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Abstract

The nurse allocation problem for a given day and shift is
formulated as one which minimizes the cost of allocating nurses among
nursing classes and units subject to constraints on the demand for and
the supply of nursing services. When the number of nurses reporting
for work in the various classes and units form a random vector, the
allocation problem becomes a stochastic program with recourse. When
the random variables in question are defined on a discrete sample space,
the stochastic program may be transformed into a deterministic program
which can be solved. A near-optimal cyclic coordinate descent algorithm
is presented. Results are given pertaining to some sample problems
and the sensitivity of the algorithm's solutions to changes in the

probability distribution of the supply random variables is discussed.



INTRODUCTION

Nurse allocation in a hospital occurs over varying time frames.
In the long term (e.g. months) "allocation" refers to allocating a
fixed supply of nurses employed by the hospital to the various units
of a hospital requiring nursing services. The results of such an
allocation specify the number of nurses permanently assigned to the
various classes and units of a hospital. This form of nurse allo-
cation is treated by Abernathy, Baloff, Hershey and Wandel in (1)
and (2). In the very short term (e.g. hours or minutes) "allocation"
refers to allocating the nurses already working in a nursing unit
among all the nursing tasks that must be performed in that unit. Two
examples of this form of nurse allocation are those of Wolfe and Young
(12), (13) and Liebman (5).

The nurse allocation problem discussed in this paper is of the
short term (e.g. for a given shift on a given day). It may be thought
of as a necessary adjustment to the process of scheduling nurses for
work,(see (8), (8), and (10). Regardless of the type of nurse sched-
uling system used by a hospital, the daily schedules specify how many
nurses of the various nursing classes (e.g. RN's, LPN's, Nursing Aides)
are scheduled to work in the various nursing units of the hospital.
The schedules are generated under certain assumptions regarding esti-
mates of the demand for nursing services on the scheduled days and
under the implicit assumption that all of the nurses scheduled to
work on a given day will indeed report for work on that day. As the
scheduled days approach, however, the supply and demand for nursing
services are often different from the supply specified by and the demand

estimated in the nurse scheduling process. Thus the allocation problem



is one of how to adjust the realized supply of nurses reporting for
work to meet the updated demand for nursing services. This adjustment
may involve moving nurses across classes and/or units so that they
function as nurses in the same/different classes of the same/different
units in a manner consistent with hospital policies.

A number of allocation studies of this type and time frame have
appeared in the literature. Warner and Prawda (11) formulate the
allocation problem as one of seeking to minimize a "shortage cost"
of nursing services while satisfying constraints on personnel capacity,
integral assignment, and nursing class substitutability. The problem
is posed as a mixed integer quadratic programming problem. The model
allows for substitutability between nursing classes by allocating
nurses from a known hospital wide supply of nurses of each class. It
does not address the problem of allocating nurses when supply is
stochastic, nor does it treat the problem of allocating nurses when
the supply of nurses in each nursing class is already associated with
the various nursing units, via rosters of nurses scheduled to work
in those units. Howland (4) also assumeé a known supply of nurses
but allows only downward substitutability between nursing classes
(e.g. RN's for LPN's but not vice versa). His model allocates nurses
from a float pool. Both of these assumptions restrict the general
applicability of the model. In their paper on cyclical nurse scheduling
Maier-Rothe and Wolfe also speak of allocating nurses from a float
pool to adjust the nurse schedules properly.

In this paper we shall model the process of nurse allocation to
allow allocation of nurses across all nursing classes and units, given

a roster of nurses scheduled to work in those classes and units. If



a hospital does not wish cross class and/or unit allocation to take
place, penalty costs can be defined so that intra-unit cross-class
allocation or float pool allocation are special cases of the model.
Morover the supply of nurses reporting for work is treated as a random
variable. Thus the model may deal with situations where the supply of
nurses is not known with certainty. When the supply of nurses is

known, the model treats it as a specilal case.

