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A META-MCDEL FOR A REGIONAL BLOOD BANKING SYSTEM
by
HARRY YEN*AND WILLIAM P. PIERSKALLA**

Abstract

A computer simulatioﬂ model for a regional blood banking system was
constructed. The inter~re1ated storage, transhipment and ordering functioné
were built ip the model. Provisions were made to allow for the return of
unused demands, the disposal of outdated stock, the transhipment of inventory
among local blood banks to reduce shortage and outdate, and the limited
supply to the central blobd bank.

Due to the numerous possible combinations of the input variables, a full
factorial or even partial factorial sensitity analysis would be very expensive.
Forlthis reason a meta-model which approximates the simulation model was constructed.
The independent variables of the meta-model are: the number and size of hospital
bléod banks in the system, the inventory levels at all locations, the probability
of return and the time lapse before return. The dependent variables of the meta-
model are: The shortage quantity and outdate quantity of the system. The work
is in progress to test the validity of the meta-model in terms of the input and
output variables. In some early analysis the predictions of the two dependent
variables from the meta-model have been found to be consistent with the values
from the simulation model.

One of the objectives of this continuing research is to provide a shortage--
outdate input model to a full regional blood banking medel which allows for
organizational change, facilities location and allocation, and transportation
and quality control. The work has also begun on this latter phase of the

problem.

*0ffice of Operations Research, Michael Reese Hospital and Medical Center,
Chicago, Illincis 60616.

**Department of Industrizal Engineering and Management Science, Northwestern
University, Evanston, Illinois 60201.



Introduction and Literature Review:

This paper shall investigate some problems related with the opera-
tion and design of a regional blood banking system. The operational
problems of interest are: the ordering policies, the sensitivity of
shortage and outdate quantities by varying some factors such as the
probability of transfusion of a crossmatched unit and the return of
unused units. The design problem ;onsidered is the construction of
an overall system cost function which can be used for organizational
changes, facilities location and allocation, and transportation and
quality control. The work has also begun on this latter phase of the
operation.

- A simulation model is constructed to represent the operation of
a regional blood bankiné system., But due to the numerous possible
combinations of the input variables, a full factorial or even partial
factorial sensitivity analysis would be very expensive. For this reason
a meta-model which approximates the simulation model was constructed.
The independent variables of the meta-model are: the number and size
of hospital blood banks in the system, the inventory levels at all
locations, the probability of return of crossmatched but not transfused
units and the time lapse before return. The dependent variablés of the
meta-model are: the shortage quantity and outdate quéntity of the
system. In some early.énalysis the predictioﬁs of the two depeﬁdent
variables from thé meta—modél have been found conéistent with the values
from the simulation model.

There is much literature in studying blood inventory management from

a simulation épproach. Only the more recent will be mentioned here. These



referenced works describe the earlier studies on simulation and management of

lood inventory systems,
The optimal inventory level is found via a Fibonacci search in Pinson (1973)
for a single hospital blood bank. In her model, units not transfusedAare returned
to the inventorjr after a time lapse X periods, and there is a random donor

provision to act as exogenous supply source. In Cohen and Pierskalla (1973),
the impact on units outdafed by varying A ére studied. In Rabinowitz (1970),
three different crossmatching policies were studied: namely, to double crossmatch
a unit; t§ crossmatch older units to paéients who have a higher transfusion
probability; and to crossmatch Rh negative blood to an Rh positive patient when
there is an excessive inventory of that blood type. All of these policies were
found to reduce outdates. In Jennings (1970) (1972), a simulation model for a
rggional blood banking system is constructed. The regional blood banking system
is formulated by grouping a number of identical hospitals together. However,
theré is no tentral blood bank in the model. Transhipment policies to reduce
either shortage or outdate are allowed in the model. The performance of these
transhipment policies is evaluated by vérying the number of hospitals in the
system, the underlying reasoning being that the larger the system the more
transhipments, and hence the more economical the system will be due to reduced
shortage and outdates. However, there are transportation and information costs
which increase as the number of transhipments increases. Jennings found that
the marginal benefit in reducing shortage or outdate via transhipments by adding
a new hospital into the system was not significant after five hospitals were
already in the system. It should be noted that this regional model Qithout a
central bank will tend to exaggerate the amount transhipped in a real situation.
This ¢xaggeration occurs because a central blood bank having a buffer inventory
will allocate more of its inventory to a hospital likelier to experience shortage,
and allocace more of a younger inventory to a hospital likelier to experience

outdate.



