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In this paper, a simplified model describing the stochastic process underlying the etiology of contagious and noncontagious
diseases with mass screening is developed. Typical examples might include screening of tuberculosis in urban ghetto
areas, venereal diseases in the sexually active, or AIDS in high risk population groups. The model is addressed to diseases
which have zero or negligible latent periods. In the model, it is assumed that the reliabilities of the screening tests are
constant, and independent of how long the population unit has the disease. Both tests with perfect and imperfect
reliabilities are considered. It is shown that most of the results of a 1978 study by W. P. Pierskalla and J. A. Voelker for
noncontagious diseases can be generalized for contagious diseases. A mathematical program for computing the optimal
test choice and screening periods is presented. It is shown that the optimal screening schedule is equally spaced for tests
with perfect reliability. Other properties relating to the managerial problems of screening frequencies, test selection, and

resource allocation are also presented.

A population of human beings, plants or livestock
is constantly subject to randomly occurring
diseases. Early detection of such diseases is usually
desirable as this may increase the chance of curing the
disease, as well as reduce the chance that the asymp-
tomatic population will develop the disease in the case
of contagious diseases. Modern technological ad-
vancement in medical diagnosis has resulted in the
introduction of various test procedures to detect dif-
ferent diseases. Administration of these test proce-
dures to groups of the population, i.e., mass screening
programs, may thus be advisable. For example, im-
migrants are tested for hepatitis B, school children are
tested for tuberculosis, and military servicemen and
women are tested for diseases such as AIDS and
others. Some HMOs are implementing annual check-
ups of patients for different diseases.

Monitoring mass screening programs, however, is
an expensive task. The cost of mass screening includes
easily quantifiable economic costs such as those of the
labor and materials needed to administer the testing.
Other cost components may be more difficult to quan-
tify. For example, the cost may include the inconven-

ience and possible discomfort necessitated by the test;
the cost of false positives which entails both emotional
distress and the need to do unnecessary follow-up
testing; and even the risk of physical harm to the
testee, €.g., the cumulative effect of X-ray exposure or
unnecessary surgery.

To the policy maker, mass screening programs have
to be designed in light of the tradeoff of the expenses
of testing, which increases with the frequency of test
applications and with the cost of the type of test used,
against the benefits to be achieved from detecting the
defect in an earlier stage of development. Such a
design must determine which kind of testing technol-
ogy is to be used, as different technologies may have
different reliability characteristics and costs. In addi-
tion, the frequency of testing must be decided. More-
over, because different subpopulations may have dif-
ferent susceptibility to the disease, the problem of
optimal allocation of a fixed testing budget among
subpopulations must be considered.

As will be discussed in the next section, while there
exists a literature concerning the theory of screening,
there has not been a comprehensive study on the
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analysis of mass screening to consider the above design
issues. Most of the past research efforts utilize an
approach to develop screening models based on a
single individual’s decision for screening rather than
a large group(s) of individuals. An individual through
a lifetime is subject to different probabilities of incur-
ring the disease and screening schedules are conse-
quently evaluated for an individual. In cases when a
sector of society (such as a health department or a
prepaid group practice [HMO]) will bear the cost of
administering screening programs and when a health
agency, or the society at large, has only a fixed and
limited amount of resources to be used for mass
screening purposes, screening tests may not be pro-
vided continuously throughout the year, but rather
periodically. The questions of which tests to use and
when, which personnel to use to administer the tests
and which utility functions of the group, subgroups or
society should be maximized have not been analyti-
cally addressed when one considers the different etiol-
ogy of diseases and different test capabilities and
effects.

Most previous works have focused on nonconta-
gious diseases such as cancer. In view of the potential
benefit of detecting contagious diseases in reducing
the risk of asymptomatic but susceptible groups in the
population, models of screening for contagious dis-
eases and their analyses will be of value to those
decision makers responsible for administering such
programs. The objective of the current study is to
construct models of mass screening programs for both
contagious and noncontagious diseases, and to con-
duct comprehensive analyses of the models to the
screening objectives.

For contagious diseases, there are, in general, two
distinct stages of the disease that can be identified
once a population unit has contracted the disease: the
latent and infectious periods. After a unit has con-
tracted a contagious disease, a certain amount of
biological development frequently is necessary before
the disease can be passed on to others. This interval is
usually termed the “latent period.” At the end of the
latent period, the infected unit becomes contagious
for a period of time, called the “infectious period.”
The infectious period ends when symptoms of the
disease are recognizable and the unit is isolated or
removed from the population, or the unit leaves the
system by death or other causes. The sum of the latent
and infectious periods is called the “incubation
period” (see Bailey 1975).