THE MODEL

The nurse allocation model presented below is an integer pro-
gram which minimizes the sum of the direct cost of allocation and the
costs of recourse actions due to the random supply, subject to con-
straints on meeting the demand for nursing services in the various
classes and units, and lower bound constraints on the number of nurses
allocated across the various classes and units of a hospital. Define:
y = The number of nurses of class i, unit j allocated to function

ijkm
as class k, unit m nurses. (integer)

aijkm = The number of nurses of class k, unit m equivalent to one class
i,unit j nurse. This may be thought of as a full time equival-
ency ratio.

uijkm = The lower bound on the variables yijkm' (where uijkm > 0)

Ekm = The upper bound on the staffing level for class k, unit m.
(known)

Prm = The lower bound on the staffing level for class k, unit m.
(known)

cijkm = The cost of allocating one nurse from class i, unit j to function
as a class k, unit m nurse.

Zij = The number of nurses available to be allocated from class 1,

unit j. This is a random variable.



We shall assume the Zij's are independent. Also define J = the

number of units from which nurses may be allocated; M = the number of

units to which nurses may be allocated; I = the number of classes in
the J units; and K = the number of classes in the M units. Henceforth

we shall assume J=M and I=K. If this were not the case, "dummy"

classes and/or nursing units could be defined so that the equalities

hold.
The nurse allocation problem may be formulated as a stochastic
program with simple recourse:

Problem A:

e I J kX M
minimize izl jgl k§1 m§1 Cijkm yijkm
fkygh Pz minfags Gag) Bvig t 255 7 skt Vigke!

v.. unrestricted}

1]
. I J —
subject to Trm < igl jEl aijkm yijkm S Ty for all k=1,...,K
_ m=1,...,M
yijkm 2 uijkm’ for all i,j,k,m and yijkm integer for all i,j,k.,m

The first set of terms in the objective function denote the

direct allocation costs, i.e. the actual costs of the allocations

specified by the yijkm' The second set of terms in the objective

function denote the expected recourse costs. They may be thought of

as being the costs of the recourse actions vij taken to assure that

K M
..o+ .. = 2., o . .
vl] k§1 mgl yljkm zlj, whereKzl Mls a realization of the random
variable Z... Note that z.. - I . Yoo is the difference between
1] 1] k=1 m=1 “ijkm

the realized supply of nurses in class i, unit j and the total number



of nurses allocated from class i, unit j to all other units. Thus

we might intuitively think of vij > 0 as being the cost of asking
nurses to work overtime or requesting that nurses scheduled for days
off report for work; and vij < 0 as being the cost of nurses who report
for work having no classes or units to be allocated to, i.e. "idle
time" costs. The first set of inequality constraints specify that the

)

number of "equivalent" nurses (i.e. adjusted by the ratios 3 5km

allocated to each class k in unit m be within the upper and lower
bounds specified by Ekm and Typ+ Lhe inequality constraints Y3 3km >
uijkm place a lower bound on all allocations yijkm; and finally
all allocations must be integer valued.

Note that the random variables Zij are defined on a discrete
sample space. For example, if n nurses are scheduled to report for

work, the number of nurses actually reporting for work will be n,

n-1 1, or 0. Thus Z,. e {zr lej}' z¥, with prob-
T o i AR S I H S P

- % % o Lij g
‘ablllty Pij where 0 < Pij <1, for all i,j,1 and zzl pij = 1, for all
i,j. Moreover we note that for each i, J:

K M
Ve. = Z.. = L z
1] 1] k=1 m=1
K M
=935 iy 70k oI Yidkm

mln{qij(vij)l Yiikm’ Vi3 unrestricted}

)

since the set of feasible vij's contains a single point for each 1i,]

combination. These observations imply that:

I J E ( K M )
X x .. (Z2.. - % z ..
i=1 j=1 Zij ql] 1] k=1 m=1 yljkm
I J Lty 3 K M )
= I z I P.. .. (z.. - I I V..
i=1 j=l 2:1 1] ql] 1] k=1 m=1 l]km

For example the functions qij(.) could be defined as:



e ;- a2 if a <0
q.. (a) = ]
.. O if o 2 0
1]
2 K M
where o = z .. = L z .. ande.. > 0, b.. > 0., Thi 1
15 WI1 i yljkm i3 > by 2 1s function
forces the final allocations yijkm to result in allocations from classes

and units lying "close to" the expected suppiy of nurses in those
classes and units. Moreover it reflects the nonlinear manner in which
the recourse costs increase. TFor example the cost of two nurses
working overtime on one day might incur a greater cost than one nurse
working overtime on two separate days, given salary and other incidental
interactive costs.