In thé next section of this paper, an overview of the simulation is presented.
In section III the results of the simulation are used in the construction of
a set of empirical equations which will be representative of the behavior of
the system., These equations form a "metamodel' in the sense of Blanning (1974)
and Kleijnen (1975). Specifically, the two key measures of the system; the ogt—
date and the shortage quanfities, are expressed in mathematical equations which
consist of only the input parameters such as demand distribution, inventory
levels at all facilities, etc. The valjdity of these mathématical equations
are demonstrated by the consistency cf the two key measures from the equations
and from the simulation.

In section 1V furthef‘comparison between the empirical equétions and the
simulation are done to draw conclusions regarding the inputs on system costs
from the supply policy and the transhipment policy. In addition, bptimal
-invegtbyy leyels and the sensitivity of the system cost versus the number and
size of hospitals in the system are presented through an analysis on the

empirical equations. In the last section, a summary is given.

II Overview of the Model:

The centralized blood banking system éonsidered in the simulation is
structured as a wheel with a central blood bank supplying a number of lower
'echglon huspital blood banks. Each facility carries the common product with
a maximum usable age of twenty-one days. Disposal of all units older than
the maximum usable age is required. The flow chart for a central blood banking
'system (CBB) and the flow chért for a hospital bloodiﬁénk (HBB) are illustrated
in Figurés 1 and 2 on the following pages respectively. Explanations for

some of the boxes are given after the flow charts.
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When an HBB receives a request for blood with specified type and quantity
from physicians, called a patient demand, units which are compatible with the
type specified'in the request are selected via a crossmatch procedure and put
in reserve for later transfusion use for that particular patient.

_The inventory in the HBB which can be drawn from for cross-
matching is referred to as the unassigned inventory while the inventory of cross-
matched units is referred to as the ass}gned inventory or the reserved inverntory,
Since the probébility of an incompatible crossmatch of a unit of a certain type
and Rh factor to a particular patient demand of the same type and Rh factor is
about 0.1, and since the probability of a particular unit being incompatibel to
all the patient demands of that type and Rh factor is 0.1 raised to the power of
the number of patient demands on that day, this incompatibility is ratﬁer small
and may be ignored. Hence, we assume the oldest unit is crossmatched first,
i.e., a FIFO issuing policy for crossmatching is followed.

When the sum of all the patient demands exceeds the total unassigned inven-
tory in a HBB, the HBB may backlog the excess demand by postponing surgical
procedures or may fulfill the excess demand by placing an emergency order to the
central blood bank. In this model the emergency order is always placed. If the
emergency order cannot be met by the stock in the CBB, it will be met by the
stock from other HBB's. If all other HBB's in the system cannot meet the emer-
gency order, then it will be met by an exogenous source (such as another CBB,
on-call conors, hospital walking inventory, or frozen packed red cells). There
are different costs involved depending upon which source fills the excess demand.

Once a unit i$ in the assigned inventory, it is either transfused or after
A periods it is returned to the unassigned inventory. A physician may order
several units for a given patient. When one of these units is needed for trans-

fusion, there are various possibilities for deciding which unit to transfuse.



The most common choices are transfuse the oldest unit, transfuse the youngest unit,
or randomly pick the unit with an equal probability for each unit. The first
policy is called the FIFO transfusion policy, the second is the LIFO transfusion
policy, and the last is the random transfusion policy. Now there is a fairly
likely possibility that soﬁe patients may use all their crossmatched units while
others may use some or none of the crossmatched units because a large amount of
units crossmatched are for precautionary reasons. Hence, even if a FIFO trans-

fusion policy is followed for each patient, the returning units for all patients

combined resembles more of a random selection from the combined crossmatched
(assigned) inventory. To handle this fact, in the simulation, the assigned
inventory consists of the units crossmatched from the unassigned inventory on a
FIFO basis without specifying which units are for which particular,patient. Then
Qhen transfusions occur the unitsvin the assigned inventory are randomly selected.
Theréfoéé, a‘random transfusion policy, a FIFO crossmatching policy and a lumped
aséigned inventory for all patients is adopted to simulate the reality which has
a FIFO transfusion policy, a FIFO crossmatching policy and a separate assigned
inventory for each patient. The random transfusion policy and an aggregate
assigned inventory was used in the simulation to reduce the large amount of
record keeping needed for each patient and alsn because it was a good represen-
tation of reality.

