = {y €Ry; G,(y) < B} are compact and convex for
each bounded 8 € R.

3. The point y,(x) that solves (2.3) exists and is unique. Hence, inf can be replaced by
min for each bounded x € Ry,and n=1,2, ..., N.

4. C,(-) is convex and nonnegative on R,.

The proof of Theorem 3.1 is provided in the Appendix.

The optimal policy, y,(x) is completely characterized by a point S, =(S, |, S, 5
and three scalar functions r,(-), w,(+), and g,(-) as graphically described in Figure 2.
Each arrow represents the path from an initial inventory (the tail) to its beginning
inventory (the head) by some production combination. In Region I both A and B are
used and notice that the starting inventory level will always be S,. In region I only
type B is used so the starting stock always lies on the graph of g,(-). In region II only
A is used. The path from x to y,(x) in this region is a line parallel to w,(-). It is also
important to point out that r,(-), w,(-) and g,(-) are functions of x,; this is a different
interpretation than is found in [17].

We proceed to the characterization by making the necessary definitions and
assumptions, region by region. Following this discussion is Theorem 3.2. Finally, we
mention that existence and required properties of the partial derivatives of G,(-) are
summarized in Theorem A.l in the Appendix.
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For ease of reference, we now state the Kuhn-Tucker conditions for (2.3), which are
necessary and sufficient for the policy y,(x) to be optimal. Theorem 3.1 assures the
existence of a unique solution to these conditions.

|

o ra(x)
3
=) REGION IV
e NO PRODUCTION
Sn, 2 :
REGION '
I |
A ONLY |
|
éx
/o S PRODUCT 1
/ n 1
w"(Q/ ** REGION | 'REGION
1 1
A&B B ONLY
FIGURE 2. Characterization of the Optimal Policy in Period n.
G 0n() + 7+ G (3,(x)) > 0. (K1)
1
G2 (ya(x)) >0, (K2)
' n
(i) = 5| G0 + 22 Gs”(mx))} -0, (K3)
M2 :
R R A ) IR ET S (0
. 1
M2
In2(X) 2 X3+ 77_1 (Fn, 1(x) = x1), (K5)
In1(X) > x;. (K6)

In the discussion which follows, we make use of the concept of attainability. To
define this, let y° =(yy, y;) be an arbitrary inventory level after production and
' x =(x,, x,) be the inventory prior to production. We say y° is attainable if ( y°, x)
satisfies (K5) and (K6).

Region 1 (Both A and B). Since both processes are used, the unique solution to (K1)
. through (K6) must satisfy (K5) and (K6) strictly. Define S, = (S, ,. S, ) as the global
minimum of G,(-). If S, is attainable from x, it follows that y,(x) = S,. This is true iff
X is in the set -

Ri={x €Ry:x; < S, 1, xy <wy(x))}
where

M Sp 1 — X
w,,(x,)=_s"‘2——2£-‘—n‘—-—‘—) for all x,.
1

The following lemma is required for the characterization of Region 11
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LemMa 3.1. Let G(-) be a strictly convex functton defined on R, wzth continuous
second partial derivatives. Assume that (i) G(y)— *oo whenever || y||— * oo and (ii)
there is an n > 0 such that G"(p) + nG@ f)(y) >0 forall y €R,, j=1,2. Then

(a) The global minimum S = (S 1 S) of G(+) is unique.

(b) r(x) that solves

GW(x, r(x)) + 1GP(x, r(x)) =0
is continuously differentiable and nonincredsing, for all x. Furthermore, r(S)) = S,.

PRrOOF. (a) is a consequence of compact level sets and strict convexity. That r(-)
exists and is differentiable is a consequence of the Implicit Function Theorem [13]
which is applicable because of (ii). The nonincreasing property is evident upon
differentiating the defining expression for r(x) in (b). Finally, 7(S,)= S, is a con-
sequence of the definition of S and the continuity of r(-).

Region 11 (Only A). When only A is used, the unique solution to (K1) through (K6)
satisfies (K5) strictly and (K6) at equality. Thus the optimal policy is chosen to
minimize G,(-) along the line passing through x in the 5 = (n,, n,) direction. Let

Yn = yn(x) solve
min G,,(y, Xy + % (y— x,))
1
Y ER,
If y7 > xy, then (y;, x, + 9,(y; — x,)/m,) is attainable from x and thus must solve
(K1) through (K6). This is possible iff x is in the set
={x €ERy; x, < S, 1, wo(x)) € x, < 1, (x}))

where r,(x)) is defined as in Lemma 3.1 (b) with G(-)= G,(-) and n = n,n, . The
lemma is applicable by Theorem A.1. Also, y, = ( Y 1o Ta(Pn, 1))

LEmMMA 3.2, Let G(-) satisfy the hypotheses of Lemma 3.1 along with (i) G “(y)
0, yER,, i,j=1,2,i # j. Then

(a) The global minimum S = (S}, S,) is unique.

(b) g(x) that solves

G(x, g(x)) =0
exists, is continuously differentiable and nondecreasing, for all x. In addition q(S,) = S,.

