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level, inventory control in a central blood bank system and
finally transshipment allocation policy for a central blood bank
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Each of the following sections is a relatively self-con-
tained report of the research project concerned with these areas
of operational decisionmaking. Specific decisions, resources
and performance measures -for each area are introduced and where
appropriate, analytic results on optimal policies and procedures
are presented. They key findings of the various research pro-
jects are summarized in the final section.

FORECASTING

Demand for the variety of blood products carried in inven-
tory is a major source of uncertainty in the management of blood
banks. Accurate forecasts of the quantity and timing of future
demands are key inputs to inventory control and donor recruiting
decisionmaking. 1In particular, decisions relating to the quan-
tities of blood products to be carried in stock, the scheduling
of drawings from donor lists or mobile drawings and ordering

from other blood banks should all be made with such forecasts in

mind.

It is clear that demand for blood products is inherently
stochastic (random) due to the complexity and unpredictability
of the phenomena which generate these demands. 1In our research
we have noted that even very large transfusion sérvibes have
wide fluctuations. Ultimately this demand for blood products
can be traced to the occurrence of those medical conditions and
outcomes for which blood or component transfusions are indicat-
ed. Such conditions include emergency treatment for trauma,
scheduled and unscheduled surgeries and a large number of dis-
ease conditions. Since it is quite difficult to consider the
prediction of these causal factors, which in combination lead to
blood demand, it is not realistic to consider the development of

a multivariate model to forecast demand.
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The approach considered in this section forecasts demand by
the analysis of the past history, called the time series, of
past blood demands (cross-match requests, cross-match quantities
or transfusion quantities). Time series analysis is based on
the premise that observed patterns of variation contain suffi-
cient information for the prediction of future patterns, hence
this method is much easier to implement than multivariate ap-
proaches which require data on both past demand and past causal
factors. We will develop models which can be used to forecast
the quantity (number of units) of blood réquested for cross-
match for each blood type. We will consider both daily and
monthly time series.

The first issue to evaluate is the nature of the probabil-
ity distribution of cross-match quantities for a particular
blood product on any given day. This issue is of particular
importance since blood inventory stocking decisions will be
directly affected by the shape of this demand distribution. For
example, a highly skewed, highly dispersed distribution of de-
mand could indicate the need for more inventory to avoid short-
ages than would be required for the case where demand is char-
acterized by a symmetric, low variance distribution. Figure 1
is an example of a frequency histogram for daily cross-match
quantities for O Rh positive (O+) units taken from 1 year of
data from Rush Presbyterian St. Luke's Hospital (RPSL) in Chica-
go. There is some skewness in this distribution and consider-

able variance.

Ih the course of earlier research, Yen! successfully analyz-
ed the underlying process generating demand for blood in a hos-
pital blood bank by decomposing the demand random variables
which were first introduced by Elston and Pickrel.?2,3
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Figure 1. Frequency Histogram of Units Cross-matched
(O+) from RPSL
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Demand for blood products can be computed by observing the num-
ber of those patients in a hospital who require transfusion ser-
vices on any given day (cross-match requests) and the number of
units requested for cross-match for each patient. Mean or aver-
age demand (cross-match quantity) on any given day is simply the
product of the mean number of requests times the mean number of

units per request.

In order to specify the probability distribution for the
number of units of a specific category or type, Yen demonstrated
that it is sufficient to estimate two parameters, the mean num-
ber of patients per day requiring transfusion (dy) and the mean
number of units requested for each patient (dg). Moreover, the
Neyman A distribution characterized by these two parameter val-
ues gave an adequate representation of the demand distribution
obtained from data collected from a particular hospital. Subse-
quent analysis with regard to target blood bank inventory deci-
sions (see the second section of this paper and Cohen and
-Pierska11a415) indicated that it was not necessary to keep
track of these two components seperately since effective system
performance can be obtained by basing blood inventory decisions
on mean demand (dy dgr). Thus, in order to effectively control
the blood inventory, forecasts of mean daily demand must be gen-

erated.

Figure 2 is a graph of 4 weeks of observed daily crossmatch
quantities for O+ taken from data obtained from RPSL (indicated
by the symbol *). It is clear from the graph that the data dis-
play considerable variation and a marked weekly (7 day) cycle.
Examination of monthly demand data also indicated high variance
and the possibility of seasonal variation.

In'order to forecast these blood demands it is necessary to

apply time series analysis methods to demand (cross-match quan-
tity) data for each blood type and component. In the remainder
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of this section we will illustrate the application of time ser-
ies analysis to blood demand forecasting by presenting the re-
sults of an analysis fqr a 365-day sampleﬁpf blood demand for
each blood type and a 12-year sample of mghthly observations for
total (sum over all blood types) cross-match quantities of whole
blood.

Again, for illustration purposes, we will only consider the
O+ cross-match time series in this section. Results for all
eight blood types are summarized by Cohen, Pierskalla, Sassetti
and Walkky.S

Time Series Analysis of Demand. Figure 3 is a graph of the
autocorrelation function of the daily O+ cross-match quantity
time series. This function indicates the extent to which

current observations are correlated with lagged values of past
observations. Extensive ana1§sis of the relationship between
the shape of the autocorrelation function and the nature of the
time series functional form has been carried out by Box and
-Jenkins.? 1t is possible to discern a peak at lag values of 7,
14, 21 and 28 days which indicates that a cycle of length 7 days

is present in the time series.

Extensive testing of alternative Box-Jenkins formulations
yielded an optimal forecasting model of the form:

(1) D(t) =Cq Z(t=-1) - Cy A(t-1)
+ (1+C3) Z2(t-7) - C4 A(t-7)
- Cq (14C3) Z(t-8) + Co C4 A(t-8)

- C3 2(t-14) - Cy C3 2(t-15)
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where C, Nonseasonal autoregressive parameter
C, = Nonseasonal moving average parameter

Seasonal autoregressive parameter

(p]
W
[

C4 = Seasonal moving average parameter

D(t) = Forecast Daily Demand period t
Z(t) = Actual Daily Demand period t
A(t) = Forecasting Error period t; (Z(t)-D(t)).

This model structure is referred to as ARMA(1,1) X
ARIMA(1,0,1) multiplicative seasonal model in the Box-Jenkins

terminology.

Optimal values of the parameters Cq to C4 were computed by a
search algorithm using data for the first half of the 365-day
series. The following values were obtained for the time series
O+: Cq = 0.9288, C; = 0.8701, C3 = -0.192 and C4 = 0.9154.
Figure 2 is a plot of actual and predicted values. This graph
indicates that it is difficult to accurately predict demand on
a daily basis. This is due to the very high variance associ-
ated with daily cross-match requests. Consequently the rela-
tive magnitude of the unpredictable "noise" component of the
time series is high relative to the magnitude of the predict-
able components. It is interesting to note that the forecast-
ing model does provide a reasonable prediction of the weekly

cycle.
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Stability of the model was estimated by comparing forecast
errors of models optimized using data for the first half of the
year, and models optimized using data for the second half of the
year. The following results were obtained for O+.