When a unit is not transfused, then the earlier the unit is returned to
unassigned inventory in each HBB, the more chance it will again be crossmatched
and possibly transfused. The time period between the crossmatch and the trans-
fusion, and between the transfusion and the return are called the hglg_and the
release parameters respectively. If the hold parameter is too small, there may

not be sufficient time to have all requested units processed before transfusion



time. If the hold parameter is too large, the units returned have a shorter
usable life. The hold parameter is primarily determined by the laboratory
workload and processing times. To shorten the hold parameter it may be
necessary to add more personnel and equipment. It is assumed that the hold
parameter is constant in the simulation.

The release parameter is needed for medical and management reasens.
The units cannot be released if the future medical development of the patient is
uncertain or if there are transportation or communication problems within the
blood bank management. This parameter plays an important role in affecting the
outdate amount and in determining the optimal inventory level in HBB's (see
Cohen (1974) and Cohen and Pierskalla (1975)). It is one or two days in a
well managed hospital or clinical system and three or more days in a poorer
systemz‘ , ‘. e

For practical purposes, these two parameters are combined into the single
‘perameter X which specifies the number of periods (hold plus release time) a
unit is allowed to remain in the assigned inventory. After a CBB receives
all the orders of a specified type and Rh factor from the HBB's, the orders
' afe filled by drawing from the inventory in the CBB using a FIFO issuing policy.
For purposes of simplification as well as good medical practice, each type and
‘Rh factor is considered independent cf the other types and Rh factors. When
the sum of all HBB demands exceedsvthe total inventory in the CBB, the CBB
may backlog the excess demand or may fill all demands by calling in éonors, hy
contacting other CBB's, by using‘forzen packed red‘cells, or by requesting an
emergency shlpmeﬂt from still higher echelon blood banks. In this simulation
the CBB uses dlfferent treatment for the excess demand depending upon whether

the orders are routine or emergency. Routine orders are placed by the HBB'



in the beginning of each period to build up their inventory to a spécified
level. EImergency orders are placed during the period while the inventory of the
HBB's cannot meet their respective users' demands. For routine orders, the
CBB will fillvthe orders as far as its inventory lasts and disregard the
excess demands, if any. Consequently, the HBB's may not receive the full
amount they ordered. For emergency orders, the CBB still fills the orders
as far as its inventory lasts. However, if there are excess demands, the
CBB will attempt to fill them from the inventory of other HBB's within the
system. Furthermore, if there is insufficient stock in the whole svstem
to fill the excess demands, then the CBB will fill them by contacting
exogenous sources. The rationale of the different treatments for excess
demands between routine and emergency orders is that the routine orders
are pch‘to puild up the buffer inventory in the HBB's which may not be
needed in the period, and therefore if the exéess demands are held un-
satisfied a shortage will not necessarily occur. On the other hand, the
emergency orders if held unsatisfied will surely create a shortage since
the buffer inventory in the HBB has to be completely depleted before the
HBB will place an emergency order. |
Since each HBB may not receive all that tiiley have ordered, a systematic
process is needed to allocate the available stock in the CBB to HBB's. This
allocation process will be called the allocation policy and the simulation

model contains the following three options:
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1. The CBB picks a random hospital and fills its demand by the FIFO
issuing policy then goes on to fill the next randomly picked
hospi£a1 until all the stock runs out or all demands from HBB's
are filled. This type of allocation process resembles the first
come first served practice which exists in many blood banking

systems.

2. The CBB ships an amount to each HBB such that each HBB has the
same ratio of the amount received to the amount ordered. Fur-
thermore, all HBB's have the same ratio of the amount of dif—
ferent ages received to the amount ordered. This type of allo-
cation process resembles the rationing of scarce resources

. .. intended to be fair to all users and was the policy which was

contained in the mathematical model of Chapter II.

3, The CBB ships each unit to the hospital where the shortage pro-
bability is the highest in the system. In other words, the
delivery of each unit is intended to adjust the system stock
‘configuration such that the system shortage probabilities may

be improved.

After all HBB's receive their orders it may be desirable to tranship units
among them. Basically there are two reasons for such transhipments: 1) the
shortage anticipating transhipment; and 2) the outdate anticipating transhipment.

If one location anticipates a shortage while another location does not, then a
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transﬁipment from the latter to the former may be beneficial to the system in
reducing the shortage cost. Similarly, if‘one location has an excessive amount
of old units while another location does not, an outdate anticipating tranship-
ment can be initiated for the benefit of the system. But before a transhipment
is made the exaét stock configurations of the locations as well as the demand
distributions of the locations must be known in order to evaluate the benefit
of the transhipment. When such information is available, the CBB is in the
best position to direct the transhipments in the system. Obviously, for these
types of actions a sophisticated information gathering and transmitting-system
is needed.