Hence Problem A may be reformulated as:

Problem B:

I
minimize z z z I c.. Vo

AR S At . KM
s 3B eZp Piy i3 (zig 7 Iy omka Y3 jkm’
. I J -
subject to Crm S iEI jEl aijkm yijkm ST for all k=1,...,K

Y3i4ikm > uijkm’ yijkm integer for all i,j,k,m
When the functions qij(') are convex quadratic functions as
defined above, Problem B is a convex integer program subject to linear

constraints.

SOLUTION PROCEDURE

The solution algorithm to Problem B presented below is near-
optimal rather than optimal. This is due to the extremely large number

of possible feasible sclutions to Problem B. For example, consider



a problem where nurses are allocated among three classes of four
units, 1.e. I=K=3 and J=M=4. Assume that Tym 5 and ST 7, for

each k,m and that aijkm = 1 and uijkm = 0, for i1,j,k,m. Even though
this problem is "small" in nature, there exist on the order of lO54
feasible solutions. If the lower bounds uijkm are tightened to

Yynkm - 4, for each k,m and u.

. = 0 otherwise, there still exist
1jkm

over lO31 feasible solutions. These facts suggest implicit enumeration
algorithms may not be feasible. Moreo?er the non-linearity of the
objective function and the large number of variables casts doubt on
using other optimum integer methods, such as cutting planes.

The algorithm that will be used is a cyclic coordinate descent
method, where the search directions are coordinate directions and the
cartesian product of coordinate directions. The rationale for choos-~
ing the search directions stems from representing the variables yijkm

in matrix form:
Y1111 Y1211 ¢ Y111

Y1112 Y1212 - Y1ig12

Yi1xm Y12xm ** Y1oKM
Note that a) each row represents a fixed class and unit to which
nurses are allocated, i.e. the subscripts k and m are fixed; b)

each column represents a fixed class and unit from which nurses are

allocated, i.e. the subscripts 1 and j are fixed; and c) the "diagonal"

elements, represent the number of nurses of a particular class

ykmkm’

and unit allocated to function ig that same class and unit.




It is intuitively clear that any near-optimal allocation will
contain relatively high values for the diagonal elements, given a
realistic distribution of allocation costs. That is, most nurses will
be allocated to function as nurses in their own class and unit, and
some will be allocated across classes and/or units to account for changes
in supply and demand conditions.

This observation is utilized both in choosing the initial sol-
ution and in generating search directions. Specifically the initial
solution is chosen to be a feasible "diagonal solution". For example,
each diagonal element in row km of the matrix representation of the

vy would equal Tym and all non-diagonal elements would equal zero

ijkm
(where we assume Cim is integer). In generating search directions we
will include all directions representing pairwise changes between the

diagonal and non-diagonal elements of the various rows and columns of

the matrix representation of the yijkm'

Specifically we search along (where Eijkm refers to the co-

ordinate direction in Euclidian Space corresponding to the variable

yijkm):

(A) Directions of the form Epmkm ¥ Eijkm’
(B) Coordinate directions Eijkm’
(C) Directions of the form Eijij x Eijkm'

Searching in the directions specified in (A) tends to lower
recourse costs by reducing the discrepancies between the number of
nurses allocated from classes and units and the expected number of
nurses scheduled to work in those classes and units, given a fixed

total allocation.

Searching in the directions specified in (B) also tends to



lower recourse costs for the same reason indicated in (A). This time,
however, the reduction is facilitated by increasing or decreasing the
total number of nurses allocated among all classes and units, as opposed
to changing the "mix" of a fixed total allocation.

Searching in the directions specified in (C) tends to lower
direct allocation costs by finding feasible allocations with the same
recourse costs but lower direct allocation costs.