Unfortunately, the model with both the latent and
infectious periods is very complex and analytically
intractable. A review of the literature has shown that,

in most past studies, a zero latent period has been
assumed (see, for example, McKendrick 1926; Bartlett
1949; Bailey; and Sanders 1971). Moreover, there are
diseases in which the latent period is small and almost
negligible, for example, scarlet fever, diptheria, and
possibly, hepatitis B. In this paper, we consider the
model of mass screening for diseases with negligible
or no latent period. The reliability (sensitivity and
specificity) of the screening test is assumed to be
constant, i.e., independent of how long the population
unit has the disease. Both the cases of tests with perfect
and imperfect reliabilities are considered. The mana-
gerial problems of screening frequencies, test selection
and resource allocation are all examined.

1. Literature Review

Pierskalla and Voelker (1976), and McCall (1965)
have provided comprehensive reviews of maintenance
models for the control and surveillance of deteriorat-
ing systems in general. Rather than detail the very
large literature on maintenance, in this section we
focus on those past efforts which have a bearing on
the problem of mass screening.

Kirch and Klein (1974a) address explicitly a mass
screening application that seeks an inspection sched-
ule to minimize expected detection delay (the time
from disease incidence until its detection). The meth-
odology is then applied to determining examination
schedules for breast cancer detection (Kirch and Klein
1974b). McCall (1969) considers the problem of
scheduling dental examinations, where cavities are
assumed to occur according to a Poisson process.

Lincoln and Weiss (1964) study the statistical char-
acteristics of detection delay under the assumption
that the times of examinations form a renewal process
and that the probability of detecting the defect is a
function of the defect’s age. Zelen and Feinleib (1969)
and Feinleib and Zelen (1969) have studied the statis-
tical characteristics of the lead time (the time a disease
is detected by screening to the time it is self-detected
or symptomatic) provided by a screening program.

Much research has also been done in the etiology
and progress of a disease and its relationship to screen-
ing effectiveness. Both the reliability of the test and
the lead time gained from detection can be modeled
as a function of the state of the disease rather than the
time since the defect’s incidence (for example: Prorok
1976a, b; Thompson and Doyle 1976; Shwartz and
Galliher 1975; Thompson and Disney 1976; and
Voelker 1976). Blumenson (1977) develops a mathe-
matical model to evaluate a screening strategy, termed
“compromise screening strategy,” which consists of



two stages of screening examinations with different
harmful effects as well as accuracies. The model has
also been applied to evaluate different screening inter-
vals for breast cancer detection (Bross and Blumenson
1976). More recently, Shwartz (1978b) has developed
a mathematical model of breast cancer and used it to
evaluate the benefits of screening (Shwartz 1978a).
Again the rate of disease progression is explicitly
included in affecting the probability of the disease
detection.

Eddy (1980), well aware of the complexity of rela-
tionships among test reliabilities, disease develop-
ment, and prognosis of the disease, has constructed a
breast cancer screening model by focusing on two
attributes that carry information about the effective-
ness of the screening tests: the mammogram interval
and the patient interval. By modeling these two inter-
vals as random variables, Eddy is able to derive ana-
lytical expressions for the sensitivity (true-positive
rate) and specificity (true-negative rate) of test proce-
dures, utilizing repeatedly the Bayesian statistical ap-
proach. The design of screening strategies to optimally
allocate fixed resources, however, has only been briefly
discussed. Eddy’s work is important as it is one that
has been implemented by health agencies.

The above mentioned studies concentrate on incor-
porating the process of disease progress in their models
to evaluate screening programs. Almost all of these
studies, however, take a longitudinal view of an indi-
vidual. An individual through his/her lifetime is sub-
ject to different probabilities of incurring the disease
and screening schedules are evaluated (these also with
respect to an individual). For many diseases an im-
portant alternative approach is to take the society’s or
a group practice point of view. Hence, instead of
screening program schedules for an individual, mass
screening programs must be considered.

The only research on mass screening are the works
by Pierskalla and Voelker (1978) and Voelker and
Pierskalla (1980). Analytical models of a mass screen-
ing program are developed and analyzed for both the
cases where the test procedures are perfect or imper-
fect. Optimal allocation of a fixed budget to different
subpopulations are given in the perfect test case,
whereas optimal decision rules concerning the best
choice and frequency test are derived for the imperfect
case.

Finally, to date, the theory of mass screening for
contagious diseases has been generally overlooked.
From a societal viewpoint, screening for such conta-
gious diseases as tuberculosis of persons in urban
ghetto areas and venereal diseases in the sexually
active may have very significant benefits for the indi-
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viduals, but also for their disease-free contacts and for
newborns. However, such mass screening programs
are costly, so models must be developed to tradeoff
the costs and benefits for their most cost effective
implementations.

2. The Mass Screening Model with No Latent
Period

The following assumptions will be adopted:

(1) The latent period of the disease is negligible.

(2) The infectious period of the disease is exponen-
tially distributed. Note that the termination of the
infectious period can be a result of natural deaths.

