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ABSTRACT

This paper conaiders the problem of determining
optiml stocking levels in a dynamic inventory sys-
tem in vhich a portion of stock issued each period
returns'to the inventory A periods later. We as-
sume dut demands in successive periods are known
with car:ainty and that a known fraction of the
issued iuventory vhich is not used outdates at the
end of each period. The fraction of unused stock
issued each period is assumed to be a random vari-
able with'a known CDF. Costs are charged against
_ shortage and cutdating only. This model is sug-
gested by che operation of a hoapital blood bank.

.

1. INTRODUCTION

The problem of efficient management of blood inven-
tories is becoming more important as the demand for
" health care'increases. Since only a small fraction
of the population in any region choose to act as
regular donors, only a limited supply will be
available to.meet demands. Hence, one important
aspect of the health care delivery system must be
the efficient management of blood inventories.

That mathematical inventory models might success-

fully be applied to inventory management of whole

- blood gean to have first been recognized by
Milla Most of the relevant work that fol-

lowed used either computer simulation or heuristic

nethodl to dul with the inventory management prob-

lem (3:8, 8, )

Recently attempts have been made to develop mathe-
matical models which deal specifically with the
characteristics of whole blood. One of the most
important characteristics is that blood has a legal
lifetime of twenty-one days. Classical inventory
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- models assumed that once acquired, inventory could

be held indefinitely. Recent work by Nahmias and
Pierskalla’®’, Nahmias(®), Fries'*) and Cohen!’
considers the fixed ufe:me case and deals with
the structure of both optimal and approximate
stocking policies.

However, even these models will not be directly
applicable at the hospital level. An important
feature of the hospital blood bank is that it is
likely that once units have been issued to meet
demand (once they enter the assigned inventory),
a portion of those units will return to the hospi-
tal bank some A 2 1 periods later. This results
from the fact that blood needs during surgery can-
not be estimated exactly and in general more blood
is assigned than is actually used. In addition,
blood units are tested for compatibility with the
patient's blood prior to transfusion. If there is
no evidence of an adverse reaction, then the units
are said to be crossmatched to.the patient and are
effectively assigned to the patient in advance.
8ince aging occurs during the feedback process,
this feature tends to contribute significantly to
outdating and cannot be ignored. Jennings'®) was
among the first to recognize that the feedback °
process was ortant, while later work of Cohen
and Pierskalla'?) analyzed the relationship between
outdates, shortages, the order of issue, ordering
policy and the number of periods between issue and
return.

The purpose of the current paper is to develop &
theoretical inventory model which deals specifi-
cally with the feedback mechanism. In order to do
so we approximate fixed life perishability by as-
suming exponential decay for the product over time.

II. NOTATION AND ASSUMPTIONS

As is customary with dynamic programming models,
we assume that periods are numbered backwards and
that there are a total of N> 1 periods in the
planning horizon. Hence, period k implies that
there are k periods remaining. We adopt the fol-
lowing notation:

xk. = total inventory on hand starting period k
¥y = amount ordered in period k



Bk = known fraction of the amount returned in peri-
od k that does not outdate
Ik = quantity of stock issued in period k

known demand in period k

FP‘
N

@ = return random variable in period k (a, €[0, 1]
and represents the fraction of stock = issued
in period k+\ which is returned to inventory)

~

A = positive integer indicating the number of
elapsed periods from issuing until return

p = per unit shortage (penalty) cost> 0

8 = per unit outdate cost> 0.

We make the following assumptions:

(1) There are only two costs considered: short-
age and outdating at p and 8 per unit, re-
spectively.

(ii) Demands in successive periods are known with
certainty. :

(i1i) If in period k+\, Ik4) is issued to meet de-
mand, then o Iiy) returns to stock in period
k (A periods later).

(iv) A fraction, (1 -By), of the quantity oq Ij4a
outdates at the start of period k.

(v) The proportion of stock which re-enters in-
ventory in period k, o, is a random variable
which assumes values on [0, 1] and has a
known C.D.F. F and density £.

(vi) p> 8,

(vii) Excess demand is backlogged.

(viii) All orders are received instantly (zero lead
time).