The algorithm about to be presented searches these directions
in a cyclical manner and terminates when no better solution can be

found.

Solution Algorithm

(1) Select an initial feasible solution. For example, let Yiemkm™ Tkm

for all k, m and y. 0, otherwise.

ijkm ~

Let BEST = this solution's cost and set the termination counters,
Kl = K2 = K3 = 0,

(2) If all termination counters are greater than zero, stop. Otherwise
leti=1, =1, k=1, m=1 and K1 = 0.

(3) Search in direction E okm > Eijkm for a feasible solution yielding
a total cost lower than BEST. If one is found, go to (6).

(4) Let XK1 = K1 + 1. If K1 > I«J+KeM, go to (7).

(5) 1Increment subscripts in the following order: j, i, m, k (i.e. go
"across the rows"). Go to (3).

(6) Let BEST = the new total cost and let y, ., ~and Y34ikm be the

allocations that produced it.

Set all termination counters to zero and go to (3).
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(7) If all termination counters are greater than zero, stop. Other-
wise let k=1, m=1, 1 =1, § = 1 and K2 =0.
(8) Search in direction Eijkm for a feasible solution yielding a total
cost lower than BEST. If one is found, go to (11).
(9) Let K2 = K2 + 1. 1If K2 > I«J+K*M, go to (12).
(10) Increment subscripts in the following order: j, i, m, k (i.e. go
"across rows"). Go to (8).
(11) Let BEST = the new total cost and let yijkm be the allocation that
produced it. Set all termination counters to zero, and go to (8).

(12) 1If all termination counters are greater than zero, stop. Otherwise

let k =1, m=1,1i=1, § = 1 and K3 = 0.

(13) Search in direction E. for a feasible solution yielding

1313 % Bijxm
a total cost lower than BEST. If one is found, go to (16).
(14) Let K3 = K3 + 1, 1If K3 > I+«J+*K*M, go to (2).

(15) Increment subscripts in the following order: m, k, j, i (i.e. go

"down columns"). Go to (13).
(16) Let BEST = the total cost and let y.... and y.. be the alloca-
1]1] 1jkm
tions that produced it. Set all termination counters to zero, and

go to (13).

Note that steps (2) - (6) of the algorithm correspond to searches
in directions specified in (A) above; steps (7) - (11) correspond to
searches specified in (B) above; and steps (12) - (16) correspond to
searches specified in (C) above.

Also note that directions (A) - (C) do not include directions
i.e. the cartesian product of

such as E. or

i5km < Fepkm ©F Fisxm X Bijepe

two non-diagonal directions in a particular row or column of the matrix

representation of y. This is due to the observation that the relatively
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larger allocations correspond to the "diagonal" components Y yemkm
Implicit in this observation is the likelihood that the search
directions corresponding to the aforementioned "diagonal" components.
Results

The solution algorithm just presented was applied to five
sample problems where: I = K= 3, J = M = 4 and q(a) = qij(a), for all

i,j where

edz if o < 0

q(a) = 2
ba if a > 0
The sample spaces for the Zij and the probability distributions on

those sample spaces varied for each class i - unit j combination.

Figure 1 presents one of the integer allocations generated:

from C{: ::* ::):‘ /:E ;:‘ &:‘ ?)" ;i j:l‘ :\‘T ;;" ;" Aligzgied Min Max
To -~ -2 2 288 e 22 C 2 to Reg Reg
(1,1) 4y 2 0 0 0 0 0O 0 0 0 0 oO 6 6 7
(1,2) o ¥ 1 0 0 0 0 0o 0o o0 o0 O 5 5 6
(1,3) c 0 6 0 0 0 O 0 0O 0 0 O 6 4 6
(1,4) 1 0 0 4 0 0 O 6 0 0 0 O 5 5 7
(2,1) o o0 0o 0 66 0 0O 0 0 0 0 O 6 L 6
(2,2) 0 o o 0 O 6 0O O 0 O 0 O 6 4 7
(2,3) o 06 0 0o 0O O & 0 0 0 O O 6 6 7
(2,4) 0 0 o 0o O 0O 0 6 0 0 0 O 6 5 6
(3,1) 0 0 0o 0 0 0 O O 6 0 0 O 6 Y 6
(3,2) o 0 o 0 0 0 0 0o 0o 5 o0 O 5 5 7
(3,3) 0 o o 0 0 0 0O 0O 0O 0 © O 6 5 6
(3,4) o o 0 0.0 O O O O 1 0 5 6 6 7