(3) The size of the population is large enough so that
the number of susceptibles is relatively constant.

(4) The incidence rates and the rates of transmission
of the disease are stationary over time, and are
independent of each other.

(5) The probability of an increase in the number of
infected units at time ¢ is directly proportional to
the number of units in the infectious period of the
disease at time ¢.

(6) Once an infected unit is identified as having the
disease after a mass screening test, it will be re-
moved from the population and subsequently
treated. As a result, it is assumed to be no longer
infectious.

The assumption that the infectious periods are ex-
ponentially distributed is a common one in most
models (for example, see McKendrick; Bartlett 1949;
Bartholomew 1967; and Bailey). Assumption 5 is also
one that is generally used in most stochastic models
in epidemics, dating as far back as McKendrick (see
also, the reviews of Dietz (1967) and Bailey). Assump-
tion 6 is relaxed in Section 6.

The following notation will be used

X(¢): number of infected units at time ¢;

Al natural incidence rate of the disease;

v: rate of transmission of the disease from a con-
tagious unit to a susceptible;

78 rate of infected units ending the infectious
period;

7 probability that an infected unit will not be
detected by a screening test.

Let AX be the change in the number of infected
units in (¢, £ + At). Then the stochastic process describ-
ing the etiology of the disease can be represented by
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the following equations:

Pr{AX = +1} = AAt + vX(1)At, (1)
Pr{iaX = —1} = pX(2)At. )

Let X, = X(0). The conditional probability gener-
ating function of X(¢) as defined by (1) and (2) is given
in Bartlett (1980):

Mz, t]| X(0) = Xo)
= B[z | X(0) = Xo]

_ (v = W) {p[U@) — 1] — [wU@) — v12z}*
{7U(t) ' ‘Y[U([) - I]Z}Xu-bx/‘y

(3

where U(t) = exp[(y — w)t] is used to simplify the
notation.

The conditional mean number of infected units
in the population at time ¢ is given by evaluating
(8/32)M (2, t| X(0) = X,) at z = 1, which gives

E[X(2) | X(0) = Xo]

= U0)Xo + MUQ®) — 11/(v — w). 4
Define
X(@7) = lim X(z — o),

and

X() = lim X(¢ + ¢).
e—0

Let 7, = 0. Suppose that mass screening is per-
formed at times 75, T3, . . . . Consider the mass screen-
ing that takes place at time 7,. We note that
X(T.-)) is the number of infected units in the popu-
lation right after the last screening. Assume that the
number of screenings taking place in a finite interval
of time is finite, so that X(7';,) and X(T7;,) are well
defined. Now, at the moment just before the mth
mass screening, the number of infected units in the
population, X(7';,), has a distribution whose generat-
ing function is given by My, o[z, t| X(T7-1)] as in
(3), where X, is replaced by X(7T,.-), and whose
conditional mean is:

E[X(T ;) | X(T7-)]
= U(T,m - Tm—l)X(T:;"l)
+ MU(Ty = Truer) — /(v = w). &)

Thus, theoretically, if the distribution of X(T;,_)) is
known, then the distribution of X(T;,) can be
obtained.

Given X(T;,-;), the number of infected units un-
detected in the (m — 1)th screening test is binomially
distributed with parameters X(7,,-)) and 7. As a
result, we can write

E[X(T75-) | X(T -] = 2X(T 50m), 6
From (5) and (6), we also have for m = 1,
E[X(T’)] = nU(T — T )E[X(T7-1)]
+ AMU(T — Toe) = 11/ (y — ). (1)

Hence, (7) gives a recursive relationship between
E[X(T;)] and E[X(T;-))], the respective expected
numbers of infected units before two consecutive mass
screenings.

Summarizing, once the distribution of X(7;,.-,) is
known, the distribution of X(7';.-,), and conse-
quently, that of X(7';,) can also be obtained. We can
thus start with the distribution of X(7'5) to obtain
X(T7), then X(T7),...,and so on.

Applying (7) recursively, we obtain the following
relationship, which can be proven by induction:

E[X(T5)]
= 0" U(T,)E[X(To)] + [M(y — w]

X {(1 - X 2" U(T, - T)
+ 9" U(T,,) — 1}, mz=1. (8)

3. Performance Measures for Evaluating Mass
Screening Programs

To conduct a cost-benefit analysis so as to evaluate a
mass screening program, we must be able to measure
the benefits of the screening program. Voelker and
Pierskalla have discussed various disutility functions,
the reduction of which constitutes the benefit of mass
screening. Two commonly used measures applicable
here are the average detection delay for an individual,
and the average number of infected units per unit
time period in the population. Detection delay is the
gap between the time of detection and the time of the
incidence of the disease.

