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OPTIMAL ORDERING POLICIES FOR PERISHABLE INVENTORY - I*

Optimal ordering policies for perishable
inventories has received scant attention in
the literature. The goal of this paper is to
generalize scme recent work of Nahmias and
Pierskalla [11l] in this area. We consider
the case of a single product at a single
installation where the demands in successive
periods are random variables. The case where
demands are deterministic turns out, in the
simple case, to have a trivial solution.

The model we consider is a periodic review
model. That is, ordering takes place at

the start of a period and costs are

incurred during the period. The period length
is arbitrary but fixed.
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(1) All orders are placed at the start of
the period and received instantaneously.
(2) All stock arrives new. (3) Demands in
successive periods are independent random
variables with known distributions and
densities. (4) Inventory is depleted
according to a FIFO poclicy; that is, oldest
first. (5) Costs are charged linearly against
~ (a) unsatisfied demand (runouts) (b) deterio-
ration (outdates). (6) If the product has not
been depleted by demand by the time it
reaches age m periods then it deteriorates
and must be discarded at a specified per-
unit cost. (7) Unsatisfied demand is back-
logged.

The first problem to consider in developing
a model is describing the state variable

of the system. Since it is necessary to keep
track of the amount of product on hand at
each age level, we define xj = amount of
product on hand which will outdate (perish)
exactly i periods into the future and the

v =
ector x (xm—l'xm—Z""’xl) represents

the total initial inventory at each age
level. The decision variable, y, represents
the amount of new product being ordered.

For convenience, define

m-1

i=1%i-

The most effective way to describe the
dynamics of the problem is to look at it as
a special type cf multi-echelon problem. Let
the ith echelon correspond to the term Xj
and contain the amount of product which will
outdate exactly i periods into the future.

x =1

s Xt =[xy - [ -j%l nd ]

sm_l(Y)’,S)t) =

. Let y be
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Then in transferring from one period to the
next, stock is transmitted to the next lower
echelon; new stock enters only at the
highest echelon and all remaining stock in
lowest echelon must be discarded at the end
of the period. The FIFO assurption is
interpreted as follows: demand originates
only at echelon 1 and is transmitted up to
the next higher echelon until either the
demand is satisfied or unsatisfied demand is
backlogged at echelon m.

From these considerations we arrive at the
following transfer function: If X is the
amount of stock on hand at the bé&ginning of
any period, y is amount of the order placed
at the start of the period and t represents
a reaiization of the demand in the pericd,
then the amount of stock on hand at the
start of the next period is

(s(y,%,t)) = (sl(y,zg,t),---,sm_,(y.§,t))

1t lcism=-2

m-1
(y -[t- T x ]+ 1f demand is backlogged
j .
=1

ty - t - mél . ]+]+ 1f demand is
©y=1 h]

where £ = max(£,0).

not backlogged

Let D ,Dz,... be the demands in succegsivg
perioés &ach of which has specified éistryi-
butions F;,Fp,... and densities f3,f5.,...
%he amount of the order. Then :hg
total amount of stock on hand after crdering
will be m-1 . £ .
y + ifl Xy (= y + x). We define the

m-1
random variables R, =y + I ¥;,
1 i1+

m-1 ++
Rz = [y + 'z xi - (Dl - xl) ’

i=2

m-1 ] s L+
Ry = Iy + I % - By (D) = X)) T Xl

i= .

etc. Thus Rj represents the total amount cf
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m-1 :
vy + I X; on hand exactly j - 1 periods
i=1
into the future. Notice that we need not
worry about future orders since our FIFO
assumption assures us that all of the
inventory y. will be depleted before any
future order.

In order tc simplify the notation, we define
recursively B, = 0,...,B5([D3 + B, _,~x.]%
1<j<m- l J J» j-1 73

The random variable B] can be 1nterpreted as
the total unsatisfied’demand in period j
after GEDletlng all of the product that would
have outdated in the period. Notice that Ry
Yepresents the amount of y on hand at the
start of the mth perlod so that

RY = [y - (D + B _;)1* represents the amount
of y that perishes. -

In order to determine the distribution of

Rm it is convenient to define

G (tix(n - 1)) = P{D + B, ;< t}; lsnsm

where the vector x(n) (xn,...,xl).

We have the following

THEOREM 1.1:
t
. - t - v)dv
¢ (tx(n - 1)) = Io G (v + xn_l,ﬁ(n‘ 20£ ( v)av,

T e
PO N g

1.

where G, (t)

For consciseness most of the proofs have been
omitted. The interested reader may supply
them himself or refer to [12].