The proof is omitted due to its similarity to that of Lemma 3.1.

Region I11 (Only B). When only B is used, the solution to (K1) to (K6) must satisfy
(K5) at equality and (K6) strictly. Let g,(x,) be the global minimum of G,(x,, *).
Then,

GO (x, q,,(x,)) =0 forall x,.

If g,(x,) > x,, the point (x,, g,(x,)) is attainable and is the solution to (K1) through
(K6). Therefore, Region 1II is operable iff x lies in the set

Ryy={xE€Ry x, 2 8, 1, x; < gq,(x))}.

where g,(x,) is defined as in Lemma 3.2(b) with G(-)= G,(:) and n = 7,m;'. Lemma
3.2 is applicable as a consequence of Theorem A.l.

Region 1V (No production). Using the unique characterization above, it is easy to
see that no production takes place iff x is in the set

Riy={xERy; x; < S, |, x; 2 r,(x))} U {x ERy x; > S, , X5 > ¢,(x1))-
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THEOREM 3.2.  Under the assumptions of Theorem 3.1, the characterization in period
n is given by the four sets R,, Ry;, Ry, R,y defined above and the corresponding policies.

Proor. The proof is by induction on n. The proof of the initiation step (n = 1) is
proven in exactly the same manner as the general induction step. The method is to
show, for each region, that the stated solution is attainable and satisfies the Kuhn-
Tucker conditions. We omit the details. Q.E.D.

4. Extensions

Many of the assumptions made in §2 can be relaxed. We now discuss a variety of
these extensions, and how they affect the model studied in §3.

4.1. Nonstationary Demands and Costs

It was assumed in §2 that all costs and demands remain stationary over time. This
assumption was made simply for ease of exposition. Theorems 3.1 and 3.2 remain
valid as long as the strict convexity of G,(-) is maintained and G,(y)-» * o whenever
| |l » *oo. This will be true, for example, if G,(*) > G,_,(:) > - - - > G,(*).

4.2. Production Capacities

Probably the most restrictive assumption made in §2 was that production on types
A and B is unlimited, since this may be unrealistic in some cases. However, relaxing
this assumption does not significantly change the form of the optimal policy as is
demonstrated below. ' ‘ ’

Let the finite production limits on types A and B be M, and My, respectively. In §2
it was assumed M, = My = c. Then, the optimization problem is given by (2.3) with
the following additional constraints.

yi S MM+ xy, (4.1a)

- X
Yo < Mg+ x, + 173—(—)’-‘;“12 (4.1b)
1
Following the procedure developed in §3 the optimal policy is characterized as in
Figure 3. Numerals I-IV correspond to regions I-IV as defined by Theorem (3.2). The

-——-nIMA-—-—

FIGURE 3. Characterization of the Optimal Policy when There is Finite Production Capacity.
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subscripts refer to sub-regions created by the presence of production limitations.
Notice that the characterization is still completely determined by r,(x)), ¢,(x,). w,(x,)
and S, as in Theorem 3.2, but with the addition of displacements of these by factors
involving the production limits M = (M ,, My).

4.3. Lost Sales ;

In §2 it was assumed that all unsatisfied demands are backlogged and will therefore
be satisfied eventually. In many situations this may not be a reasonable assumption.
The model can be extended to the lost sales case without changing the characteriza-
tion set forth in Theorem 3.2. However, since the transfer function is no longer linear,
the convexity of G,(-) must be established in a somewhat different fashion. The
method of proof is virtually the same as the one used by Evans [6] and can be found
in Deuermeyer [4].

4.4. Fixed Lead Times

In §2 it was assumed that all production was instantaneous. We now extend the
model of §2 to the case where there are delivery lead times for each product.
Specifically, let A and p be the constant lead times for products 1 and 2 respectively.
We implicitly assume that the lead time for product 2 is the same regardless of how it
is produced. Let w; be the amount of product 1 to be delivered ; periods into the
future,kj =1,2,..., A~ 1. Similarly for product 2 we define ¢;, i=1,2,...,p~ 1.
Let F**(r) be the k-fold convolution of F;(-) with itself, where F,(-) is the cumulative .
distribution of D,. Furthermore, for ease of exposition assume that D, and D, are
independent. Define _

A-1 p—l

u=x+ > w, and u;=x;+ > o
j=1 i=1

then, u = (u,, u,) represents the vector of pipeline inventories. For ease of exposition,
assume n > A > p. Then, we replace (2.3) by

Cxswp ooy Wa_ 50, By)

= min{ -7}— (ca — mycp)zy + cgzy + L(X)
1

oc o0 ~
+ aj; fo Co(x)+wy =t X+ 0= 1y Wy oo 21 0y, -, 2)fi(1)fa(12)dty dty

4.2)
subject to
z, >0,
Z; 2 Mz,

Following the procedure used by Scarf (Chapter 10 of [2]) we can rewrite the
problem as:

C~‘,,(x: Wive oo s Wao s Oy e vy Uy y)
= C(Xi Wy e e Wal i Uy e e a0, 1) + Gy (u) (4.3)
where
C.(u)= min{Gn,,(y) ~ 1/m(ca — maCp)U; — Cgltz ).
Y2 Uy '

n - ‘
Y22 Uyt 71-? (»—uy) (4.4)



A BY-PRODUCT PRODUCTION SYSTEM WITH AN ALTERNATIVE 1381
with

~ 1
G, (y) = '7; (ca—mcB) Y1+ Cp )y

+a>\f(;°°j(-)°°L(Jv - [)f’l"A(tl)fz*)\(tz)dtl dfz

‘*‘O‘j(;wfowcn()’ - Dfi(t)fa(n)at dt,.