The total detection delay and the average number
of infected units per period in the population are
intimately related. Consider a time interval [0, T)
where T is the point in time when mass screening
takes place. Let ¢,; be the point in time, 0 < ¢, < 7,
that the incidence of the disease occurs for the ith unit



in the population infected with the disease in [0, T').
Let £, be the end of the incubation period for
the corresponding population unit. Define /(¢) = 1
if t,; < t < min(¢t,;,, T), and 0 otherwise. Hence,
3 1(¢) is the number of infected units at time ¢. Then:

aggregate detection delay for the population
= 2 [min(tl’ia T) - tl/]

=2 fo 1) dt

= T[ L 2 1(2) dt/T]

= T . average number of infected units per period.

As a result, defining the disutility function on the
aggregate detection delay or the average number of
infected units per period in the population are equiv-
alent. Of course, this does not imply that these meas-
ures are equivalent to the average detection delay of
an individual. In what follows, we will concentrate on
the average number of infected units as our perform-
ance measure for evaluating mass screening programs.

For notational convenience, define 6,, = U(T,,) —
UT,-1),m=1,2,....

Let E[X(T;-)] = X,-,. Using (4) and (6), the
expected average number of infected units in the
population in the interval [7,,,—,, T,,) is given by

1 T )
E{T———T_ f (U — Tu)X(T 1)

1 T~ T
- E{T—_—T— [ wexaiy
m m—1

+ MU@) = 11/(y — w) dt}

S —
(T — Ty — )\ "' 7 Y =

A
Yy—u

- U(T = Tip-r) — 1] — &)

Theorem 1. Consider a time horizon T, where mass
screening occurs at To(=0), Ty, T>, ..., and Ty <
T, with T, < T, <...< Ty, <T. The average
number of infected units in the population over (0, T')
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is given by:
__1
T(y —
A M
. {(X{)' + ) 7"0m
Y T RS m=1
A 1 - M
+2M =0 3 g, -7,
YT MK om=1
A 1 — M m=2 )
D TN o o
‘Y — KR m=2 i=0
MM —m) AT},
Y-

where X5 = E[X(T)].

The proof of Theorem 1 and the subsequent theo-
rems are given in the Appendix.

In the case where the reliability of the screening test
is perfect, i.e., n = 0, then the expected average number
of infected units in the population over (0, 7') can be
simplified to

Tov—sF L& )= M= Tly = ”’}‘

(10)

4. The Model with Perfect Test Reliability

The special case of perfect screening test reliability
(10) provides some interesting results that we shall
describe in this section. We shall first explore the
answer to the question: should mass screening be given
at equal intervals? We note that such an assumption
has often been used in past mass screening models.
Pierskalla and Voelker (1978) have shown that, for
noncontagious diseases, schedules with equally spaced
test intervals are optimal in terms of the detection
delay, when the reliability of the screening test is
perfect. We shall prove an analogous result in the
following theorem. We shall use the term “A-periodic
schedule” in a planning horizon T to denote mass
screening programs that consist of M screening tests
performed at0 =Ty, < T, <...< Ty < T, over the
time horizon, where M =1,2,....

Theorem 2. For screening tests with perfect reliability,
screening schedules with equally spaced test intervals
minimize the expected average number of infected
units in the population, within the class of M-periodic
schedules for M= 1,2, ....
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Theorem 2 thus implies that, in the case when
screening tests are perfectly reliable, we need only to
consider screening schedules that are equally-spaced
apart. Suppose policy makers are concerned with a
disutility function D(-) defined on the average num-
ber of infected units in the population over a time
horizon. Then, as long as D is increasing in its argu-
ment, equally-spaced screening schedules would min-
imize the disutility function. This is because any other
schedule would give rise to a higher average number
of infected units in the population, which would thus
lead to a higher disutility function value, as long as
D(.) is increasing.

For screening schedules with tests with perfect reli-
ability (hence, equal-interval tests), the average num-
ber of infected units in the population over a planning
horizon of T time units can be written, using (10), as

[M(y — w’i(M/ T)expl(y — uXT/M)] — 1}
=My —wl (11

Evidently, we would expect that, given 7, (11)
would be decreasing in M. We formally state this in
the following theorem.

Theorem 3. Given T and a screening schedule of tests
with perfect reliability, the average number of infected
units in the population is a decreasing and convex
Sfunction in the number of screening tests held in T.

The consequence of Theorem 3 is that, if the disu-
tility function D(-) defined on the average number of
infected units in the population is increasing in its
argument, then D(-) is decreasing in M, the frequency
of screening.

Now, suppose it costs C for each mass screening,
and B is the amount that the society can afford or is
willing to pay per unit time for mass screening. Then
Theorem 3 shows that, given a budget, the society
would try to increase M as much as possible. For
argument’s sake, suppose M is increased so that
M/T = B/C. The average number of infected units in
the population under the optimal screening schedule
becomes:

¥(B) = [M(y — wy’)(B/C)lexpl(y — uXC/B)] - 1}
= My =) (12)

As T — o, (12) can be viewed as the long range
average number of infected units in the population
under the optimal mass screening schedule.