Period Percent of Variance
Optimized: forecast Explainéd by Model
1:1 27.81
2:2 36.29
1:2 : 37.57

Thus, for example, a model developed from first period data
and used to forecast demand for the first period explained 27.81
percent of the variance. The same model used to forecast over
the second half of the year explained 37.57 percent of the

variance.

The Box-Jenkins model specified in equation (1) also was
evaluated to be relatively insensitive to errors in parameter
estimation and robust in its applicability across blood types.

The inherent instability of blood demand as illustrated in
fiqure 2 is, in fact, the primary motivation for holding blood
inventories as insurance against the risk of shortage. More-
over, demand variability at the local blood bank level also pro-
vides an incentive for regionalization since central and region-
al blood banks have the effect of pooling demand over many
transfusion centers. This aggregation of demand will serve to
reduce the relative variance of demand at the central or region-
al banks.

-30-



Figure 4 is a plot of the autocorrelation of the forecast
errors (residuals). The relatively small values and random
scatter indicate that the forecast model as specified in equa-
tion (1) has removed all systematic variation in the data. Con-
sequently, the residuals represent a purely random error term
(white noise) and the forecast equation in (1) cannot be signif-
icantly improved upon by the addition of further terms or by
changing coefficient values.

Time Series Analysis of Monthly Demand. Most blood inven-
tory decisions are not reevaluated on a daily basis. In parti-
cular, target inventory levels set by using a procedure like
that of Cohen and Pierskalla® (discussed in the third section
this paper) probably would be updated on a monthly or quarterly of
basis. Figure 13 on page 62 illustrates such a target level,
computed on a quarterly basis, on a graph which also indicates
daily demand variation. We note the relatively low incidence of

shortages using these target levels.

In order to forecast monthly demand and to identify season-
al cycles, it is necessary to collect data for a period in ex-
cess of 1 year. Unfortunately, only aggregate data (summed over
all blood types) were available for such an extended period.

For many planning purposes such aggregate forecasts are suffi-
cient. In those cases where forecasts specific by blood type
are needed, a reasonable approach wbuld be to forecast demand
levels on the basis of the aggregate data and to use estimates
of the distribution of demand over blood types as a means of
disaggregating these estimates into blood type specific fore-
casts. We tested the validity of this approach by examining the
standard deviation of blood type fractions over 1 year of obser-
vations (see table 1). These standard deviations were observed
to be relatively small when compared Eo the mean for the more
common blood types. Moreover, the demand fraction for these
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0D TVYPE MEAN FRACTION STANDARD DEVIATION

A+ 0.3438 0.1104
2~ 0.0489 0.0517
0+ 0.3804 0.1081
N~ 0.0517 0.0447
B8+ 0.1220 0.0738
B- 0.0132 0.0226
AL+ 0.0374 0.0397
AB- 0.0026 0.0076

Table 1: Transfusion Requests as Fraction of
Total Demand (by blood type)



blood types also was observed to be symmetrically distributed
about its mean value. The rarer blood type fractions exhibited
significant variation relative to their mean and their distribu-
tion tended to be skewed. Since the rarer types do not influ-
ence the aggregate blood demand siénificantly, we may conclude
that forecasting of aggregate demand and subsequent disaggrega-
tion is a reasonable approach to generating longer term blood
type specific forecasts for the common blood types. Further
analysis, however, is needed for the rarer blood types. (Cohen,
Pierskalla, Sassetti and Walkky6 show that equation (1) can be
used with reasonable accuracy for all blood types.)

The best fit for the monthly demand series (12 years of
monthly data from RPSL) using Box-Jenkins methodology is as fol-

lows:

(2) D(t) = z(t-1) - 0.812 A(t-1) + 0.259 A(t-12) -
0.211 A(t~-13)

where 2Z(t) the monthly transfusion request level
A(t) the forecast error
(zZ(t)-D(t)) and D(t) = the computed average for month t.

This forecast equation indicates that the moving average
(error) term has cyclical componengs with periods of 1, 12 and
13 months. Figure 5 illustrates a¢tual and forecast values
using this equation. We observe that the forecast equation gen-
erates a curve which is considerably smoother than the actual
demand series and that there was an observable trend. Moreover,
even for aggregate monthly figures there is signficant variance,
hence it is difficult to predict monthly aggregate cross-match
request quantities at the single hospital blood bank level.
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This section has illustrated the application of statistical
forecasting methods to blood demand data. Such data easily
could be obtained from transfusion and cross-match reports gen-
erated by the blood bank information system. Forecast values of
expected daily cross-match requests form a primary input to in-
ventory control formulae, which are developed in the following

sections.

TARGET INVENTORY LEVELS FOR A TOTAL BLOOD BANK OR A
DECENTRALIZED REGIONAL BLOOD BANKING SYSTEM

As noted previously, the major responsibility of a hospital
blood bank is to ensure that all blood-related demands are met
in a manner which minimizes wastage through outdates and spoil-
age, maintains high quality standards and reduces shortages that
require either emergency shipments from other blood banks, emer-
gency demands on donors, appeals to the hospital staff for dona-
tions or the delay of nonemergency and elective medical proce-
dures. In order to achieve these goals, it is important for the
hospitals, the central blood banks (CBB's) and the regional
blood bank (RBB) or regional blood center (RBC) to set inventory
levels which trade off shortage versus outdate rates and mini-

mize total operating costs.*

*Throughout this section we use the definitions: Demand: The
number of blood units of any one type that are set aside for
possible transfusion (i.e., cross-matched) on a given day.
Shortage: A situation when the demand exceeds the number of
units of blood in inventory. Shortage rate: The long-term
fraction (or percentage) of days on which a shortage occurs.
Usage: The number of blood units of any one type transfused on
a given day. Outdate: A blood unit discarded because its age
exceeds the maximum of 21 days. Outdate rate: The ratio of
mean number of blood units outdated to mean number of blood
units transfused plus those outdated.
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This section establishes a simple decision rule which
yields the optimal inventory level for each blood type for whole
blood and red cells with a 21 day expiration as a function of
various factors in the blood bank environment. 1In using this
rule, it is not necessary for the blood bank administrator to
choose a shortage rate for system operation since the inventory
level recommended by the rule reflects the optimal trade-off be-

tween shortages and outdates.