In case such information is not available, then the value of transhipping
is-uncertain and no transhipment would be made directly from one HBB to another,

However, each HBB still knows its own stock configuration. Hence, the exces-

- < .

sively old units can be returned to the CBB and recycled to another hospital

frém there. This particular type of outdate anticipating transhipment will be
called the recycle policy. The names 'outdate anticipating transhipment' and
"'shortage anticipating transhipment" will hereafter refer exclusively to tran-

shipments between HBB's directly.
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IIT Meta-Model:

The overall design of this simulation experiment is aimed to establish a
metamode}, i:e., a collection of empirical equations such that by given a set of
input variables, the output of the system can be predicted by the collection of
empirical equations. The primary output of the system, mainly the number of out-
dated units and the number of shortage units, are measures of the system's per-
formance for a set of input variablés. The empirical equations are constructed
through our reasoning of the‘behavior of the system, The simulation provides a
mechanism to justify our reasoning by cémparing the output from thelsimulation
and from the empirical equations.

In order to express the empirical equations in a compact form, the fol-

lowing notation are used:

=
1

the demand at the central blood bank.

=)
(1]

the demand at the jT hospital blood bank.
It is as~umed that Dj is a Neyman Type A distributed random
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variable with two parameters, o the mean number of patlents per
day and 8 the mean units requested per patient.

A = the return parameter, the time lapse before a unit is returned
to the unassigned inventory if not transfused (in periods).

S. = the inventory level ordered up to at location j (in units),
N = the number of HBB's in the system,

p; = the probability a unit corssmatched will be transfused at
location j.

vj = the shortage at location j (in units).

- qj = the outdate at location j (in units).
p = the number of timesAaﬂEnit is crossmatched in its lifetimef
a = the age of a unit when it ;s crossmatched for the first time.

‘Now we shall derive the empirical equations. On any day at location j,
there are Dj units issued. Of them Djpj will be transfused and Dj(l-pj)
returned after A periods. In addition, there are qj units outdated and promptly
removed from the inventory. So the gross depletion of the unassigned inventory
is the sum of the demand and the outdate. But there are units returned from the
assigned inventory, namely, the units issued A days earlicr and not transfused.
. Assuming we ignore the differences between the number of uhits to be_retﬁrned
after A periods and the number of units returned on the day, the actuai number of
units depleted becomed Djpjéqj=Dj+qj-Dj(1-pj).< Under a fairly wide range of order
levels Sj, the qj are small and negligible relative to Djpj’ thus approximately
only-DJ.pj units will be ordered in the following day. Therefore, the daily

demand at the CBB, D,, is essentially the sum of Djpj for

0
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j =1,..., N. Consequently, the distribution of D, is the N-fold convolution

0
of Djpj for j = 1,..., N. The expected shortage at the CBB can thus be calcu-

lated by the following equation.

8

KP(D=S+k) = L P(D, 2 S,*K).

1) Ev, = &
- k=1 ' k=1

0

Once there is a shortage in the CBB, it implies that not all the HBB's may
get what they ordered. The amount recieved by each HBB depends on how the
available inveﬁtory in the CBB is allocated.

Since the HBB orders up to a predetermined inventory level, it will order
more if there is less stock'on‘hand. But if there is less stock on hand then
there is a higher shortage probability. So the shortage probability is directly
related to the amount ordered. Due to this fact options 2 and 3 of the allccation
policy.in the simulation, namely to allocate proportionally the available stock to
HEB'; by‘the'ratio of the order from each HB3 and the sum of all orders from HBB's
and to allocate the available stock one by one to the HBB with the highest shortage
probability, are essentially the same. The simulation runs reported in this
chapter adopted option 2.

Assume all the demands at the HBB's are independent and identically distri-
buted. Based on Corollary 2.19 in the previous chapter, all the ordered up to

inventory levels will be the same. Consequently, the shortage probabilities are

identical for all locations. Hence the CBB will allocate its shortage evenly

Ev,
ameng the HBB's. That is, only Sj - —N—-units are on hand at location j in the

beginning of each period. Consequently, the expected shortage at location j can
be calculated in the following equation.

(',3"/2) Ev, = ; kP(D.=S —EXQ-F X) = ; P(D >s—E‘-I-°- + X)
" ; iR =3 '

k=1 k=1 N
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Combining. (1) and (2)  one of the important measures of the performance
of a centralized blood banking.system, namely the shortage units at the CBB and
the HBB's, are expressed in terms of input parameters which are the demands and
inventory levels at all locations.