Suppose there are J subgroups in the population,
where there is little or no interaction among the
subgroups as far as the transmission of the disease is

concerned. Thus, each subgroup may be viewed as an
independent population in terms of the etiology of the
disease under screening. Let D;(-) be the respective
disutility function for subgroup j. Suppose B; and C;
are the amount per unit time allotted to mass screen-
ing and the cost of each mass screening for subgroup
Jj, respectively. Let B be the amount per unit time
available to all the groups. So far our results show that
the problem facing the policy maker is to determine
the B,’s so as to (see 12):

minimize

4 N B,
2ol 25 (2
ool -mf§)} 1] -2 T

J
subject to Y, B, = B,

Jj=1

B =0, j=1,...,J.

The parameters in the mathematical program above
are subscripted according to the respective subgroups.

From Theorem 2, it is clear that if D,(-) is convex
and increasing in the number of infected units for all
J, then the objective function (13) is decreasing and
convex in B,. As a result, the resource allocation
problem as described in (13) is a knapsack problem
with separable convex functions as its objectives. We
can thus use a marginal algorithm, which is guaran-
teed to be optimal because of the convexity property,
to solve the resource allocation problem (see Fox
1966). Furthermore, the convexity of the objective
functions ensures that the optimum solution is
unique.

Suppose that the disutility function is defined on
the average total number of infected units in the
population so that the objective is to minimize
D[¥7-, ¥i(B)), where y,(-) is the average number of
infected units in subgroup j. Since D(-) is increasing
in its argument, it is thus sufficient to consider:

minimize Y, ¥,(B)) (14)

J=1

J
subject to ), B, = B,
=

B=0; j=1,...,J.

Here we observe some interesting parallel results
to that of Pierskalla and Voelker (1978). First, if



(BY, B, ..., BY)is an optimal solution to (14), then
Bf>0forj=1,...,J.

Theorem 4. Suppose BY’s are the optimal solutions to
(14), and that

MGy = w)Cl < N/I(vi — w)’Cil (15)
() ifv; > and v, > pi, then

(v, — w)C)/B} > (v — u)Ci/ BY; (16)
(ii) ify, <w and v < p;, then

('Yj - #j)Cj/Bf <(vi— ﬂi)Ci/B;k' a7

There are some interesting implications of Theo-
rem 4. First, we define,

r=B/Ci=M/T asT—o», j=1,...,J; (18)

as the long run frequency of mass screening for pop-
ulation subgroup j. Then (16) and (17) can be rewrit-
ten, respectively, as

(vj — )/t > (vi — w/ri; (19)
and
(vj = w)/r < (vi — w)/r.. (20)

Suppose we hold v, — u, and v, — u,; to be roughly
the same to sce the impact of A and C on screening
frequencies. Then Theorem 4 states that, if C;/\; >
Ci/\;, then r; < r;. Note that this mathematical result
is true for both cases (i) and (ii) in Theorem 4. Hence,
if the incidence rate for subgroup j is low and/or the
cost of screening subgroup j is high, the group should
be screened less frequently. This result is exactly anal-
ogous to the one observed in Pierskalla and Voelker
(1978) for noncontagious discases.

To see the relationship between v — u and r, suppose
that \;/C; = \;/C;. Suppose further that v; > u; and
Yi> pi, O v; < y; and v, < ;, and

|’Yj"”j| > |71_#i|-

As a result (15) holds, implying (19) or (20), by
Theorem 5. It is interesting to note that both (19) and
(20) lead to

[v, — wil/lvi — il > r/r. 21

The implication of (21) is that the effect of v — u
on r is not linear. For example, if |y, — u;| =2 | v, —
u:|, then the ratio of r, to r, is not necessarily 2. In
fact, by (21), it is less than 2. The frequency of
screening is thus not linearly proportional to the dif-
ference between the transmission and leaving rates of
the disease.
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5. Equal-Interval Tests with Imperfect Reliability

In this section, we investigate the model with » > 0,
1.e., tests with imperfect reliability. We shall assume
that X; = 0. We shall also confine our attention to
tests that are equally spaced apart.

Define r to be the frequency of mass screening.
Hence 1/r is the interval between two consecutive
screenings, and the screening schedule is 7, = 1/r,
T-=2/r,..., T,,=m/r,...,and so on.

Define also a = vy — u, so that U(x) = exp(ax).

Theorem 5. For tests with imperfect reliability that
are an interval 1/r apart, the average number of in-
fected units in the population over a period T = M/r
is given by

(1= nle” = 1] A

a’[1 — ne*"] a
LD il T VIR RPN
T |a(1 —neny| "7 .

Note that when 5 = 0, (22) is reduced to (11), as
expected. Evidently, the average number of infected
units as given in Theorem 5 is still very complicated.
We shall give an approximation for this expression.