Legend: (i,3j) = (class i, unit j)
FIGURE 1

AN ALLOCATION GENERATED BY THE INTEGER SOLUTION ALGORITHM
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Although the optimal integer allocation was unknown in each of
the five problems, a lower bound on it's cost was obtained by solving
the five problems in continuous variables and using a lower bound on
the continuous optimum as a lower bound on the integer optimum (see (7)).
The solution algorithm employed was the Frank-Wolfe method. Table 1
presents a comparison of the maximum lower bounds after 100 iterations
of the Frank-Wolfe algorithm and the value of the integer allocations

generated by the solution algorithm.

(1) (2) (3) (4) (5) (8) (7)

Value of
Value of rounded
Problem Integer Frank-Wolfe
Number e b 8100 Allocation (5)/(w) Allocation
1 6 2 36.8 43.8 1.19 Lo.y4
2 10 4 61.6 72.7 1.18 71.5
3 15 7 9y .5 113.9 1.21 116.8
y 30 15 187.9 243.4 1.30 250.4
5 50 25 310.6 375.0 1.21 543.0
TABLE 1

COMPARISON BETWEEN INTEGER SOLUTION ALGORITHM
AND CONTINUOUS FRANK-WOLFE ALGORITHM

Legend:
e = constant in recourse cost function for argument < 0
b = constant in recourse cost function for argument > 0

8100= maximum lower bound in Frank-Wolfe algorithm after 100 iterations

In four out of the five sample problems, the cost of the alloca-
tion generated by the integer algorithm was about 11/5 times that of
the maximum lower bound, 8100' Considering the differences in the two
algorithms, one being non-integer and the other integer, we conclude

the integer algorithm appears to be generating respectable integer
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allocations. Later we shall see the integer algorithm generates
allocations that are often integer optimal for a different set of
integer allocation problems.

The allocations generated by the integer algorithm shall now be
compared with the closest feasible integer allocations obtained by
rounding the non-integer allocations of the Frank-Wolfe algorithm
obtained after 100 iterations of the algorithm. Although these rounded
allocations may not be integer optimal, such a procedure is often used
as an approximation to the integer optimum when the true integer optimum
is unknown.

Comparing columns (5) and (7) Table 1 indicates the integer
algorithm generated allocations with objective function values lower
than those of the closest feasible integer allocations to the Frank-
Wolfe solutions in three out of the five sample problems. Moreover in
the other two cases the costs of the integer algorithm were only slightly
higher.

The integer algorithm was then applied over a two week period
to allocating nurses among the classes of nine units on the day shift
of a 800 bed hospital. The hospital only kept records of the number
of nurses scheduled to work in each class (RN, LPN) of each unit on
each day. Thus the following assumptions were made:

(1) Since the hospital's policy was only to allocate nurses

among units of the same class, there was no need to deter-

mine the full time equivalency ratios, aijkm (where we
assume all nurses in the same class were equivalent).
Indeed, separate allocations were run for each class.

(2) For each class i and unit j we assumed (where n = the number
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of nurses scheduled to report for work that day):

a) n>1 P(Zij=n) = 0.9 P(Zi.=n-l) = 0.1, P(Zi.zm) = 0.0, m#n or n-1

] J
b) n=0 P(Z,.=0) = 1.0; P(Z..#0) = 0.0
1] 1]
(3) The costs were structured as: Clemkm - 0, k=1,2; m=1,...,9;
cijkmzl’ i=1,23 j=1,...,8 and m=1,...,9; cigim=999,

i=1,23 m=1,...,8; i.e. hospital policy dictated that alloca-
tions from unit 9 were not allowed since this was a Medical
Intensive Care Unit.
(4) The recourse cost functions were (for all i,j)
100 a2 for a < O
qij(a) i 50 o2 for a > 0.