We will use the notation G (l)(x(n)) to refer
to the first partlal derivitive~of G_ with

respect to the i argument. We then have the
following results: i

COROLLARY 1.1: Assume that the demand
distributions Fx possess densities fy that
are continuous everywhere. Then the

functions Gél)(t;x(n—l)) are continuous over
Rl <i<m=-1)7 If £ has a jump at 0 then
Gél)(t;g(n -~ 1)) are all continuous over

R, for i > 2 and Gél)(t;x(ﬁ - 1)) is conti-
nuous in all its arguments but possesses a
jump at t = 0.

lim Gn (z(n)) = Gi(xn""’

X P -]
n-1

COROLLARY 1.2: Xhit1)

2<nsm

where G; is a function of F__. PR
respectively. n-i+l n
The motivation behind defining the functions
Gn will become aparent in the next lerma.

LEMMA 1.2: If x = 1o Xy ) is the
inventory on hand be%o}e orderlng, and y is

the amount of the order, then the expected
number of outdates of y, m periods into the
future, is vy

g G (u;x)du.

The important results regarding the one
period model are summarized in the following
theorem:

THEOREM 1.2: If the charge for runouts is r
per unit and the charge for outdates is 8
per unit (r > 0, 8 > 0), then the total
expected one period cost given that we have
X on hand and order y 1s

Ly =« f [t - (x+y)fj(t)at + 6 f Gy, (u:x) du.
x+y 0

The functlon L(x,y) is convex in y and the
function y (x) given by L(x,y (x}) =

= min [L(x,y)] exists and its range is

v>0
contained in [0,»). The constrained minimiza-
tion is equivalent to the unconstrained
minimization so that L(x,y*(x)) = min{L(x,y)]

Yy
where y*(x) will be uniquely defined whenever
f1 is such that f£(t) > 0 for all t > O.

THE FINITE HORIZON DYNAMIC PROBLEM

The dynamic problem has the dynamics (that
is, the transfer function) built into the
problem on two levels. This is mna Af +hae
features that makes this model wnime and
somewhat more involved analytically than
most stochastic inventory models.

From section I the expected outdating charge
y

is- 8 S G_(u;x)du where G_ is defined
g m m

recursively in THEOREM 1.1. It turns out that
another recursion obtained from averaging G
composed with the transfer function is also
valid. This result will be a key one for
ana1y21ng the dynamic model and is described
in the following

THEOREM 2.1.

o

G (yix(n = 1)) = /0 Gn_l[§(y,>5(n—l),t)]f(t)dt

2 <n<m

As a direct consequence of the theorem we
have the following result.

COROLLARY 2.1. Define the vector valued
functions

3
E.J(t) = (Y.Xm_l,--'»xj+1: 'lei - taov-"!o) 2 < j <
is
gl(t) = (y,xm_l,...,xz) and X, =7
cm =2 ¢ o6 [z (0lEDa
Then m(y,g :1 J m-11%5 4
¥i-1
3 -1



Also if we define gj(t;k) as the last k
component of fj(t) we have that

k+l w,
Gx+1) =z 7 oc CRCHSPHOLE
ck+1 ~ j=1 J
' Yi-1 1<ksm- 1.

Throughout this chapter we will assume the
following notation. If A is a function on
Rk, then A(i) denotes the first partial
derivative of A with respect to the it
variable and A{i:J) the second cross partial
derivative with respect to the ith and jth
‘variables respectively for i, j < k. If
_either i > k or j > k then A(i,3)

There are a number of results which will
‘follow directly from COROLLARY 2.1.
m-1 W,
For example, G .(x) = < Mg
m-1"~
j=1 wj 1

. m-i w
¢ () = o (1])_(2 (t3m - 2))E(t)de

ICACLE 2))£(t)de

so that

w-1 (@31

ml
Y51 l<iscsm- 2.

(zj(l:;m - 2))f(r)de

Notice that all terms involving differentia-
tion of the limits drop out. Also

ma1 w . PR
"V = £ P @ e - (O
m- m-1 .
j=2 ]
w,‘
3~

This results from differentiation of the
limit on the first integral. Hence for
m-1 W,
(1 1)(7) G(l)(x) - ju
=1 wj-l

) 1y (e5m - 2)1E(DAE.
m-2 -~]

251sm-1weobc91n(}

i-1
€1z tm - 2]

This and similar results will be used in the
proof of THEOREM 2.2.