We observe that the last term in (22) involves a
term

[(ne)™ = 1)/T = [n"e*” — 1Y/T,

as r = M/T. Hence, if a = v — u is negative, then by
the fact that 7 < 1, the above expression approaches
zero as T — o in the long run. When the test frequency
r is such that ne“" is smaller than 1, (ne*")™ will also
be finite so that the above expression again approaches
zero as T — o in the long run. Obviously, if y = u so
that a = 0, the above expression also vanishes as T —
o, We can then approximate the average number of
infected units as a function of test frequency as:

Ar(l = m)e” = 1) A
(v — (1 —ne”’) v —p’
Such an approximation is reasonable, of course, only

if the above-mentioned conditions are met. We shall
assume, here onward, that

v= (23)

ne’r <1, orr> —a/(ln ). 24)

It is interesting to note that (23) differs from (11),
the case with perfect test reliabilities, by the term
(1 — 9)/(1 — ne*). By partially differentiating
w.r.t. 7, we can see that ¢ is increasing in 7, as
expected.
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Condition 24 serves as a rough guideline for the
lower bound of r. If (24) does not hold, then it can be
seen that the last term of (22) would become very
large as T — . Hence as a control of the contagious
disease, we would like to set r to be at least such that
(24) holds.

Equation 23 can also be useful for selecting among
different tests for mass screening. Suppose there are 2
tests, 1 and 2, with costs per screening C; and C;, and
test reliabilities n, and 7., respectively. Also suppose
that $B is the amount per unit time that the society
can afford or is willing to pay for screening. Suppose
also that the disutility function is increasing in ¢ so
that it is sufficient for us to consider ¢. Then, from
(18), we see that test 1 is preferred to test 2 if

(L= m)(e " — 1) _ (1 = ;)" — 1)
Cl[l _ 7’leu(‘,/li‘] Cz[l — T’ZeuCz/B]

It is also interesting to note that the above condition
does not depend on the natural incidence rate A.

6. Noncompliance of Identified Units

In this section, we relax the assumption that a popu-
lation is no longer infectious once detected by mass
screening. In the medical literature, there has been
increasing evidence that patients may not comply or
continue with the medical treatment program pre-
scribed to them (for example, see Rogers and Curtis
1980; Shortell 1976; Eriksson and Mattsson 1983; and
Ejlertsson and Berg 1984). The degree of patient com-
pliance to prescribed treatments will evidently affect
the effectiveness of mass screening programs. Hence,
the evaluation and management of mass screening
programs require an analysis of the compliance
behaviors of these patients.

Compliance of a unit identified at a mass screening
can be measured as the probability of the unit’s com-
plying with treatment (which could be simple in pre-
scription but difficult in practice). Such a probability
can be expected to decrease over the elapsed time
from when the infected unit has been identified at a
mass screening. In this paper, we attempt to capture
the effect of noncompliance of units by a simplified
assumption. Suppose « is the probability that an in-
fected unit identified at a mass screening test will not
comply with prescribed treatments and therefore re-
main infectious. For those who comply, we assume
that after  unit times, there is a probability «, that
they will not continue to comply. Such a two-stage
compliance model is a first attempt to analyze the
effect of compliance on the effectiveness and manage-
ment of mass screening programs. We assume that =

is usually of short duration, so that it would be smaller
than the interscreening times.
Define

X(2) = number of infected units who may commu-
nicate the disease to susceptibles at time ¢;
they are the ones who are termed “infectious.”

V(¢) = number of infected units who are complying
to prescribed treatment and are, thus, not
infectious in the sense that they would not
communicate the disease to others.

W(t) = number of surviving and complying infected
units who stop complying at time ¢ (and
hence, become infectious again).

V(™) =1lim,._,V(t — ).

V() =lim_o V(£ + ¢).

Suppose mass screenings are conducted at times
To, T, ..., T,, ....Consider the mass screening at
time 7T,._,. We observe that the number of infectious
units after the mass screening, given X(7,,-,), i.e.,
X(T3)| X(T-), is binomially distributed with
parameters X(7T,-) and 1 — (1 — a)l — 7).
Furthermore,

V(T1) = X(Tros) — X(TH-0),
and
E[V(T - | X(T70-1)]
=(1 = a)1 = X(Tr-1). (25)

Define u, as the rate of leaving the system for an
infected unit complying to prescribed treatments. We
expect that uo < u. At the time just before 7,,—, + 7,
the number of complying units remaining, given
W(T;-1), or V(T + 7)1 V(T,-)), is thus bino-
mially distributed with parameters V(7 .-,) and g,
where g = exp(— por).