The process dynamics can best be represented by

the diagram in FIGURE I below. In period k, the
inventory on the shelf, xi, is determined. Based
on both the values of %, and Ipyy (the inventory
issued to meet demand A\ periods before), an optimal
order quantity yj (%), Ip4)) (denoted simply by y)
is determined. After the optimal order quantity
has been computed and the order placed, the value
of the return random variable, o, is realized. At
this point ByoyIy4) enters the inventory along with
the order y so that xi+yy +BxoxlIk4) is available
to meet the demand, dx. The amount of stock issued
in period k, Iy, will either be all available stock
or the demand (including backlog) whichever is
smaller.
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FIGURE I. THE PROCESS DYNAMICS

This leads to the following transfer equhtions:
K = el Viern PBrer 1 Tl T Gt
+ +
Ik min[dk+ (-xk) » Ve + xk+ekak1k+)\]
for 1< ks N

where x; = max(xk, 0).

III. THE SINGLE PERIOD PROBLEM

The expected cost of outdating and shortage in-

_ curred in period k is given by

1
+
L(ﬁc, Ik+)\’ yk) = pI (dk'xk'yk'akalkﬂ\) f(a)da
0]

1
+ BI (1- ak) a Ik+kf(a)da
0

o .
- pj (@ - % -V, ~B 2L i (a)da
0
* ol
where Ok = 81 -ak)E(ak) .

The following result, which gives the optimal poli-
cy for the single period problem, can be estab-
lished by standard arguments.

LEMMA 1. The function L(xyx, Ip4p, Yk) is jointly
convex in the triple (xy, Ix4r, Yk). For every
pair of fixed values of (xg, Ik4)) the values of yy
which minimize C(xy, Ip41, ¥i) are

Gt T el T 2 [ -5 1"

That all values of y 2 [dy - xk]+ are optimal is
readily transparent from the defining equation for
L(xyx, Ix4r» Yk), since the outdate cost is com-
pletely independent of ykx. All of the order quan-
tities given in LEMMA 1 yield an expected shortage
cost of zero.

IV. THE MULTI-PERIOD DYNAMIC PROBLEM

Due to the interaction of y, and Iy through the
transfer function, it is far less obvious that this
same solution is optimal for the multi-period prob-
lem. When more than a single period remains in the
planning horizon, both the optimal cost function
and the optimal policy will depend on more than
just the two variables yy and Iy4). Denote by
Ixn = (Ik4rs> I4p-15---5 Ik+1), which represents
the vector of stocks issued during the A periods
preceding period k. Assuming that future costs are
discounted to the present and the discount factor
1s 0< y < 1, define

C, (x5 lk+)\) = minimum expected discounted cost when
the current stock level is xp, Ik4a
has been issued during the past A pe-
riods, and k periods of demand remain
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Writing
G Legn) = ™o (B G Lo )}
ykzo
it follows that
B Tane N0 = PO T
+ YEak[Ck-l(’ﬁc-l’ Lin-11
with the transferred values of the state variables,

(xk-1> Ix4)-1)» given above. The notation E’k

should be interpreted as taking the expectation with
respect to probability density, f. These equations
constitute a statement of the principle of optimal-
ity as it -applies to this problem.

The main result of the paper is the following:
THEOREM.

that

(1) By(x, Ix4r» Yi) i8 convex in y for all fixed
values of the (A +1) dimensional vector

(s L)
(2) An optimal policy in each period is

Yi:(xk: _I_k.*.)\) - Y:(xk) 2 [dk-xk]+ ’

Given assumptions (i)-(viii) above we have

Al KAy
) GO L) = 2V °k-11k+x-i+iz_;1 MRS

A +
+vy ck-)\[-xk] ’
where we adopt the notational conventions that

-t
Z ()=o0, c_,=0, forallt20,
i=l

and the initial condition Co(xo, L)=0.

A formal proof is given in the appendix. Essen-
tially, the optimal policy is to order at least
enough stock to meet the demand each period. This
is different than the type of policy obtained by
Nahmias and Pierskalla where fixed life perisha-
bility was assumed and only shortage and outdate
costs were present, The difference arises from the
fact that here we are only approximating the out-
dating process by an exponential decay model in or-
der to concentrate on the feedback mechanism.