The next important measure, outdated units in the system, will be covered now.

It is assumed in the simulation-that the units entering the CBB are of age 1. After
So
a unit enters the system at CBB, it will be stored there for a period of == days

EDO

before being issued to one of the HBB's. In other words, suppose there is a three’
day supply at the CBB, The units issued to the HBB will be four days old. After
the HBB receives its order the units will be placed in the unassigncd inventory
and be crossmatched at the appropriate time. Since each day there are an average
of EDj units crossmatched and EDj(l-pj) returned, the units will be stored in the

S.-ED,

HBB fpr an average time of E%TET% days before being crossmatched for the first
T s ' i

'time. Hence, the avcrage ége of a unit when crossmatched for the first time a is:
", ) Sy S.-ED, '

6%3) as= E_ITJ + -———lEDjpj .

Once a unit is crossmatched it will return to the unassigned inventory if not
.tfansfused after A days. Since a FIFO crossmatching policy is followed, those
returned units must be at least as old as all the units which have not ever been
crossmatched. So they have a high probability of being issued again the same day
they are returned. Assuming the maximum useful life of a unit is 21 days including
the twenty-first day, the avérage life span of a unit.subject'to crossmatching is

‘ . 4 22-a .
therefore 22-a days. Therefore, a unit can be crossmatched for about T times

before it reaches an age between 22-) and 21 days. But if a unit is returned at
ages between 22-) and 21 days, the unit can only be crossmatched at most one more

time. This is because the next time the unit is returned it already exceeds the



16

allowable age for crossmatching purposes. Assuming there is an equal probability
for the units to be returned at ages 22-), 22-A+1,..., 21, then the expected
number of times of crossmatching for units between 22-\ and 21 days is %-times.

If we assume the returned units are always crossmatched again on the day they are

returned, the total number of times a unit can be crossmatched is approximately:

4) n = + % .

Since a unit can be outdated only if every time it is crossmatched it is

not trancsfused, the expected daily outdate at location j is approximately:

5 Eq. = ED.(1-p.)".
5) 9y J( pJ)

OQutdates can also occur at the CBB if there is more than 21 days supply
stored there, which is very unlikely. So an empirical equation for qu has not

been developed.

Expressions (1) to = (5) are the empirical equations. If they are re-

presentative of the bechavior of the system, the values of Evj and qu calcu~

lated from the empirical equations should be comparable to the corresponding
values from the simulation for each set of input variables. Table 3.1 is a
summary of comparative simulated and calculated results for outdate and
shortage from forty-one sets of input variables. A regression analysis between

the -simulated and calculated‘results of the form:
Simulated results = B - (calculated results) + ¢

has been done. Results of the regression analysis are summarized in Table 3.2.
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Two sets of regressions were presented: one with the constant térm
included in the regréssion equation, and the other not. Furthermore, each
set of regressions consists of two equations: one between the simulated
outdate and calculated outdate, and the other between the simulated shortage
and calculated shortage. So there are a total of four regression equations.

The R2 value for each of them is at least .93 and the F value is at least 679.69.
Thus, we may conclude that the results from the empirical equations are con-
sistent with the results from the simulation.

However, further statistical validation should be performed to test if
the empirical equations can indeed represent the behavior of the systeh. Two
methods are proposed below and under current research.

A, First to test if, for any given set of input variables, the simulation
results are normally distributed’ground the values from the empirical equations,
If this';ypo;hesis is accepted, then a chi-square or Kolmogorov-Smirnov goodness
of fit test should be used to see if the two response surfaces, one from the
simulation and the other from the empirical equations, are well fit or not.

B. In the derivafion of the empirical equations there were several gross
approximations and assumptions. Once these gross approximations and assumptions
can be statistically shown valid, then the resulting empirical equations can be
concluded as a representation of the system behavior. The following is a list
of the hypotheses needed to be tested.

1. The average daily demand at the CBB is the sum of Djpj for jél,z,...,Ng

2. The average inventory level after ordering is Sj—Egg_for j=1,2,...,N.

3; The outdate and shortage anticipate transfer policies has no effect on

outdate and shortage.

4, The average age for a unit to be crossmatched for the first time is a.