Since our methods rely upon dlfferentlatlon
we will need a number of lemmas which
consider various relationships between the
functions G, and its derivatives.

For any real number a > 0 we have
216 (ux)du | =G (a:
2% "o G (\ X du =6 (aix)

LEMMA 2.1:

i
j§1 Gm_j(§(m - j))ﬂj(a;§(m -3
vhere Hl(a) = F(a)

- a v .4x
Hj(a;g(m.- N =[F@-v ) w-13"m-1
) w-1 é
f(Vm_1 Xt Vo).

m-j+2.r m-j+2 £(

3 Vo542 % 342 Va3 E Vo Pooger?

R TORRL !

X = (xm—l""’xl) = (z(m - j))f(m - in

Gii)(a;g) -
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x(m - ) = (x) maq®" <esXy)

E(m - j) = (xm-l’ "’xm-j+1)'
Notice that if we differentiate both sides of
the equation with respect to a we obtain the

identity c;i+1)(a;§) = Gél)(a;g)

; G (x(m - j))um(a-;(m- »
, [ 3y et
which implies

c;i+1)(a;§) -G (x(m - 1))H£1)(8;§(“ - 1))

Notice that the interchanging of orders of
differentiation is valid by COROLLARY 1l.1l.

LEMMA 2.2 The function H. defined in Lemma
2.1 satisfy the follow1ngjrecur81on'

TS

ByaEm - D) = 6@ - D) - 6y

(CHIPI Y L)) (2; % (m-),

Clearly, relationships between the H. and G;
functions will play a major role in e 3
analysis of the dynamic problem so that we
also list the following lemmas.

LEMMA 2.3:
BV @@ - 1) = ¢ aiE@ - .
. a
LEMMA 2.4: Hj(a;g(m - ) = J‘f(a - V)Hj-l
0
x ) dv -
v+ X 13¥qe22 T3l 'F(G)H1_1(§(m - M.
LEMMA 2.5: \ -
Hy(ei%@ - 9) s 1 - ifl LR CIRPITPRIL NPT R
LEMMA 2.6:
“m-1 o3t
jzi G, (§(m - IN[~ - kzl Hk(xm-j+k""'xm-j+1)]

m-i
- 3 Hk(x(k)) for 1 <1 sm- 1.
k=1

The following orderings are valid:

LEMMA 2.7:
(1) G (x(k)) s G ;0 sevusXy)

(11) B (x() s B _;(q,--0%))
(111) 6 (x(k)) = H (x(k))
for 1 <k {m.

At this point we are ready to introduce the
central theorem of the paper. The notation
that will be used will be consistent with
that introduced in the lemmas. We note
particularly that in previous results we
had

J
Zox - t,0,...,0)

z,(t) = (y,x
3 . sl

n-1°"" %5410
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which depends on (x,y) as well as j and t.
From now on we will assume that the first
component of z3 is the function yp(x) which
will represent the optimal quantity to be
ordered given we have x on hand and n
periods remain in the horizon .{(as in the
previous section). Often the dependence on x
will be suppressed and we'll write Yn-

The assumptions we will make for the
theorem are virtually equivalent to those
made in Nahmias and Pierskalla [11] for the
m = 2 case. We consider the finite horizon
problem; that is, the length of the horizon
is some fixed positive integer N.

The functional equations take the form .
@

C,(x) = inf {L(x,y) + af C_;(s(¥,x,E))E(t)de])
y=0 0

= inf {B (x,y)} where C.(x) = 0 for all x,
n'~ 0~ -
y=0 -

where L(x,y) is the one period expected cost

function introduced earlier, and s(y,x,t)

is the (vector valued) transfer function.

m-1

Recall x = I X5 and w, = Z Xy
i=1 J i=1.

-1 are identical. Hence x has the

usual interpretation of being the total

amount of inventory on hand before ordering.

so that

a W
x and -

The proof for the case of m an arbitrary
p051t1ve integer greater than or equal to

2 is set up to conform closely with the m = 2
vasc. As «u wnat case Cp(¥) Will turn out
nee to we a vunvex functlon, but Bp(x,y) will
be convex in y. Hence it becomes necessary to
use the calculus to obtain convexity. The
analysis becomes significantly more involved
when developing bounds for the derivatives
and sections (7) and (8) of the theorem
represent the major analytlcal effort of the
proof. The key inequality in establlshlng
convexity for the m = 2 case was

- C(x) 2 -pf(x).
In the general case we need

cél’l)(x) > -0 Gu)(X).

but to show this holds in period n requires
the development of a network of inegualities.