For any given inventory level it is possible to compute the
anticipated shortage rate when operating at that level. When
using the inventory level obtained from the optimal decision
rule, the "expected" shortage rate is near 0.001 for large vol-
ume blood types and 0.01 for rarer or small volume types. On
the other hand, the outdate rate is shown, in general, to be
quite sensitive to certain specific factors in the blood bank
management and environment such as age of supply, transfusion to
cross-match ratio and the cross-match release period. Depending
on these factors, the rule yields outdate rates which vary from
0.001 to 0.07. The rule is simple to use because it can be
completely described by the mean or forecast value of the daily
demand, the length of the cross-match release period and the
ratio of total units transfused to total units cross-matched.
The unused, cross-matched units eventually are released from the
assigned to the unassigned inventory after a delay of a number
of days. This delay time, which we call the "cross-match re-
lease period," will be denoted by the variable D. For a hospit-
al blood bank, D is usually one or two days.
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As noted in the previous section, mean demand was broken
down into the two factors used by Elston and Pickre12'3: 1)
the mean daily number of patients for whom blood is cross-match-
ed, and 2) the mean number of blood units cross-matched per pa-
tient. We also considered other factors such as the order (age
sequence) of issuing units and the ages of units coming from
external suppliers. It was found that the optimal decision rule
defined in terms of these two demand factors was not signifi-
cantly better than the decision rule defined in terms of the
mean daily demand. Moreover, the extra cost and effort of esti-
mating these two factors--as opposed to estimating mean daily
demand--further mitigated against their use. The other factors
mentioned above were also found not to be significant in the
determination of the optimal inventory levels.

Based on Yen's work, we also have conducted further re-
search to obtain the optimal target inventory levels for a com-
munity blood center which maintains control over the units at
the member location. It appears that for such systems the tar-
get levels are somewhat lower than for decentralized systems be-
cause it is easier to transship units if necessary. These and
other results related to the operation of such community blood
systems are presented in a subsequent section of this paper.

Methods. Data from Rush Presbyterian St. Luke's Hospital,
Evanston Hospital and the North Suburban Blood Center in the
metropolitan Chicago area were used in the analysis. The meth-
ods of analysis involved various statistical estimation techni-
ques, economic modeling, simulation and inventory operations-
analysis. As mentioned in the work by Cohen and Pierskalla,4
changes in operating policy clearly will have an impact on the
performance of the blood bank. Because the target inventory
level is affected by many environmental factors, it is necessary
to construct a model of the blood bank in order to test the com-
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plex interactions and effects of these factors. An expanded
version of the basic model structure of an earlier paper, which
was extensively validated in Pinson,8 is used in this sec-
tion. The model requires specification of input factors relat-
ing to system environment and control policy. The factors con-
sidered in this analysis included parameters to specify the
daily demand process, parameters to specify the age process (of
units arriving at the bank) the transfusion to cross-match
ratio p, target inventory levels, issuing policy, cross-match
release time D, shortage cost and outdate cost.

Model outputs include a detailed record of all inventory
transactions and the trajectory of the age distributions of both
assigned (cross-matched) and unassigned inventories. For the
purposes of decisionmaking we seek to minimize mean daily
shortage plus outdate costs. Thus a cumulative record of total
outdates and shortages is kept. Upon multiplication by the ap-
propriate unit cost and division by the number of days in the
run, the desired average cost is obtained. The generation of
average outdate plus shortage costs for a fixed set of inputs
over a range of different values for target inventory level (S)
yields an average cost curve. Figure 6 illustrates a typical
set of such curves for a range of different values of D, the
cross-match return parameter (the transfusion to cross-match
ratio is fixed at 0.5). These curves indicate stability on the
part of the optimal target inventory level with regard to D as
was previously noted by  Cohen and Pierskalla.4 That is, even as D
increases from 2 to 5 to 7 days the optimal inventory level
(S*), which minimizes the costs, remains between 30 and 40
units. Furthermore, as noted in figure 6, the cost function is
relatively flat over a wide range of inventory levels: essen-
tially from S = 30 to S = 50, the costs do not vary greatly
especially for the more reasonable value of D = 2. This flat-
"ness is caused by the fact that as S increases beyond 30 the
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number of shortages drops to zero and although the number of
outdates increases as S increases, it increases very slowly un-
til S passes 60. This slow increase in outdates is caused by
the fact that there are 21 days in which to transfuse a unit and
for S below 60 it is possible to transfuse most units before
they outdate. As the transfusion to cross-match ratio decreases
to 0.25 or as the cross-match release time (D) increases to 5 or
7, the response of outdates to an increase in the value of S is
more rapid. S is the target daily inventory level, not the
amount ordered each day. The amount ordered is only the amount
of transfusion plus outdates of the previous day which then will

bring the inventory back up to S.

Figure 7 gives the number of shortages and the number of
outdates for the case in figure 6 when D = 5. Figure 8 plots
the cost curves for shortages and for outdates and their sum
which is the total cost. The implications of these observations
are as follows: 1) The effect on shortages and outdates of the
ordering policy is minimal for S's in the neighborhood of S*.
The insensitivity of the S's in the neiéhborhood of S* is im-
portant because a blood bank cannot always achieve S* each day.
Indeed, large drawings of blood through donor plans often can
disrupt a policy of achieving S* on a daily basis. The hospitalv
blood bank administrator must seek an average S* over time, and
2) the optimal inventory level is relatively insensitive to the
value of D. This means that the blood bank administrator can
set S* and then concentrate inventory management control on re-
ducing D knowing full well that S* will not change significant-

ly.
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Optimal Decision Rule. There are many exogenous and policy
control factors associated with any blood banking system. The
exogenous factors identified for the purposes of this discussion
include the parameters specifying the mean daily demand, the
parameters specifying the age of units supplied for distribu-
tion, the per unit shortage and outdate costs and the fraction
of total daily demand which is transfused. The control factors
for the system include the issuing policy, the cross-match re-
lease period (D) and the inventory level (S).

The functional relationship between S* and the various con-
trol and exogenous factors will be called the "optimal decision
rule."” A statistical experiment was carried out in which the
assorted factors were varied throughout their range and the sim-
ulation model used to compute the S* value associated with each
factor value configuration. The results of this experiment then
were used in a curve fitting analysis to identify the desired
functional relationship, i.e., the appropriate optimal response
surface. It is important to note that the average cost surface
is not being identified, but rather the surface of cost minimiz-

ing values of S.

The function we seek can in general be written as:

(3) 8* = £(d4, dgseeer Ay Ayy «ovy Py D, Cgy Cos I)
where

d; = parameters describing the demand process;

A; = parameters describing the age of supply process;
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p = fraction of total daily demand transfused
(i.e., the transfusion to crossmatch ratio);

D = crossmatch release period;

I = issuing policy indicator.