5. The average number of times a unit can be crossmatched is n.
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TABLE 1

COMPARISON OF SIMULATION AND EMPIRICAL EQUATIONS

q. '

N a B S, S. A ‘ J I
_________ e 20 T3 __C_ SIMULATED CALCULATED SIMULATED CALCULATED
3 3 2 18 16 2 10 9.76 10 8.51
3 3 2 15 16 2 8 8.54 13 9.93
3 3 2 17 16 2 11 9,34 9 8.85
3 3 2 14 16 2 11 8.10 10 10.84
3 3 2 12 17 2 7 8.06 8 7.16
3 3 2 12 18 2 11 8.99 3 3.50
3 3 2 15 17 2 11 9.52 4 4.94
5 3 2 15 17 2 5 6.18 25 21.86
3 3 2 15 18 2 15 10.61 4 2.35
3 3 2 21 18 2 15 13.71 1 1.82
3 3 2 21 20 2 17 17.01 0 0.35
3 3 2 21 21 2 21 19.04 0 0.14
3 3 2 21 21 3 108 88.70 1 0.14
2 3. 2 10 16 2 8 8.38 17 13,23
2 3 2 10 17 2 9 9.35 8 6.69
2 3 2 8 18 2 9 8.59 5 5,74
2 3 2 14 18 2 12 13.71 1 2.14
2 3 2 12 18 2 9 12.08 1 2.46
2" % " 2 10 18 2 9 10.42 2 2,24
2 3 2 10 19 2 10 11.62 1 1.50
2 3 2 20 20 2 24 23.69 0 0.36
4 3 2 20 19 2 17 12.27 0 0.98
4 3 2 24 19 2 17 13.92 0 0.86
4 3 2 16 17 2 10 8.47 3 6.16
4 3 2 28 21 3 123 89.58 1 0.14
4 3 2 28 21 2 22 19.39 0 0.14
5 3 2 25 18 2 9 10.98 1 2.17
5 3 2 30 18 2 8 12.39 1 1.98
5 3 2 35 21 2 14 19.13 0 0.15
5 3 2 20 17 2 6 8.54 3 5.83
6 3 2 24 17 2 9 10.17 5 5.10
6 3 2 30 17 2 12 14.58 5 3,93
6 3 2 18 17 2 5 7.96 9 12.21
6 3 2 20 17 2 10 8.95 7 7.27
6 3 2 42 21 2 21 22.40 1 0.14
3 5 2 24 27 2 12 16.76 6 1.02
3 8 2 48 32 2 15 21.45 22 13,03
3 8 2 36 40 2 17 25.03 1 0.30
3 5 2 30 20 2 10 12.25 54 42.43
3 5 2 60 30 2 30 44.89 2 0.11
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- TABLE 2

REGRESSION ANALYSIS ON SIMULATION
AND EMPIRICAL EQUATIONS

REGRESSION B STDERRRB __F__ R’ _C_  _F_
Outdate 1.26 0.048 . 679.69 0.95 -4.15 12,13
Shortage 1.24 0.045 754.83 0.95 -0.69 2.71
Outdate 1.14 0.039 853.00 0.93 Regression Forced

. Through the
Shortage 1.19 0.037 1030.64 0.95 Origin

- L4
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III Analysis of the Results::

Since the simulation results and the calculated results froh the empirical
equations are highly correlated on two of the key performance indicators of the
regional blood banking system, namely the outdated units and the shortage units,
further analysis may be directed‘té the behavior of the system from the empi-'
rical equations,

The simulation was run with many policies operational which turn out to
have no signifiﬁant impact upon the system's behavior. These policies include
the shortage transhipment policy, the outdate transhipment policy, and the
limited supply policyf In the simulation model, the shortage and outdate transhipment
policies allow units to be transhipped whenever the savings from expected shortage
cost or outdate cost exceeds the transportation cost with the latter set to

be 5%0f either the shortage cost or the outdate cost. The limited supply

-~
- . » .

policy specifies that the amount the CBB received is drawn from a normal
distribution with mean the amount ordered and standard deviation 20% of the
mean.

There are reasons to support the conclusion that the shortage units are
insensitive to these policics. The most important one is from the allocation
policy in the CBB. In the simulation the units are warranted to be transhipped
only after each HBB has received its delivery. But the units in the CBB are
issued one by one to the location with the highest shortaze probability. So

"at the end of the allocation process each HBB will have én identical shortage
probability except when there is insufficient inventory in the CBB to make them
equal or when’there is a tie in shortage probabilities before the issuance of

the last few units. In both of these cases some discrepancies among shortage
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probabilities will occur, but they are rather negligible under relatively wide
ranges of ordered up inventory levels of all locations. Consequently, the
conditions to initiate a shortage transhipment would rarely occur, and hence
hardly any units are shortage transhipped. Naturally, the shortage tranéhipment
policy has no significant effect on the shortage units in the system.