(5) The minimum and maximum requirements (i.e. r ., and Ekm) were
chosen in accordance with the general number of nurses
scheduled to work over the two week period given in the
hospital data.

Table 2 presents the results from these runs.

In each of the 28 problems solved, it was possible to determine
the cost of the optimal integer allocatidn, due to the relative sim-
plicity of the costs and the probability distribution given in the
assumptions. These optimal costs are given in columns (3) and (&)
for the RN and LPN problems. Comparing the values of columns (3)
and (6) with those in columns (2) and (5) (i.e. the costs of the

allocations generated by the integer algorithm) reveals the optimal

allocation was achieved in 20 out of the 28 cases.
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Registered Nurses Licensed Practical Nurses
Initial Tinal | Optimal Initial Final Optimal
Day Value Value Value Value Value Value
(Col.) (1) (2) (3) (%) (5) (6)
1 940 91 91 400 92 92
2 700 81 81 810 81 81
3 910 92 91 510 30 90
4 1335 85 84 420 91 91
5 875 82 81 280 91 91
6 1065 85 8k 760 83 83
7 925 85 8l 560 83 83
8 1295 93 92 1190 92 92
9 1700 85 83 405 90 90
10 650 30 90 420 91 91
11 540 90 90 900 84 8l
12 400 92 91 610 92 92
13 650 83 83 385 91 91
14 650 83 83 435 92 92
Legend:

Initial Value:

Final Value:

Optimal Value:

Objective function value of initial solution to

integer algorithm (minimum requirements solution)

Objective function value of final allocation

generated by integer algorithm

Objective function value of optimal integer solution

TABLE

COST COMPARISON BETWEEN ALLOCATIONS FROM INTEGER
SOLUTION ALGORITHM AND OPTIMAL INTEGER ALLOCATIONS

Columns (1) and (4) give the cost of the initial solutions used

in the algorithm.

Their presence serves a dual purpose.

First, since

the initial solutions were chosen to be the minimum requirements solu-

tions (i.e. Yimkm -

Ekm

for all k,m and all other components of y
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equalling 0), it gives some indication of the relatively high costs

of such allocations. Second, comparing columns (1) and (2), and (4)

and (5) indicates how "far" the algorithm must travel to reach its local
optima, as measured by the value of the objective function.

The CPU times for the five sample problems presented earlier
ranged from 7.79 seconds to 9.46 seconds, averaging 8.65 seconds. For
the 28 problems just presented they ranged from 2.26 seconds to 5,88
seconds, averaging 4.59 seconds. All runs took place on a CDC 6400.

Sensitivity Analysis

In this section we shall consider Y4 out of the 28 problems just
presented and solve each of these for ten different discrete probability
distributions. From the results some observations shall be made regard-
ing the sensitivity of the problems chosen and of the algorithm to
changes in p.

The probability distributions chosen will be denoted by (i,j,k).
Let n be the number of nurses scheduled to report for work. Then we
choose (i,j,k) such that:

a) For n>1: P(Zts:n) = i P(ZtS:n—l) = j3 P(Z n-2) = k;

ts”
P(Zts:m) =0. For all m#n, n-1, or n-2.
b) For n=1: PthS=l) =i P(Zts:O) = J + k3 P(Ztszn) = 0.,and n#0 or 1.
The case n=0 did not present itself in these runs. Table 3
presents the results of this analysis.
In each of the four problems it was possible to calculate the
value of the optimal integer allocation. In all cases the optimal
integer allocation was generated by the solution algorithm.

The results of Table 3 clearly indicate the optimal integer

allocations to the four problems are relatively insensitive to changes
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in p. In problems #1 and #4 one allocation is integer optimal for the
first four probability distributions listed and another is integer
optimal for the last six. In problems #2 and #3 the same allocation

is integer optimal for all ten probability distributions.