THEOREM 2,2: Assume that

(i) The demand distribution F possesses a
be nded continuous density £ such that

£(t) >0if t >0, £(t) = 0 if t < O.
(ii) The discount factor is a €(0,1).

Then (1) B, (x,y) is a convex in y for all

m= . i s
x €. R and is strictly convex in a

neighborhood of the global minimum
(2)

(3) The is a unique Yn (x) given as the
9B, (xhyy

solution to —__3§——___ y=yn(§)

= 0 and

yn(§) € (0,»;. In addition yn(i)(x)

exists and is continuous for all x,
1 <i<m-1.

(4)
cMiw=-¢ z a

{ -3 , RN
g S - IDH (v (D sntm - )

m-1i

- w. .
+o z M {Cif;l)[g;(t)} - (”h ROWHGLE
j=1 =, 4
j-1
el o) )
+ as ) . j“ {eimd (z,(0] - c‘ ENONHOT
=m- 1+ w

where zj(t) and wj are as previopsly

defined and Cn(m)(x) = 0. The result
holds for 1 < i <m - 1.

15y Pw <3P <y Do <o

(6) a)'Céi’k)(x) exists and is continuous for

all X e & ~and i <k, 2 <m - 1.
(l 1)
(t: x(m ~ 2)) will be

discontinuouSAat t = 0 whenever f(t)

However,

is discontinuous at t = 0.
b) M Em - 1,0 - ¢V Em - 0,01 =0
for 2 <i <m- 1. The notation 0 is

meant to be interpreted as the last
m - 1 components being zeros.

lsjsm=~1
(j 1+1)

(D) gy C(l,j)(E) > -9 G(j)(x)

b) c(i,J_)(’.S) (1 -1 j)(x) > m

i-1
(o= 00 - B X

m~-1lxj21i21

1
4 xm- i+l ) 4

i-1 1), .
o PP -V < oo (9" Cpu1(®]

m-12122
i i-1,3)
o 18D - D)
i {Cf‘i’j‘l)(i) - Ct(\i-l’j-l)(i)]

(i j-i+1 .
< e[G:j;”(gg(m - i) - G;fi D (x(m - 1]

i-1

o1 - Qfl LS CIURRS form-12j3>i22

'xm-i+1)]



j-1
(8) i ) 1 -
a) -9 jfl Gm_j(z(m Nt kzl -9
i
("m-j+k""”‘m—j+1] < c:(x )(5) s0

for 1 <i <m -1 and for all

%

i
1) _ e 5 = G, (x(m - k)
b CpUm - = SR
k-1
[T HCpuq  noket)]
q=k-J
for 1 < j<i <w-1andall x
. 3 i
9 ¢Pw-cPw=a- T o @)
k=j+l "
k-1
of1 - qfl Hq(xm-l£+q""’xm-1:ﬂ-1)]

foflsj<ism-1andfora11§

o P =0 forx=x, 0 and x50

(9) a) lim 7, =0 l<igm-1
X, 2+ @ -
! (1)
b) 1lim (_‘,n (35) =0 1<%, <m- 1.
Proof: xj 44+ >

Assume the result holds for 1,2,...,n - 1.
(The n = 1 case follows in a similar manner
with C5(x) = 0 for all x).

(1) and
«©

y
B (x,y) =1 I'[t - (x + y)]E(r)de + ¢ j G (uix)du
x+y - 0
+o [ lstnx 0l
0
B_(x,y)
_-—ﬂr = -r[1 - F(x + y)] + G_(¥;X)
wm_1+y
+ o [ ey + x - t,0...0]E(t)de
"’m41 n-1 m-1 w
taz [ PN GIHOLE
IR 3

by the inductive assumption on (8,d)
< -r[l - F(x + y)] +9Gm(y;§) by the
Inductive assumption on (§,a).

B_(x,y)
—— < -rl1 - c
Hence oy y=0 ¥ rfl - F(x)] <0

& (%,¥)
—P . s er[l - F(x+ y)] + 6 (y;%)

oy o wj me’
-8 T J 6,1 (25 (D E(E)AE

=1l g i

(where w_ = X + y) by the inductive assump-
tion on TB,a)
= -x[l -~ F(x + y)] + 6G (y;x)[1 - o] by

" COROLLARY 2.1.