The insensitivity of the outdated units to the outdate transhipment policy
can be explained as well. By observing.equation (5) it can be seen that a
unit will be outdated only after several times of the crossmatching process.

So the expected daily outdate is going to be fairly small simply because
Gl—pj)n is a very small number. So there are very few units ever to be out-
dated regardless of whether an outdate transhipment policy is in effect or not.
Consequently, the outdate transhipment policy can be expected to have virtually
no s%gnificapt effect on the outdated quantity.

It should be mentioned here that there are units transhipped but at a very
insignificant quantity under a fairly wide range of inventory levels at differ-
ent locations. The outdate transhipment units do become significant when each
location has a very high ordered up to inventory level. On the other hand, the
shortage transhipment units become significant when the allocation policy is
changed to the FIFO allocation policy. But both of these cases are so extréme,
they were run only to test if the computer program of the simulation was valid.
Thus, tﬁe reéults of these extreme cases were not reported.

The insignificant effect of the limited supply policy can be explained as
follows. Usually within a wide range of inventory levels, there are few short-
ages in the CBB, so the inventory levels with or without the limited supply‘

ﬁolicy are not significantly different. Consequently, there is no significant
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effect on the shortages or outdates.

What are the factors which do affect the two measures? The ordered up to
inventory levels Sj for j=0,1,...,N are no doubt the dominant factors in affect-
ing the shortage at their respective locations. But the S0 and the nuﬁber of
facilities in the system N‘will also have some effects on shortage at lower

echelon facilities. Moreover, because D, is an N-fold convolution of Djpj for

0
j=1,2,...,N, the shortage at the CBB will also depend on the number of facilitieé
in the system as well as the demand distribution and the transfusion probabilities
at lower echelon facilities. The single dominant factor in affecting the outdate
is the return parameter A.‘ This observation coincides with the conclusion
reached in Cohen and Pierskalla(1974), in which further analyses on A

are presented.

Mich about the factors and policies which will or will not affect the

S e >

sbortage units and the outdate units has been discussed. By allowing the

allocation policy to ship uni;s where there is the highest shortage proba-
bility and by controlling the return parameter, the system cost reduction

could be very substantial. However there are two other important policies
which can induce futrther cost reduction: first stocking inventories at an

optimal level; and second, regionalizing the hrospital blood banks in an

optimal manner.
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Table 3 on the following page presents the optimal inventory levels for
different combinations of parameters (N, a, B8) where N is the number of iden-
tical hospital blood banks in the system, a is the daily patient arrival rate,
and B is the average units requested by patients. It will be demonstrated
in the next chapter that a Neyman Type A distribution which has the two para-
meters (o, B) can satisfactorily represent the demand distribution of a hospital
blood bank. Furthermore, the parameter B is found to be two units per patient
from our data ;nd from another report by Rabinowitz (1970). He reasoned that
whenever the amount of units in need is in doubt, two units are ordered by the
physicians. So B8 is assumed to be two and suppressed from the table. The
return parameter )\ is set to be two days which is considered the necessary time
for a unit to return in a well managed hospital blood bank. The outdate costs
are assumed to be $25 per unit at all locations. The shortage costs are
aésu&edlzo b; $§55 per unit at hogfital blood banks and $35 at the central blood
bank. Finally, the transfusion probability P is assumed to be 0.45 based on
our own data for two hospitals. All the results presented in the table are
derived from the empirical equations.

By inspection, two conclusions regarding the optimal inventory levels and
the parameters (N, a, B) are drawn. First, the optimal inventory levels at
hospital blood banks are insensitive to the number of hospitals in the system.
They depend only on the two parameters o and 8. Since o denotes the arrival
rate of patients and B is assumed to be two units per request, we sh;ll also
refer to a as the size of the hospital becausc generally the larger the hospital
the larger the value of a. By varying a and comparing the optimal inventory

levels from the empirical equations with the similar quantities from Cohen and
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TABLE 3