Due to the previously observed domination of first-in
first-out (FIFO) as the best issuing policy for D=5 and p=0.25,
the experimental design was restricted to the following factors.

1. Mean Daily Demands, dy

dy takes the values 2, 3, 12, 16, 18, 24, 32, 48

2. Mean Age of Supply, A

A takes the values 1, 6.03
3. Crossmatch Release Period, D

D takes the values 1, 2, 4
4. Shortage Cost, Cg

Cg takes the values $35, $55

5. Transfusion to Crossmatch Ratio, p

p takes the values 0.25, 0.5
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The lower values--2 and 3--of mean daily demand correspond
to rarer types of blood or to transfusion locations with low
daily demands for common types. The large values--32 and 48--
correspond to daily demands at large hospitals or a community
blood center for more common types of blood. The age composi-
tion of arriving supply was drawn from two classes of distribu-
tions. An empirical distribution estimated from hospital data
(with a mean age of supply of 6.03 days) and a degenerate uni-
form distribution yielding fresh supply were considered. Other
distributions had been tested in previous work and were found to
provide no additional information or policy changes.

Outdating cost was fixed at $25, issuing policy was set as
FIFO and the transfusion fraction was set at 0.25 and 0.5. The
actual costs of $25 for outdates and $35 or $55 for shortages
are not important in absolute value for determining S*. What is
ihportant is their ratio or relative value. The absolute quan-
tities merely reflect the estimated average cost of outdate and
shortages. The target inventory level S* is not sensitive to
reasonable ranges of the ratio of outdate to shortage costs.

A full factorial design for this experiment would involve
192 separate simulation-optimization runs. A 1/2 factorial de-
sign was chosen and thus 96 separate observations of S* were
generated. The actual design and the results of the experiment
are indicated in Cohen and Pierskalla.® These results were
analyzed by standard regression techniques to determine which
input parameters were significant in the computation of S* and
what the functional form of the decision function should be.
Both linear and log-linear functional forms were investigated.
The log-linear function gave significantly better results; the

results of the regression run are presented in table 2.
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TABLE 2
Blood Decision Rule All Variables (Log-Linear)

Variable Coefficient Statistical T-Value
B = Error

1n (d,) 0.7604 0.00972 - 78.24
In (p) 0.1216 0.02925 4.16
In (D) -0.0677 0.01791 -3.78
1n (A) -0.0138 0.01128 -1.22
1n (Cg) 0.0520 0.04485 1.16

Intercept 1.61248

Regression Error
Degrees of Freedom 5 Degrees of Freedom 90
Sum of Squares 60.72035 Sum of Squares 0.88765
Mean Square - 12.14407 Mean Square 0.00986
S.E. of Estimate 0.09931
F-Value 1231.3
Multiple R-Squared 98.56
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The most significant explanatory variable is the mean daily
demand. However, the transfusion/cross-match ratio (p) and the
cross-match release period (D) are also significant, but their
coefficients of 0.1216 and -0.0677, respectively, in the regres-
sion equation indicate that their influence on the optimal S* is
not nearly as large in magnitude as the dy. The other two
independent variables, A and Cg, are not significant and their
coefficients also are small. Consequently, these last two vari-
ables were dropped and the regression was run again using only
the significant variables. 1In the second regression the inter-
cept term changed but all other coefficients and statistics co-
incided to at least three significant digits. Using the results
of the second regression, the optimal decision rule can be writ-

ten by equation:
(4) In S* = 1.7967 + 0.7604 1n(dy)
+ 0.1216 1n (p) - 0.0677 1n(D)

or equivalently by equation

(5) S* = 6.03 ﬂdM)0'7604(p)0'1216(D)0'0677.

In figure 9, this optimal decision rule is graphed for the
case when p = 0.25 and p = 0.5 and D = 1 day. Figure 10 pre-
sents the optimal decision rule for p = 0.25 and p = 0.5 when
D = 2 and 4. For fixed p and D it is interesting to note from
figure 9 that a positive coefficient of 0.7604 for mean daily
demand in the optimal decision rule indicates a concave shape to
the rule. For a blood bank this would mean, for example, that
as the mean daily demand is increased, a less than proportional
increase. in the order quantity would be optimal. Another way of
viewing the rule is that a blood bank which doubles its size (in
terms of mean daily demand) should increase its optimal inven-

~48-



" -
105 |-
99 |-
93 |-
i p=0.25
87 |-
81 |-
75 |-
69 [
63 |-
57 |
51 |-
45 |-
39 |-
33
27
21

15

Figure 9. Optimal target inventory levels for different mean
daily demand levels when D = 1 and p - 0.25 and 0.5.
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Figure 10. Optimal target inventory levels for different
mean daily demand levels when D = 2 and 4 and
p = 0.25 and 0.5.
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tory level by less than 70 percent (provided the p's and D's
remain the same). Using equation (4) or (5), the blood bank
administrator can compute the optimal target inventory level for
each blood type merely by inserting the mean daily demand for
each blood type, the average transfusion to cross-match ratio p
and the cross-match release period D.

Evaluation of the Decision Rule. The mean daily amount of
blood transfused (usage) is determined by the transfusion to
cross-match ratio times the mean déily demand. A range of about
1 to 25 units transfused per day was considered in the experi-

mental design. This corresponds to an annual volume of between

300 to 10,000 transfusions. Because almost all blood banks have
type specific mean demand volumes which fall into these ranges,

it was felt that testing the extrapolation of the decision rule

for even larger volumes was not necessary.

A more important evaluation involves a comparison of the
results obtained from using the decision rule with the data from
the Chicago area and from other published sources (Brodheim,
Hirsch, and Prastacosg). We already have shown in figures 5
and 6 that use of the optimal target inventory level for O+
blood at Evanston Hospital results in virtually zero shortages
and a very low outdate rate. The actual shortage rate is less
than 0.004 for this particular blood type and the outdate rate
is less than 0.02.

Tabiles 3 to 6 show the target inventory levels and their
corresponding shortage and outdate rates for a large range of
mean daily demands for various p and A values. When the mean
daily demand for cross-matching a particular blood type is two
units (p = 0.5; A = 1; D = 1) then the optimal target inventory
to maintain on hand each day is eight units. By maintaining
this level the blood bank will experience a shortage rate of
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about 0.022 and an outdate rate of about 0.013. As the volume
of activity increases, i.e., mean daily demand is larger, the
statistical law of large numbers comes into play. When the mean
daily demand is 16 units and the optimal target inventory level
of 38 units is maintained, the shortage rate and outdate rate
virtually drop to zero (both are less than 0.006) when D = 1 or
2.