B (x,y) -
Hence lim ~—~—— >1-g>0. Now
) Yok o oy
3B (x,¥)

= rf(x+y) + ch,l)(y;5>

oy m Y3 1.1
+o T f ¢\ o)y E(eyde.
j=1 w n-1 -

i

3B (x,¥)
Ty ly=yn(5) -
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Note that when f has a discontinuity at zero
c(1.1)
n-1

in its first argument via the inductive
assumption on (6,a). The differentiation
under the integral sign is a problem only
when j = m and is justified by a lemma appear-
ing in Van 2yl [15]. The boundedness of the
first and second partials follows as long as

f is bounded.

2
3B (%,¥)

2
oy

will also have a discontinuity at zero

w
_ . m 1
2 rf(x + y) + eGil)(Yfﬁ) - af jfl ’JJ G;_i
=1,
[z;(0)1£(e)ae 3-1

by the inductive assumption on (7)a) with 3
j=1

= rfx +y) + 66y (1 - a1 > 0,
by COROLLARY 2.1.

]
[

aBn (x IY)
9y Y=y, (x)
The fact that B, (x,y) is strictly convex in a

Hence yh(g) satisfies = 0.

neighborhood of yn(g) follows from the fact
that x + yn(g) > 0. This is obviously true
when x > 0. If x < 0 then x _, < 0 and x; = 0,
1 <i<m- 2. Assume y, +x < 0,

(Yn + Xm-1 < 0. y

rn
-T + ¢ J . vm_l\‘v ‘ Am-l;:/L\Jn - V)uv
0
W

n 3
+a I I Ciii [Ej(t)]f(c)dt
i=1 wj_1
yn |
=T I G‘“"1<v + xm-l;ojf()’n - v)dv = -r < 0.

(]
Notice the second term is identically zero
since v + Xp-p £ 0 for all v e [0,y ]. Hence

this contradicts the definition of ¥Yp so that
X + yn > 0, and B,(x,y) is strictly convex

in a neighborhood of y,. (3) The existence
and uniqueness of yp follows.

Again define B (x,5)

T (5¥) = —5

Th{x,y) is continuously differentiable over

R™ via COROLLARY 1.1 and the inductive
assumption on (6). Since Yn solves Tp(x,yn)=0
for all x and

2
B (%,
3T, (x,¥) _3B.G y) oo
ay y=y, N e

it follows from the Implicit Function Theorem
that yél) exists and is continuous for all

x and for 1 <i<m-~- 1.
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(4) From the above it follows that
Cn(§_) = jnf [Bn(z,y)} = min[Bn(§,y)} = Bn(f’yn) so that
y20 y
Cf‘i)(’ﬁ) = -r(l - F(x+y)]+ 6 (v, 3%)

i -
-0 6 (x(m- j))Hj(yn;gg(m - M

5=1
©
a .
Yo [ cpqlstx0]E(e)de] by LEIA 2.1,
0

Ifl1 <i<m- 2, then

L w
N e-1 ] :
———§, U] Calstnmnli(de] = ¢ | céf‘;l)[ij(:)]f(:)a;
m-i ° S W

-1
=1 f’ (m-3+1) 1} )
* Ca- [z,(£)]E(E)de + ¢l iz () JE()de
1 -1
J=m-i+l 'J a o ¢] Vil a-1tm

m-1
+C £ -
w1 (Zaeg (P )16, ) +j-m§£+l{cn_l[£j(uj)]f(vj) Ca1l2y1 045

RA{TE 0 B NOTE OSSP A LICPY

which is a consequence of the definition of
s(y,x,t). Notice that all terms involving
differentiation of limits drop out.

(m) =
-1 (%) =
for 1 < i <m - 1 we can write

If we agree to interpret C 0, then

1
1 -
ci Y(x) = ~x[1 - F(x + ¥ )] + 86 (y.ix) - © j,“rllcﬂ,_,(z(- = I8 (ygix(m - 9))

o-1 ‘:J
+ao T
I=1

(1+1)

v
e »-1 k]
g s [Ej(t)]f(t)dt +a T I

(m-341)
[ z,(t)
o141 ¥ o-1 ["“ !