The third result is also of some interest since it
gives an explicit expression for the cost associated
with an optimal policy. Notice that when 1 £ k <
A=1, Cy (%, £k+1) depends only on x and (Ip4y,.--
cesy Iyyq) and is independent of (I,..., I4)s
which indicates that only k periods of the total
amounts issued need to be considered in order to de-
termine the value of the optimal return function.
The second term shows the dependence between the
amount issued each period and the total demand, dy.
It is perhaps most interesting to note that at an
optimal solution, the expected discounted cost is
completely independent of the shortage cost, p.
Since demand is deterministic, it is possible to
order in such a way as to guarantee that no shortage
will occur. It will be optimal to do so as long as

p > 6 as we have assumed.

Preliminary investigation indicates that when pro-
portional ordering and holding costs are included,
these results no longer hold. For the more general
case, it will not be optimal to order to meet the
demand each period; the optimal policy and return
functions become complex nonlinear functions of the
state vector. This extension of the current model
to include ordering and holding costs as well as
the effect of uncertainty in the periodic demand
will be the subject of future investigation.

APPENDIX. Proof of Theorem

The proof is by induction on k, the number of peri-
ods remaining in the horizon. When k = 1 the form

"of the optimal policy follows from the lemma.
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Since .
- *
C (xyps Lhyy) = L(xv Ly Y ("1))

the theorem holds for k = 1.

=0 L

Assume it holds for 1, 2,..., k-1. By definition

1
+
B (s L %) = pI (4 - - - Byl 2l £(a)da
0

* o len

1
v [ Gy ps Ly EC@)d
0
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0
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A-1
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k-i-1
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=1 i+A
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by the inductive assumption
1 +
= o] 4 -x -y, -8B Tl E@)da
0
A 1 +
Ty "k-x‘[ “‘m(dk*["ﬁc] » Yy
0

+ [xk]++Bka+ka)f(a)da



1
A+1
+y °k-x-1j (dy =% =%
0

+
'Bka+)\a] f(a)da+K
where
A-2
141
K=ob * Eo MR L |
k-A-1
k-1
+ ka Yo ooidi

includes the terms independent of yy. The second
and third terms above result from substituting the
definition of the transfer function.

For convenience define &y = (dj - Xy - ¥y )/ Bilusa) -
We will consider two cases:

Case 1: Bka+)\ > 0.

It is easy to verify that on the three open inter-
vals the function By (xy, Ip4, Yi) is partially dif-
ferentiable with respect to yx. Performing the dif-
ferentiation one obtains:

(" (p +y N1

A
Tar-1? YO

kA
for v < g - % Bl
A1 A
G L N0 o ( RHYT O 7Y )
e “F()

for

4 X Pl < e S X

KO for yk> dk-xk

Clearly the partial derivative is continuous at the
interval endpoints. Furthermore, since p> 8, it
follows that p> oy.3, and since F(§g) = 1,

3B /Ayk < 0 for y S dy - xy.

Convexity follows since F(8y) is nonincreasing in
yx and the optimal solution where the partial van-

ishes, namely, for any y 2 dk - Xk, yx 2 0. Hence
choose yit(xk) = [aqy -xk]+.
Case 2: Bylyg =0.
‘In this case one obtains:
k+1 A

TPy o) Y Ok

By O s M) for v < d -
o oF % < 4o
0 for yk> dk -x -

In this case the partial derivative is not continu-
ous at the boundary point dy - Xx, but since it is
nonpositive on [-=, dy - x) and 0 on [dy - x¢, =)
and By (xx, Ix4r, yk) is continuous in yg, it will
also be convex in ykx. As in Case 1 all y 2 dy - xp

are optimal so choose ylt(xk) = [d, -xk]+.

In order to complete the proof of the Theorem, note
that at an optimal solution

* 1+ * +
[-xe]” =[x - () =By Ty + 4, 17 = 0
and

Iy = min[dk'*'[-ﬁ(]-'-: (%) +[xk]++Bka+)\]
= d'k+ [-xk]+ .
Hence .

%
G L) = BB Lo yk<xk>)

1
Ry "'YI Co1 1 Legpp)E(@)da
0

Al
°ka+x+VI {E Y Oei-1Tkih-i-1
5 1=

k-A-1
k-i-1
+ 2y o.d f(a)da
i=l
A-1 k-A-1
i k-1
= vyo, Lo, .+ z y ‘o.d,
1=0 keik+h-i =l 1i7i+A

A : +
vy oead +Y)‘°k-k[-xk]

A=1 k=A

k-1
p2RRVESSS SN >RV
i=0 k-1 k+A-i {=1

1950
A +
+y ok-)\[ -xk] .

Q.E.D.
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