Even if the blood bank administrator operates at the opti-
mal target inventory level S* it is still necessary to control
the cross-match release period D, the average transfusion to
cross-match ratio p, and the average age of arriving units A, in
order to keep shortages and outdates down. This control is
especially important for transfusion locations where the mean
daily demand for a blood type is small. The worst case shown is
in table 6 where for dy = 2, D=2, p=0.25 and A=6, the optimal
S* is 7. However, at this S* the shortage rate is 3.7 percent.
On the other hand, from table 3 holding dy=2 but reducing D to
1, A to 1 and increasing p to 0.5, the optimal S* = 8 but more
importantly the shortage rate is 2.2 percent and the outdate
rate is 1.3 percent. This drop in the shortage rate occurs
because the units are available in unassigned inventory more
freguently since D = 1 versus D = 2 and A = 1 versus A = 6 and
the probability of transfusion at each cross-~match p is higher:
p = 0.5 versus p = 0.25.

Indeed, by looking at tables 3 to 6 it is possible to iso-
late the effects of any single parameter holding the other para-
meters constant. One of the more important control parameters
for the administrator is the cross-match release period D. It
is also one of the most significant parameters in reducing out~
dating. Less easily controlled parameters are p and A. How-
ever, if the administrator can reduce A and/or increase p, then
the outdate rate also will drop significantly.
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Table 3

Shortage and Outdate Rates Using the Optimal

Decision Rule for Giveh p =

0.5 and A =1

dM S* Shortage Outdate
Rate Rate
D=1 D=2 D=1 D=2 D=1 D=2
2 8 8 0.022 0.022 0.013 0.064
16 38 36 0.003 0.006 0.001 0.004
32 64 61 0.002 0.004 0.0001 0.002
48 88 84 0.001 0.003 0.0001 0.001
Table 4
Shortage and Outdate Rates Using the Optimal
Decision Rule for Given p = 0.5 and A = 6
dM s* Shortage Outdate
Rate Rate
D=1 D=2 D=1 D=2 D=1 D=2
2 8 8 0.022 0.022 0.068 0.155
16 38 36 0.003 0.006 0.005 0.027
32 64 61 0.€02 0.004 0.005 0.019
48 88 84 0.001 0.003 0;004 0.019
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Table §
Shortage and Outdate Rates Using the Optimal

Decision Rule for Given p = 0.25 and A = 1

dM s* Shortage Outdate
Rate Rate
D=1 D=2 D=1 D =2 D=1 D=2
2 7 7 0.037 0.037 0.220 0.357
16 35 33 0.008 0.014 0.020 0.120
32 59 56 0.006 0.012 0.009 0.082
48 81 77 0,006 0.012 0.009 0.081
Table 6
Shortage and Outdate Rates Using the Optimal
Decision Rule for Givem p = 0.25 and A = 6
d'M S* Shortage Outdate
Rate Rate
D=1 D=2 D=1 D=2 D=1 D =2
2 7 7 0.037 0.037 0.340 0.447
16 35 33 0.008 0.014 0.091 0.204
32 59 56 0.006 0.012 0.049 0.171
48 80 77 0.006 0.012 0.049 0.164
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The parameters D, p and A have less impact on the shortage
rate. 1In fact, the optimal target inventory level S* plays the
major role with regard to reducing the ‘shortage rate. As was
mentioned earlier, the S* tends to be the inventory level at
which the shortages are virtually zero especially when there is
good control over D, p and A.

It should be iterated here that if the administrator choos-
es to operate above the optimal S*, as shown in figures 7, 8 and
. 9, then the outdates and costs will rise with little additional
impact on reducing shortages. Conversely, operating below S*
means that outdates will drop but shortages and costs will rise.
Fortunately, when D is small, e.g., D = 1 and p is large, e.g.,
p = 0.5 the cost curves are relatively flat near S* so there is
a considerable amount of flexibility in achieving S* on a day-

to-day basis.

A final important fact concerns the parameter A, the aver-
age age of arriving units at the transfusion location. Tables 3
to 6 indicate that the larger A becomes the larger the resulting
outdate rate becomes. When a transfusion location depends upon
a central bank or supplementary sources for its supply it may
not be able to control the ages of arriving units. For large
volumes of demand this lack of control does not greatly impact
on outdating if the administrator maintains D = 1 and p = 0.5.
However, for small daily demand levels such as dy = 2, espe-
cially with large D and/or small p, the control of A is very im-
portant. Often, small blood banks have such small daily demand
levels. At such locations the supplied blood should be as fresh
as possible. For optimal efficiency the blood inventory at
these small banks should be replaced periodically with all fresh
units and the unassigned old units should be returned to the

- regional supplier.
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Brodheim, Hirsch and Prastacos? give a series of inventory
level curves based on shortage rates of 0.2, 0.1, 0.05, 0.02 and
0.01. They suggest that the blood bank administrator should
choose the shortage rate at which to operate. The administrator
can read off the inventory level from the appropriate curve using
the mean daily demand for each blood type. Our results indicate
that it is not necessary for the blood bank administrator to
choose a shortage rate. 1In fact a shortage rate much above 0.01
or 0.001 (depending on the mean daily demand p and D) will result
in an extremely high cost nonoptimal level. It is true that at a
shortage rate of 0.2 the outdate rate will be lower because out-
dates are essentially caused by two factors, one of which is only
slightly affected by the shortage rate. The first factor is that
the supply of arriving stocks of blood at the bank is variable.
On days of mobile drawings or of donor recruiting campaigns the
supply of blood jumps up and on other days it is significantly
lower. The second factor is random cross-match demands and ac-
tual transfusions resulting therefrom. There is a signficant
daily fluctuation in demands and transfusions. In those periods
in which the supply is higher on average and demand is lower on
average, outdating will occur regardless of fairly large differ-
ences in the average shortage rate chosen by a blood bank admini-
strator. Consequently, choosing a high shortage rate will not
reduce outdating much since outdating tends to occur in batches.
It will, though, significantly increase shortages at other times
when supply is low and demand is average or above average (see

figure 7).

The preceding analysis demonstrates that the choice of a
target inventory level is determined by trading off the cost of
shortages with the cost of outdates. We also have seen that it
is possible to associate an expected shortage rate with eacﬁ
possible value of the target inventory. The range of costs con-
sidered in the estimation of the decision function results in
shortage rates at the optimal target inventory level of about
0.01 or less when D, p and A are at reasonable levels.
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It is interesting to consider the conditions under which
target inventory levels yielding a shortage rate of 0.05 or 0.1
would be optimal. In particular, one may wonder about the rela-
tive value placed on outdates and shortages by a manager who, in
setting a target inventory level, chooses a higher shortage
rate. It is important to note that each possible value of tar-
get inventory, and its corresponding shortage rate, has an asso-
ciated "imputed" cost of shortage which would make that inven-
tory level optimal.