-1

#macra [ ) [z (o)emae
Vo-1

'{ =10 (1)
-r(l - F(x 4+ 5y )] + 6 (v,5%) + o 1:1 J' Caul [tj(t)]f(t)dg -
- o'

§-1
T d : -
+ta | C [g(0]f(e)dact -8 351 Cgoy (x(m - IR Gy ix(= - 1))
Ya-1 ’
i Yy
ve oo [ (0w - ¢ tzy01)eee
=1
3-1 ,
a1 'j
(=-341) e
e J-E—i-ﬂ '3[-1 (Cn'l ty(=] cﬂ*ltsj(t)])f(t)“'

The proof is completed by recognizing that
the term in brackets is
aBn(x,y)
SN . = 0.
3y Y=Y,

(5) From (1) and (2) we have that Yn satisfies

w

o f )
-r[1 - F(x + y )] + 6 (7 i)+ « }_:1 Ci1
[z, (D]E(D)dE = 0 T e
where x = y.. Notice that the upper limit
becomes x + y_on the last sum via the induc~-
tive assumption on (8,d).

Differentiating implicitly with respect to
X1 Ve obtain

rf(x + y )1 + Y,(,i)] + ec‘f,”(yn;g)y,fi’ + eG“(‘iH) (yy3%)

w
a,n )
JJ C.o1 (,Z,j(t))f(t)d: Y

Wj_l

m

-3 i
vaz [ B @@
wj 3= wj"l
ra T R NI CLL

j=m-i+l W

" + 00 (2 (g 50

m

¢Y) ¢ £

+o T [cn_l[gj(wj)lf(wj) C.1 (Ej-1("’j-1)) ("1-1)}

jem-i+1
(where C(E'm)z 0). The terms involving
differeﬂt}ation of the limits (i.e. the
last line above) reduce to
Céii[gm(wm)]f(wm), where gm(wm) = 9 so that
this term is zero by the inductive
assumption on (8,d). Hence
N, (y,i%)

y]g,i) (};() = - W whete i
n’<s : =
N, (y 5% = [rf(x + y) + eG‘iHD P +a _zl
w. . ] =
j’-‘ Cr(:i1+1)(zj(t))f(;)dt . 2 {‘j C(lim-j+1)
. v n-
wj-l j=m-it+l vy
(z(£)E()dt]  for fsm- 1

(with c{1™ (x) = 0 ana
~ (

Dly ) = (e + v ) + o6l (v im0

w
+a B ]‘J ol (z (e (erae.
=1y
j-1

) . (i+l)
Ni(yn,x) > rf(x + yn) + &6

Now n

%)
m-i vj s w v
-a8 I Jf' c;f’{l)[gj(:)]f(t)dc -8 I JJ

=1 - m-1
3 jem~-i+l wj-l

wj-l

.[zj(t)jf(t)dt by the inductive. assumption on (7,a)
i+l

= rf(x + yn) + o1 - o{)Gn(‘l )(yn;f) >0

which results by differentiating both sides
of the equality of COROLLARY 2.1 with respect
to x_;_, (see the comments following the

Corollary). Hence -Nj (ypn:x) < 0.
’ - (1)
Similarly, Dly,:;x) > rf(x +y,) + 8(1 )G, (¥,ix)> 0

so that yél)(f) < 0.

o (@-3+1)



One can show that if we define

D(yn::f) = No(yn;gg) then

Ny (¥pi¥)=Ni(ypsx) 20 for 1 < i <m- 1.
From this the result follows.

(6) a) The result follows directly by
-computing the second cross partial deriva-
tives using the expression of part (4)
COROLLARY 1.1, and the inductive assumption
on 6(a).

o) ¢ -

m-1i
+a I

. .
=z lj [c(i+1)(z ) - ¢tV (z, () JECe)de.
Jﬂ

3-1

If the last (m - 1) components of x are 0
then it follows that Wy = Wyop < 0 for

2 <j<m-1 so the result follows easily.