If we let I:( y) be the third term in the above equation, we see that (4.4) is analogous
to (2.3). Thus, the leadtime problem is characterized using functions defined in the
same manner as w,(-), r,(-) and g¢,(-) in §3. The important difference is that the
decision in each period is a function of total pipeline inventories u rather than on
hand inventories x.

4.5. The General m-Process—n-Product Case

Our results can be extended in a natural way to allow for any general number of m
production processes and n products, so long as all production costs are linear. In
addition, any by-product processes must have the property that the production
coefficients do not change—that is, they cannot be decision variables. In many
situations, such as in blending problems, part of the decision is to determine the
optimum blend. Our model could handle this case by considering say m by-product
processes, each on the same machine, but having different pre-determined production
coefficients. In fact this approach is at the root of most linear programming solutions
to blending problems.

In general, there will be as many decision regions as there are possible production
process combinations, and the decision space will be of the same dimensions as there
are products.

5. Summary and Suggestions for Further Research

This article has presented a new class of multi-product inventory systems, where
decisions must be made in regular intervals of time (periods) concerning the optimal
stock levels to maintain in order to anticipate stochastic demands. The novel feature
of this new class is the notion of coordinating different types of production processes,
operated in parallel (and independently), which are used to supply the stock items to
the inventory system. Theoretical results were presented that characterized the op-
timal production policy in each period, in terms of these monotone functions r,(x),
gn(x), and w,(x), and a point S,. In addition, extensions of the model to allow for
nonstationary costs and demands, lost sales, finite production capacities and lead
times were considered. The general m-process, n-product analog of our model was:
also discussed. However, there are still some interesting problems still unsolved, such
as allowing for fixed costs in production and developing efficient solution techniques
for determining the optimal and near optimal policies.

Appendix

_This appendix contains the proofs of the theorems and lemmas needed to establish
Theorem 3.2 stated in §3. The following well known result (see Rockafellar [14]) is
used to prove Theorem 3.1.

LEmMMA A.l. Let
C(x)= min B(x,y)= B(x.y*(x))

y & DIx)
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where y*(x) € D(x) and x € A. Assume C and B are real valued. Then, if A is a convex
set, B is jointly convex and if X = {(x, y); y € D(x)} is convex, then C(x) is convex in
X.

ProoF oF THEOREM 3.1. The proof is by induction on the period index, n. First,
consider n = 1. (1) follows directly from properties assumed on L(-). By assumption,
G\(y)— » whenever || y|| > *oo. Hence, for any bounded 8, Q,(8) is bounded and
convex. The continuity of G,(-) finally asserts (2). The optimization problem can be
written with constraint set

YEAX)N Q(B)

where
Uy 2
A(x) = {)’ER2§)’1 Z X, Yy~ ;7_1)’1 > X;— ;xl}

and ﬁ = G (x). But A(x) N Q( ,_é) is compact so that (3) follows. The first assertion in
(4) follows from an application of Lemma Al. To prove the second notice that

Ci(x)= ;711_ (ca— ﬂch)(}’n. 1(x) —x) + CB()’». %) — xp) + L(y(x)) > 0.

Now, assume the Theorem is true for periods 1,2, ..., n— 1. We prove it true for
period n. (1) follows first since the functions y — D, C,,_,(y) C,_(y— D), E[C,_,
(v — D)] are convex. The strict convexity of L(-) is sufficient for G,() to be strictly
convex. The continuity of G (-) follows since the effective domain (see [14]) of G,(-) -
is all of R, and convex functions are necessarily continuous on the interior of their
effective domain. (2) follows immediately since G,(y) > G,(y). Parts (3) and (4) are
proven exactly the same as their counterparts in the case n = 1. Q.E.D.

THEOREM A.l. Under the hypothesis of Theorem 3.1, the followmg hold.
(i) G,(-) is twice continuously differentiable on R,.
(if) (2) G, f’(y) +mGENy) /1, >0,y ER, j= 1,2,
b G ‘J(y)<0yER2,zj—l 2,i # j.
(iii) C, (.J 5’( ') is piecewise continuous on Rz, i=1,2j=1,2
(iv) (a) CAx) + 1, CEP(x)/my 2 0, = 1,2,
(b) C2(x) = CE(x) < 0.
for every x in the interior of each of the four regions.

For the proof we refer to [5].!
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