Probability Prob.#1 (RN) Prob.#2 (LPN) Prob.#3 (RN) Prob.#4 (LPN)
Distribution |Pattern Cost |[Pattern Cost|Pattern Cost|Pattern Cost
(1.,0.,0.) A 1 C 2 D 2 E 2
(.9,.1,0.) A 91 C 92 D 92 E 9?2
(.8,.2,0.) A 181 C 182 D 182 E 182
(.7,.3,0.) A 271 C 272 D 272 E 272
(.6,.4,0.) B 301 C 362 D 362 F 332
(.5,.5,0.) B 301 C 452 D 452 F 377
(.8,.1,.1) B 391 C 422 D 362 F 422
(.7,.2,.1) B 391 c 512 D 452 F 467
(.6,.2,.2) B 481 C 8Lu2 D 722 13 692
(.5,.3,.2) B 481 C 932 D 512 F 737

Legend:

Pattern: Distinct allocation pattern generated by the integer

algorithm
Cost: The cost of this pattern

All of the costs given in this table are integer optimal for the problems

and probability distributions.

TABLE 3
SENSITIVITY‘ANALYSIS OF FOUR PROBLEMS TO CHANGES IN p.
We now present the following Proposition regarding the sensitivity
of an integer allocation y = (ylll"“’yIJll""’yllKM’ii"yIJKM) to .
. e . . . L
changes in the probability distribution p = (pil,...,pil ,...,p%J,...,pIJ ).

It's proof is in (7) and follows directly from the objective function

of Problem B being convex in the variables yijkm:
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Proposition:

If allocation y is integer optimal for any n probability distri-
butions pl,...,pn; it is integer optimal for any convex combination of
those n distributions (where all other parameters are fixed) .

For example, allocation C in problem #2 would be the integer
optimum for all convex combinations of any subset of the ten probability
distributions specified. Thus allocation C is also the integer optimum
for

3(1.,0.,0.) + 2(.5,.3,.2) = (.75,.15,.10).

The above discussion indicates the optimal solution sets are
quite stable, even in the integer case and that slight errors in esti-
mating the probability distribution p do not drastically affect the
optimal integer allocation.

The results in Table 3 also indicate the ability of the integer
algorithm to "switch" away from an allocation when it is no longer
integer optimal. For example, in problem #1 allocation A is integer
optimal for (.7,.3,0.) and allocation B is integer optimal for (.6,.4,0.).
The cost of allocation A when (.6,.4,0.) holds is 362, which indicates
it is not integer optimal. The algorithm recognized this fact by choos-
ing allocation B rather than allocation A.

Naturally there is no guarantee that the algorithm will always
generate an integer optimal allocation. When it does not, statements
similar to the above cannot be made with the same mathematical precision.
The results do suggest, however, that a near-optimal integer allocation
for one probability distribution will still be near-optimal for another
distribution "close" to it. This in comforting in light of slight

errors that may be present in estimating the probability distributions.
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SUMMARY AND CONCLUSIONS

In this paper the daily process of allocating nurses among the
various nursing classes and units of a hospital was formulated as a
stochastic program with simple recourse. Because of the discrete
nature of the random variables Zij’ the number of nurses reporting for
work in class i of unit j, the problem was transformed into a deter-
ministic program. A near-optimal cyclic coordinate descent algorithm
was presented, exploiting the fact that a characteristic of low cost
solutions is the presence of a large number of nurses allocated to
function in their own classes and units. In the sample problems where
the integer optimum was unknown, the algorithm generated solutions
having costs only 20% higher than those of the maximum lower bound
obtained from the Frank-Wolfe algorithm, applied to a continuous
variable version of the same problem. When the integer optimal solu-
tions were known, the solution algorithm found them in 20 of the 28
problems tested. Finally, the optimal integer allocations chosen by
the algorithm appear to be guite insensitive to changes in the prob-
ability distributions of the random variables Zij'

The model may be applied in many different nurse allocation
settings. It can treat allocation among different classes within the
same unit, allocation among different units within the same class,
allocations among different classes and units, allocation from a float
pool or among a subset of the total number of nursing classes and units.
Moreover it can be applied to problems where the supply of nurses is

stochastic or where it is deterministic.
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