The number of infected units who discontinue
compliance of treatment at time =, W(T,.-, + 7),
given V[(T,,-, + 7)7], is binomially distributed with
parameters V[(7T,.—, + 7)"] and «,. Hence, W(T .-, +
)| V(T'}-)) is binomially distributed with parameters
V(T,-)) and o, q. Therefore,

E[W(T,-1 + )| V(T75-1)] = e gV (T5-1). (26)

During (T.—1, T:ni + 7), the etiology of the disease
follows (1) and (2). Hence, using (5) we can write:

E{[X(T-1 + 7)1 X(T7-0))
= UDX(T5-1) + MU@) = 11/(y — p)- 27

Now, the number of infected units right after
T..—, + 7 is the sum of the existing infected units and



those surviving units who discontinue compliance of
treatment at time 7,,—, + 7. Thus,

XU(Tor + 7))
= X[(Tp-s + 7)1 + W(Tms + 7). (28)
Combining (25), (26), (27), and (28), we get:
E{[X(T\-1 + 7)1 | X(T 7))
= BUMX(T ) + AU — 1N/(y — ), (29)

where =1 —(1 — a)(1 — 9)[1 — a;qU(— 7)].

During (7,,-: + 7, T,,), the etiology of the disease
again follows (1) and (2), so that from (5) we again
have:

E{X(T5) | X[(Tn-s + 7)1}
= U(Ty = T = DX(Tn-1 + 7)°]
+ MUT, = Ty = 7) = 1J/(y = »). (30)
Combining (29) and (30) we get
E[X(T5) | X(T5-1)]
= BU(Tn — Tp-)X(T7n-1)
+ MU(Tw = Tpmt) = 1y — w). €2))

Equation 31 is thus the analogue of (7), giving
a recursive relationship between E[X(T;-,)] and
E[X(T’)]

Define X; = E[X(T5)]. By replacing n with 8 in (7)
and using Theorem 1 we get form = 1,

E[X(T")]
=B"U(T,)Xo + [N/ (y — w)]

: {(1 —8) Z B U(T, — T))+B87U(T,) — 1}-

Theorem 6. Consider a time horizon T, where mass
screening occurs at Ty, T\, ..., Ty, with0 = Ty <
T, <...< Ty <T. The average number of infected
units in the population over (0, T) with the existence
of noncompliance, is given by

1 M
o &[0 - wo

-1+ BU(In - Zn—l):IE[X(T;n—l)]

1 & A
+— ut,—-Tw-)—-1]f+—.
7_#2[ ( ) 1} o

m=1
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Theorem 6 can then be used to assess the effective-
ness of the screening program.

7. Conclusion

In this paper, a simplified model describing the sto-
chastic process underlying the etiology of contagious
diseases with zero or negligible latent periods under
mass screening is developed. The reliability of the
screening tests is constant, and independent of how
long the unit has been infected with disease. Such an
assumption on test reliability leads to tractable anal-
yses of an otherwise extremely complex problem. In
general, the reliability of a test is probably a function
of the state of the disease which, in turn, is a function
of how long the unit has had the disease. However,
the usefulness of analyzing models with such a general
assumption may be limited by the fact that, in prac-
tice, data on the transmission rates at the various
disease states are almost nonexistent. In this paper,
tests with perfect and imperfect reliabilities are consid-
ered. It is shown that most of the results of Pierskalla
and Voelker (1978) for noncontagious diseases can be
generalized for contagious diseases. The optimal
screening schedule is shown to be equally spaced for
tests with perfect reliability. Other properties relating
to the managerial problems of screening frequencies,
test selection, and resource allocation are also
presented.

The model, as presented, is a first attempt to model
mass screening for contagious diseases. There are sev-
eral avenues for future research. The testing of the
robustness of the exponential assumptions used in this
model, via methodologies such as simulation, can
be useful. The generalization of our managerial re-
sults to other diseases with nonzero latent periods,
and where test reliabilities are functions of the state
of the disease, will also be important extensions of
the current model.

Appendix

Proof of Theorem 1

Using (9), the expected average number of infected
units in (0, T') is:

1 A ~ A
T(v — w) 2 {<"X m t #)

* [U(]:t1 - ]‘m—l) - 1] - A(rn - Tm—l)}.
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Now using (8), the expected average number
becomes:

.
(y —wT

¢ {LA_ Z [nm_lU(Tm—I)_ 1][U(Tm“" T, —1)— 1]
YT Hm=2

+X5 X n"[U(T,) = U(T,-)]

m=I

LM =m Y, -T.-)-1

K om=2

m-2

. 2 nm—i—lU(Tm_l _ T,)

i=0

u M
PRI\ LN
’Y_”'m=l ‘Y—y’

which, upon simplification and rearranging terms
appropriately, yields the desired result.