COSTS VERSUS NUMBER, SIZES AND INVENTORY LEVELS
OF THE FACILITIES IN THE SYSTEM

2]
o

o

X

b
~N N

14
18
22
26

12
17
22
29
34

15
22
28
34
41

17
26
33
41
50

S

g

15
15
15
14
14

20
19
19
19
19

24
23
23
23
23

27
27
27
27
27

31
31
31
31

31

So

1.67
1.67
1.67
1.89
2.04

1.67
1.73
1.67
1.63
1.61

1.67
1.57
1.53
1.61

1,57 -~

1.67
1.63
1.56
1.51
1.52

1.57
1.61
1.53
1.52
1.54

1,27
1.26
1.25
1.24
1.24

1.37
1.36
1.32
1.30
1.29

1.47
1.46
1.42
1.40
1.39

1.59
1.55
1.53
1.51
1.49

1.69
1.66
1.63
1.61
1.59

0.71
0.70
0.69
0.69
0.69

0.51
0.50
0.49
0.48
0.48

0.41
0.41
0.39
0.39
0.39

0.35
0.34
0.34
0.34
0.33

0.31
0.31
0.30
0.30
0.29

25
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Piérskalla (1974) presented in Table =~ 4 below, except that in there the
optimal inventory levels are for the hospital blood banks operating indepen-
dently; it is observed that they are very close. Combining Tables 3 and

4 we may conclude that the optimal inventory level depends only on the sizes
of the hospital regardless of the number of hospitals in the system even when

the number of hospitals in the system is only one.

TABLE 4

COMPARISON OF INVENTORY LEVELS BETWEEN
EMPIRICAL EQUATION AND COHEN AND PIERSKALLA

e Sj_ (ENPIRICAL EQUATIONS)  Oj_ _(COHEN AND PICRSKALLA (1974))
2 15 19
3 20 19*
4 24 24
©gee o 27 o 26*
6 31 28

*These figures are interpolated.

Second, the optimal inventory level at the central blood bank divided by
Ne+a:- Bv~ p-is in the neighborhood of 1.67 from Table 3. Since N« & ¢« 8 - p
is the mean demand facing the central blood bank every day, the optimal inventory .
level at the central blood bank can supply about 1.67 days demands from all the
hospitals. .

- The design aspect of a regional blood banking system shall now Ee discussed.
Specifically, what is the optimal number of hospitals which vary in size in the

system. It can be seen from Table 3 that the system cost per hospital day and

the system cost per transfused unit are monotonic decreasing with the increase



27

either in the number or the size of hospitals. Evidentally, the size is more
influential‘to the system cost than the number. For instance, wheﬁ the size

is held at three, the cost per transfused unit reduces from 0.51 to 0.48 or

% when the number of hospitals increased from two to six. But when the number
of hospitals is held fixed, the cost reduces from 0.69 to 0.29 or 42% when the
size increases from two to six. Figure 3 below summarizes the results con-

cerning the sensitivity on system cost by varying (N, o, B).
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Cost/ 50 n\‘h\di{\\_‘___‘
Trans- ‘ '
. fused 40 *—-~#\5:;L_,__*____“
Unit [ " oLz " »
30 . H-%
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Number of Hospitals

Fig. 3

\Y Summary:

A centralized blood banking system was studied in this'chapter by a simu-
lation approach. It is because the numerous possible combinations of{all the
inputvvariables and decision‘altéfnatives, the exhaustive search for optimal
policies, is éost prohibitive. We turn to the analytical approach interactgdA

with our understanding of the system which was gained during the progress of
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the simulation to formulate a set of empirical equations. It is shown that
this approach is fruitful. Two major measures of the system behavior, the
number of outdated units and the ﬁumber of shortage units are highly correlated
between the simulation and the empirical equations.

A major result of the approach is that the'optimal inventory levels at
all locations for each set of input variables and decision alternatives can
be easily found at a fraction of the simulation cost. Furthermore, several
interpretations were derived on the system behavior from the empirical equa-
tions. It was found that neither outdate transhipment policy nor shortage
transhipment policy have any apparent effect on the system outdate cost or the
system shortage cost respectively. The supply policy that the amount received
by the CBB is not unlimited but ié a normal random variable with mean the

amount ordered the standard deviation 20% of the mean also has no significant

Lne
-~ < N .

¢ffect 6n the system cost either.
The results regarding the optimal inventory levels are two-fold. First,
. the optimal inventory levels at hospital blood banks depend only on the sizes
of the hospitals regardless of the number of hospitals in the system. Second,
. the optimal inventory level at the central blood bank is fairly stable in the
sense that it maintains a supply which is approximately 1.67 days demands from
all the hospital blood banks. Neither the number nor the sizes of the
hospitals' blood banks appear to have a significant effect on this number 1.67.
Finally, the system cosf and the number and sizes of thevhospit31lblood'
banks in the system was analyzed;A It is found that size is a more influential
factor than the number. .This result should Ee‘helpful in the design of a

regional blood banking system.
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