Figure 11 illustrates the range of such imputed costs for a
large blood bank. In a system where the ratio has a value of
500 an outdated unit would be 500 times more costly than a
shortage unit. Similarly, a value of 0.5 means that an outdated
unit costs one-half the cost of a shortage unit. In our earlier
studies it was observed that in 1973 and 1974 an outdated unit
cost approximately $25 (primarily lost processing cost) and a
shortage unit cost about $35 to $55 (primarily telephone calls
and emergency transportation or the cost of the freezing and
thawing process for a frozen unit). Consequently, realistic
ratios of outdate to shortage costs would be in the range
$25/$35 = 0.714 to $25/$55 = 0.455. Ratios in excess of 1.0
make very little realistic sense since such ratios mean outdates
cost more than shortages. However, as can be seen from the
average cost in fiqure 11, if the blood bank administrator were
to choose to operate at shortage rates of 0.2, 0.1, 0.05 or
0.01, the implication is that the administrator views outdates
367, 207, 110 and 31 times as important, respectively, than
shortages. 1In fact, at the optimal target inventory level S¥*
for this volume and common blood type, the shortage rate is
0.001 when the outdate cost to shortage cost ratio is 0.5, i.e.,
an outdated unit costs about one-half that of a shortage unit in

time and/or money.
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Figure 11:The Imputed Cost Ratio of Outdate Cost/Shortage Cost when
Operating a Large Hospital Blood Bank (dM = 48) at
Different Shortages Rates for Blood

*The worst, average and best cases were computed from the regression results

in Table 1 using the standard error of estimate and the standard errors of
the regression coefficients.
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The imputed cost ratios of operating at any shortage rate
for any level of mean daily demand can be computed to generate
curves similar to those in figure 11. We have performed this
calculation for a large number of cases. In each, we observed
that although the imputed ratios for shortage rates at 0.2, 0.1,
0.05 and 0.01 differ for each blood type and mean daily demand
level, the ratios all were far in excess of 1.0. This means
that a hospital administrator choosing a target inventory with
these large shortage rates is saying implicitly that an outdated
unit is far more important than a shortage unit. Our exposure
to the Chicago area blood banking system indicates that, in
fact, the converse is true, namely, a unit short is far more
important and more costly than a unit outdated.

This analysis indicates the incongistency of choosing to
operate a blood bank at what appear to be reasonablé shortage
rates of 0.1 or 0.05. By selecting a target inventory level ac-
cording to equation (4) the blood bank manager can achieve far
better performance for all reasonable values of the outdate
shortage cost ratio.

A final issue considered was the relationship between the
decision rule results and the ordering rules which have been ob-
served in practice. Many blood bank administrators keep suffi-
cient blood on hand to meet anticipated needs for 6-8 days. It
is possible to compute the number of days of transfusion supply
on hand from the order-up-to quantity as followé:

Number of days of transfus%on supply = S*/(p dy).
Figure 12 is a graph of the number of days of transfusion
supply on hand versus mean daily usage p dy. As the system

scale increases, the optimal number of days of transfusion sup-
pPly on hand decreases. This is another example of scale econo-
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mies. Moreover, the curve is convex, and is relatively flat at
a value of approximately 6 days of transfusion supply for a

broad range of system scales.

Figure 13 illustrates the application of the target inven-
tory level determined by equation (5) to the data collected in
Chicago from RPSL. The mean level of demand was computed from a
quarterly moving average. It is interesting to note that the
incidence of shortage which would have been experienced with
this level of inventory is well within the range predicted by

our model.

TARGET INVENTORY LEVELS FOR A COMMUNITY BLOOD CENTER SYSTEM OR A
CENTRALIZED REGIONAL BLOOD BANKING SYSTEM

A community blood center inventory system is characterized
by a network of blood banks serving a specific geographical re-
gion. Managerial control of the network is exercised or coor-
dinated through a central facility. The degree of control de-
pends upon which activities are performed at the community blood
center or at its satellite transfusion services (TS's) and on
whether the central facility maintains "authority" over the

units in the unassigned inventories at the TS's.

In a central blood bank or regional blood center the man-
agement of inventories of whole blood and components involves a
complex and often interrelated set of decisions concerning col-
lection, processing, record keeping, storage, issuing and trans-
portation of units. 1In this section, some management decision
problems are analyzed to determine easily implemented rules
which yield the "best," or at least "very good" operating re-
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sults at the CBB, or RBC and its satellite transfusion loca-
tions.10

It has been recognized that benefits can be derived by
pooling resources in the form of a community central blood bank.
The most apparent benefit is that the hospital blood bank staff
is relieved of the responsibility of donor recruitment, blood
procurement and blood processing. This permits the transfusion
service to channel its energies and efforts toward the resolu-
tion of patient related transfusion problems. Another advantage
to the hospital is the opportunity to pool widely fluctuating,
largely unpredictable demands with those of other hospitals in
the system. Within the system the variations cancel each other
and produce a smoother, more predictable aggregate demand. This
will enable member blood banks to maintain lower inventories
without degrading théir outdate and shortage performance.

Since the demand to which the central blood bank must res-
pond is generated outside its control, its decisionmaking pro-
cesses must focus primarily on inventory management. While man-
agement decisions regarding donor recruitment, phlebotomy and
processing are essential, they can be handled effectively only
after efficient optimal inventory control policies have ben
implemented.

Various areas of blood handling require careful managerial
decisions for the most cost-effective operations of the blood

bank. Inventory control at the central blood bank must set in-
ventory leVels to maintain the optimal trade-off between excess
inventory with consequent outdating, and excessive numbers of
shortages. 1Inventory levels at hospital blood banks and trans-
fusion locations must be set at a level which will minimize the
need for emergency shipments from the central blood bank while
minimizing the amount of outdating or return of excessively aged
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blood. Issuing procedures to govern the distribution of blood
from the central blood bank to the various transfusion locations
and decision policies governing the transshipment of blood from
one transfusion location to another must be developed and modi-
fied. Recycle control within the system as well as within a
hospital must be exercised with monitoring of the recycle time.
Policies must be set regarding the return of aaing blood to the
central blood bank for reallocation to transfusion locations
where the probability of transfusion is high. These concerns
result in a management decision problem relating to the routing,
frequency and volume of deliveries to the transfusion loca-

tions.