(7) The inequalities of sections (7) and (8)
represent the major analytical effort of the
proof. The methods used for each section

are quite similar and require the application
of the appropriate inductive assumptions and
THEOREM 2.1. Detailed proofs of each section
can be found in Nahmias [12]. The following
chart indicates the logical implications

P ) = a5, (xm - 1)), (3% - 1))

to prove use the induction assumption on
7{a) 7(C) with 1 = ¢
7(®) 7(b) and 7(c) if i <m ~ 1.
7@ ifi=j=m~1., -
7(c) 7(c) and 7(d) if i <m - 1.
7() ifi-m-1,
7(@) 7(c) and 7(4)
8(a) 8(c) with j=14if i <m -~ 1.,
8(b) and 8(c) if i =m - 1.
8(b) 8(b) if i <m -1,
8(a) and 8(b) if i =m ~ 1,
8(c) 8(c)

In addition, the various lemmas are used
where needed,

(9) a) Yn is defined implicitly by the

relationShip e[l - FGe 4 v )]+ & %)
m
ve v [ oW = o
=1
Y3-1
Assume that i- :
lim yn(f) =w > 0. Notice that
X tw
m-1
m w ’
J
lim X r (l)(7 (t))Yf(t)dt
xm-i—p~}m j=1
wj-l
W,
2 lim bX [
z. (t)}f(t)dt
x_ote 19 J 1L JE¢t)
j-1
= lim G (w;x
X ++ o ‘( L ’xl)
m-1
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where z_.(t) is identical to z,(t) except
that w is substituted for Y, The first
equality follows from the inductive
assumption on (8,a)and the last equality
from COROLLARY 2.1.
= Gp_; (wiX(m - 1))  from COROLLARY 1.2.
n-i”t in the defining

relationship for ¥ We get

Hence letting x

0= 11::“9 -r[l - F(x + y )] + 66, (v, ;%)
- Vj -1
+oz [ el 3]
j=1 "j-l

20+ eGm_l(V;gg(m - 1) - a6 (wix(m - 1)) > 0,
which follows from the arguments above and a
reapplication of COROLLARY 1.2. But this
contradicts the definition of Y,- Hence
lim yn(x) = 0.
X s+t ~
m-i

o » P -V

= -9G__ (x(m - DM GpsXm = 1))

m-i a j N R
+o T J {c(“l)[z (v - l(]i;‘[?'j(t)].}f(t)dt
i=1 vy
so that 11m SC(I) (x) - C (= (X)S- = 0 bv
x]->+c°\

(9,2) and the inductive assumption on (9,b).

lim C(l)(x) = 0 by a similar argu-
xj-H—w

Since

lim c‘l) (x) = 0.
X >t
We have assumed that e%cess demand is back-
logged. The mechanism for accounting for the
backlog is to let x = (xm_l,g) where

Xpe1 < 0. The following result is a key one

ment it follows that

regarding backlogged demand.

COROLLARY 2.2. If demand is backlogged (that

is, x = (%, 4,0) and x _, < 0),then

Y () =y (O + ESEAE

Proof: We know that y, satisfies
-r[l - F(xy +y))]+ 6 (v,3%)

-4
+ o r C [s(y x,‘:) f(t)at = O.
J n-1

0
,0) where x < 0 it follcws that
~ o

Now if x = (x , -1
In
I - v;0)f(v)dv
Gm(yn’f) N .] Gm-l(xm-l * Y e
0
YatXy

- J (‘“‘1) Ry Yy - VEW
0
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(m=-1)* _
where F = F o F x...xF (F convoluted
+«m~-1 times-+

with itself m - 1 E}mes) and

o [ cMsex 0l -0

0o
(1)[y +x_ ) -t,0...0]F(c)de.

Assume a solution of the form

Yn(%) = ¥q(Q) + |xp_y|. Then
)
b -1)*
- P @l+e | FT G 0 - mEwe
y () 0

RSy
f (D

ooy Gy (@ - £,0...0]5(e)de = 0,

Sinég this is precisely the defining

relationship for yn(Q) the assumed solution

must have been valid.

COROLLARY 2.3. If we assume that demand is
not backlogged (lost sales case) where the
transfer function now has the form

- (t - Z x,) ] l1lsi<cm-1

j=1 3

(where x = y, ) then all of the results of
THEOREM 2.2 remaln valid. .

Si()’vf:t) = [xi+1

Throughout the development of this paper we
have assumed that demand is stationary. It
turns out that this assumption is not a
crucial one for our analysis.

COROLLARY 2.4. If we assume demands are non-
stationary then the results of THEOREM 2,2
remain valid (with suitable additional
indices to account for demands).

In conclusion, we note that existence of
optimal policies for the infinite horizon
problem is a direct consequence of recent
work in dynamic programming (see for example
Denardo [6}]). The methods used for the m = 2
case are reported in Nahmias and Pierskalla
[11] and generalize directly to the case
where m is an arbitrary positive integer.
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