Proof of Theorem 2

Suppose we have a planning horizon 7, and M is the
number of screenings over (0, 7). When n = 0, the
average number of infected units in the population,
given M, is given by (10):

A M

—_— U(T,, — T
o =7 2, U )
M A
— — Al
Tor—pp y—u AD

Evidently, the last two terms in (A1) are not affected
by the screening schedule (i.e., Ty, 11, ..., Tar).
Hence, we need only to concentrate on the first
term of (A1). Since U(¢) is convex in ¢, then the first
term in (Al) is convex because the sum of convex
functions is convex.

Suppose that, in the screening schedule 75, 77, .. .,
Thi-1, there exist T,,—1, T,, T,n+; such that:

an - 7"”’!"1 # T‘m-H - Tm;
i.e., they are not equally spaced. Then, we note that
[}\/T(’)’ _#)2][U(T'm+l - Tm) + U(Tm - Tm—l)]
2 2[NT(y — wf1U(T o1 — Tn) + (T — Trr-1)1/2}
(since U is convex)

= [MT(y — Wl 2UI(Tonr = Tr-1)/213.

This implies that we can reduce the average number
by rescheduling 7, to be at (T, — T,.-.)/2, the
midpoint between 7,,,—, and T,,..,. By the same argu-
ment, we can always improve by equal-spacing the
screening intervals. This proves the theorem.

Proof of Theorem 3
Denote the expression (11) by ¢(M). Then:

¢’ (M) =(NT)expl(y — w)T/M][1 = (v — p)T/M]
- /(v —wy
¢"(M) = \T expl(y — w)T/M]/M">.

It is clear that ¢”(M) > 0, implying that ¢’(M) is
increasing and ¢(M) is convex in positive values of
M. But ¢’(M) — 0 as M — o, Hence, ¢’(M) is
negative for all positive values of M. This proves that
¢(M) is decreasing in M.

Proof of Theorem 4

Since B > 0, for all j, the Kuhn-Tucker condition for
the mathematical program (14) states that y/(B}) =
¥/ (BY), or

A (v = )G _ (v, = )G, _
-G {e""[ B, ][1 B ] ’}

N
(vi— ui)zCl
x {expl:(% —B:-ti)ci:l[l _ (v —Blﬂi)C,] _ 1}.

(A2)
Define ¢(x) = exp(x}(1 — x) — 1.

(1) Now ¢’(x) = —x exp(x) < O for all x > 0. Also
#(0) = 0, so that ¢(x) < O for all x > 0. Hence
(15) implies that

ol(v; — w)Ci/B] < ¢l(v: — u)Ci/Bi]. (A3)

But ¢(x) is a decreasing function in x, for all
x > 0. Hence, if v, > y; and v, > u;, then (A3)
implies (16).

(i) ¢’(x) = —xexp(x) > 0 for all x < 0. But ¢(0) = 0.
Therefore, ¢(x) < 0 for all x < 0. Hence (15)
implies that (A3) holds. Now ¢(x) is an increasing
function in x, for all x < 0. Hence, if v; < w; and
v: < u;, then (A3) implies (17).



Proof of Theorem 5
For tests equally spaced at 1/r time units apart, then
Ut, — T,-)=e"; m =1,....,.M
U~T)=e“" i =1,....,.M
O =€ — eV o m=1,..., M.
Using Theorem 1 with X5 = 0, the average number
of infected units over (0, T') is:

A M
m eam/r_ ea(m—l)r _ aT
Ta2 mE=l " [ ]

M

+(1 —n)[—M+ Y e

m=1

M m=2
+ 2 [eam/r — ea(m—)/r] 2 nm—l—ie—ai/r]}‘
m=2 i=0

= % {—aT+ M(1 —n)(e” = 1)
+ (e = Dyl(ne”"y" = 1)/(ne” — 1)

_ (1 —n)e" (e = 1)
(ne“ =1y

[(M— D(ne*” = 1)

_ eu/rn[(nea/r)M—l - 1]]}.
Appropriately rearranging terms yields (22).

Proof of Theorem 6

Similar to the proof of Theorem 1, the cumulative
number of infected units in the time interval
(T,—:, T,,-y + 7) can be found as:

1
y -

P ‘{[1 = (1 = a1 = IE[X(T5,-1)]

+ %}wm Y .
Y 1 Y

(A4)

The cumulative number of infected units in the
time interval (T,—, + 7, T,,,) can be found, in a similar
way, as:

1 A
— JLE{X (T + 7)1+ —}
—u Y1

(T, = Ty — 1) — 1]
A
——A(T,, =T, —1). (AS)
YT MK
Using (29) in (AS5) and summing (A4) and (A5), we
obtain the cumulative number of infected units in
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(T'm—la Zn):
1
YK

[(1 = o)1 = )1 —ang) — 1

+ BU(T,, — T IE[X(T -]

+—2  WU(T = T = 1]
(v —

+ =2 (T, - T, (A6)
Y= u

Summing (A6) over m = 1, ..., M, and dividing by
T gives the desired resuit.
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