Managerial decisions relating to component production
levels are gaining steadily increased importance as blood trans-
fusion therapy increases in complexity and quantity. These
decisions involve the determination of both the levels and site
(in-house or in the field) of routine component preparation.
Another factor is the use of blood component separation devices
which permit the preparation of large quantities of components
such as granulocytes, platelets and plasma, but which also re-
quire a higher level of technology. )

Inventory levels can be set at both the central and member
banks by using an outdating/shortage cost~minimizing procedure
similar to that which was described in the previous section for
the single hospital blood bank. The optimal inventory level for
the central blood bank for each blood type is a complex function
of the number of transfusion locations, their mean daily trans-
fusions and the transfusion fraction for all locations served by
the central blood bank. Associated with the optimal inventory
function for the central blood bank is an optimal inventory
level for each member hospital bank which is a function of the
demand and transfusion fraction for that location. For those
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hospital blood banks which belong to a centralized system it is
to be expected that their optimal inventory levels will differ
from the values indicated by the decision rule of the previous
section which is appropriate for hospitals in a decentralized
system. Figure 14 illustrates the CBB structure and the deci-
sions needed to answer the gquestions posed above.

In order to study some of the benefits and shortcomings
from a centralized blood banking system, a simulation model was
constructed. The simulation model was quite complex and is
described in detail in Yen.! among the issues to be discussed
in this section are the optimal inventory levels (S;), the
impact on total system cost of high cross-match to transfusion
ratios, the allocation of units from CBB to the TS's, the trans-
shipment policy among TS's and the effect of a limited and some-
what random supply to the central blood bank. In addition, the
sensitivity of system cost to changes in the number and size
(number of units demanded) of TS's in the system were consider-
ed. All conclusions presented in this section were based on the
analysis of the results obtained in Yen's model.

As one might expect, the results indicate that the size of
optimal inventory levels in the individual hospital blood banks
levels off with incorporation of each additional blood bank in
the centralized system. Also, after a certain system scale is
reached the marginal benefits received from lower shortages and
lower outdates can be expected to approach zero as more hospital
blood banks are added to the sysﬁem. Finally, as more hospital
blood banks are included in a centralized blood banking system,
the totalvaverage distances between the CBB and the TS's, as
well as their information needs, increase and thus the corres-
ponding transportation and information costs also increase. So,
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after a saturation number of hospital blood banks in the system
is reached, further inclusion of local banks is not likely to
reduce the system cost per unit and indeed as has been shown
appears to lead to diseconomies of scale.

Before proceeding to detailed discussions of the results
for a CBB, it should be noted that all of the optimal decision
rules concerning inventory amounts, cross-match release poli-
cies, issuing policies, transshipment policies, vehicle routes
and other factors interact with one another. That is, if one
changes the policy in 6ne area, it will affect the poiicies be-
ing followed in the other areas. These interactions will become
more apparent as we proceed through this section and more will
be said about them in subsequent discussions. Since it is not
possible to present all of these policies simultaneously, each
will be presented separately and the reader should keep in mind
that they all interact.

The Optimal Daily Inventories at the CBB. The daily amount
of whole blood and components which must be maintained at the
CBB .depends upon the amounts maintained at each TS in the sys-
tem., If the total inventories at the TS's are large, then the
amount at the CBB may be small and vice versa. However, large
inventories at the TS's could result in more outdates and/or

outdate-anticipating transshipments. Similarly, small inventor-
ies might incur more emergency shipments and/or shortage-antici-
pating transshipments. Because of these possibilities, there
must be a balance between the inventory at the CBB and the in-

ventories at the TS's.

Equations for determining optimal inventories‘of whole
blood and packed cells at the TS's were given in the previous
section. Using a similar simulation-optimization-regression
approach and making the same reasonable assumptions concerning
the system costs of shortages and outdates, the optimal inven-
tory'level at the CBB was established.
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The outdate costs were assumed to be $25 per unit at all
locations. The shortage costs were assumed to be $55 per unit at
the TS's and $35 at the central blood bank. These figures were
based upon the folléwing reasoning. The outdate cost consists
primarily of the average costs per unit of recruiting, process-~
ing, storing and transporting one unit. When a unit outdates,
these costs are basically lost. Actually a more appropriate cost
to charge for outdates would be the marginal per unit costs of
these blood bank activities rather than average per unit costs.
However, it is not easy to obtain actual marginal costs at pre-
sent since the cost figures available are not sufficient to de-
fine the appropriate marginal relationship. Furthermore, since
the average cost includes many variable items such as bag costs,
record keeping and hours of work, it is reasonably representative
of the marginal cost. The $25 figure for the outdate cost was
based on estimates from blood bank administrators of their aver-

age per unit cost in 1974.

The shortage cost of $35 per unit in 1974 at the CBB was
based on a $25 average per unit cost for processing and handling
a unit on an emergency basis and $10 for recruiting and/or trans-
portation from another source on an emergency basis. Again, mar-
ginal costs per unit would be better but they were not available.
The shortage cost of $55 per unit in 1974 at the TS's was based
on the average per unit cost of maintaining a buffer stock of
frozen blood units either at the TS or the CBB or shipping a
unit(s) by emergency shipment from another regional center.
Finally, it should be recélled that what is important about these
costs is not their absolute levels, but rather their relative
magnitudes. Hence, if inflation should cause them to rise in the
same relative proportions, the results still hold. Furthermore,
the results hold even when the relative magnitudes are varied
over reasonable ranges.
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Before presenting the optimal stock levels and the other

optimal policies and equations for the CBB, it will be useful to

list

dg =

n < <
oo O
(] [[] i

some notations:

Mean demand for whole blood and pécked red cells at the
central blood bank.

Mean demand for whole blood (WB) and packed red cells

(RC) at the hospital blood bank. It is assumed that demand
at the bank is a Neyman type A distributed random variable
characterized by the mean number of patients per day and
the mean units requested per patient. Yen! demonstrated
that the Neyman A fits the data well.

The return parameter, the time lapse before a unit is
returned to the unassigned inventory if not transfused (in
days).

Target inventory level at the CBB (in units of WB and

RC).

Target inventory level at location j (in units of WB and
RC) .

Number of TS's in the system.

The probability of a cross-matched unit of WB or RC being
transfused at location j.

Shortage at the CBB (in units of WB and RC).

Shortage at location j (in units of WB and RC).

Outdate at location j (in units of WB and RC).

Number of times a unit of WB or RC is cross-matched in its
life time.

Age of a unit of WB or RC when it is cross-matched for the
first time.

-69-—-



The variables dg, dj, So s Sj, Vor and a4 are computed
for each type and Rh factor; rather than have two subscripts,
one for location and the other for ABO and Rh, the second sub-
script has been suppressed for ease of writing the results.
However, for low volume rare blood groups when the target levels
and the demands are small, say, one or two units, it is better
to maintain the stock at the CBB rather than incur excessive
transshipping of units.

The optimal level target inventory level at the CBB is:

(6) SO* = 3.14 (do).72 (N)‘93
RZ2 = 0.993
F = 3529

Significant at 0.001 for all coefficients.

The corresponding optimal target inventory level for these
TS's which belong to the central bank system is:

(7) S:* = 7,99 (dj)°78
R2 = 0.995
F = 8675

Significant at 0.001 for all coefficients.

These results were estimated by a procedure similar to that
used for the independent hospital blood bank and are -relevant
for the special case where Pj = 0.5 and D = 2.

The relationship between the level of demand and the opti-
mal inventory level in terms of days of blood usage for both an
independent bank and a member of a central system is illustrated
in figure 15. These figures were computed from the equations a-
bove and from equation (4) for target inventory at an indepen-
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dent bank for the case where the transfusion fraction at each

bank, p, is 0.5 and the cross-match reserve time, D, is 2 days.
The level of optimum inventory at a transfusion service can be
reduced by 5 to 12 percent if the service is a "total services"

member of a community blood center.

Centralized Blood Bank Issuing and Allocation Decision.
After the CBB receives all the requests from the TS's, the or-
ders are filled by drawing from the inventory in the CBB using a
FIFO issuing policy. For purposes of simplification as well as
good medical practice, each type and Rh factor is considered
independent of the other types and Rh factors. When the sum of
all TS demands exceeds the total inventory in the CBB, the CBB
may backlog the excess demand or may fill all demands by calling
in donors, by contacting other CBB's, by using frozen packed red
cells or by requesting an emergency shipment from still higher
échelon (regional) blood banks. 1In this analysis the CBB uses
different approaches to handle the excess demand depending upon
whether the orders are routine or emergency. Routine orders are
placed by the TS's at the beginning of each day to build up
their inventory to a specific level. Emergency orders are
placed during the day when the inventory of the TS's cannot meet
their respective users' demands. For routine orders, the CBB

will fill the orders as long as its inventory lasts and disre-
gard the excess demands, if any. Consequently, the TS's may not
receive the full amount they ordered. For émergency orders, the
CBB still fills the orders as long as its inventory lasts. How-
ever, if there are excess emergency demands, the CBB will at-
tempt to fill them from the inventory of the TS's within the
system. Furthermore, if there is insufficient stock in the
whole system to fill the excess emergency demands, then the CBB
will fill them by contacting exogenous sources. The rationale
of the different treatments for the three types of excess de-
mands, i.e., the three>types of "shortages" between routine and
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emergency orders, is that the routine orders are used to build
up the buffer inventory in the TS's. These routine orders may
not represent transfusion demands that day. Therefore if the
excess of the routine orders over the available inventory at the
CBB is not filled, a true shortage will not necessarily occur.
On the other hand, the emergency orders, if not filled, will
surely create a shortage, since the buffer inventory in the TS
has to be essentially depleted before the TS will place an emer-

gency order.

Since each TS may not receive all that it has ordered, a
systematic process is needed to allocate the available stock in
the CBB to TS's. This allocation process is called the alloca-
tion policy. Essentially there are three distinct practical

alternatives:

1) - The CBB picks a TS and fills its demand by the FIFO issuing
policy then goes on to fill the next TS until all the stock
runs out or all demands from TS's are filled. This type of
allocation process resembles the first-come first-serve
practice which exists in some blood banking systems.

2) The CBB ships an amount to each TS such that the ratio of
the amount received to the amount ordered is the same for
each TS. Furthermore, all TS's have the same ratio of the
amount of different ages received to the amount ordered.
This type of allocation process resembles proportional
rationing of scarce resources and is intended to be fair to
all users with regard to their stated target needs by
treating each user equitably. (See Cohen, Pierskalla and
Yenl1 for a theoretical treatment of this problem.)
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3) The CBB ships each unit to the hospital where the shortage
probability is the highest in the system. In other words,
the delivery of each unit is intended to adjust the system
stock configuration such that total system shortage proba-
bilities may be improved. If the target level needs in
policy 2) above are based on shortage probabilities, then
this alternative policy coincides with policy 2). However,
if the target level needs are based on some trade-off be-
tween shortages and outdates, then policies 2) and 3) may
differ slightly.

After all TS's receive their orders it may be desirable to
transship units among them. Basically there are two reasons
for, or types of, such transshipments: 1) the shortage antici-
pating transshipment; and 2) the outdate anticipating transship-
ment (see Jennings12r13 or Yenl)., If one location antici-
pétes a shortage while another location does not, then a trans-
shipment from the latter to the former may be beneficial to the
system in reducing the shortage cost. Similarly, if one loca-
tion has an excessive amount of old units while another location
does not, an outdate anticipating transshipment can be initiated
for the benefit of the system. Before a transshipment is made
the exact stock configurations of the locations, as well as the
demand distributions of the locations, must be known in order to
evaluate the benefit of the transshipment. When such informa-
tion is available, the CBB is in the best poéition to direct the
transshipments in the system. Obviously, for these types of
actions a sophisticated information processing system is needed
(see the second section of this paper).

In the case where such information is not available, the
benefits of transshipping are uncertain and no transshipment
should be made directly from one TS to another. However, since
each TS knows its own stock age configuration it can choose to
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return excessively old units to the CBB. In this way old units
are recycled to other hospitals in the system. This particular
type of outdate anticipating transshipment will be called the
recycle policy. The terms "outdate anticipating transshipment"
and "shortage anticipating transshipment" will hereafter refer
exclusively to transshipment between TS's directly.

Optimal Cross-matched Release and Issuing Policies From the
CBB. Cohen and Pierskalla? show that if a unit is cross-matched
and not reported transfused within a short time (D equals 1, 2
or 3 days) at a TS, further information should be obtained on
the status of the demand for which the unit was issued. If the
demand had disappeared, the unit should be made available for
possible reassignment either at the same bank or another hos-

pital blood bank. In this manner, the cross-match release time,
D, should be kept as low as possible. As long as D can b main-
tained below 7 days, the FIFO issuing policy should be followed
at the CBB for those TS's which receive daily or at least tri-
weekly deliveries from the CBB. If D exceeds 7 days, last-in
first-out (LIFO) will be somewhat better than FIFO but both
policies will then have excessive outdates and shortages.

In another study of issuing policies in a TS by Deuermeyer,
Pierskalla and Sassetti,'4 it was shown that for a department
which has low usage and low values of Pj, a LIFO issuing policy
for that department should be followed. The underlying reason
why LIFO should be followed rather than FIFO was to increase the
probability of transfusion of the cross-matched unit. This same
reasoning applies to certain TS's in a CBB system, namely, those
TS's which require infrequent deliveries (at most twice a week)
and have low transfusion probabilities. For these TS's the CBB
should issue by LIFO and then at the next delivery pick up any
nontransfused units, replacing them with younger units. The
older units which are then picked up may be made available to
TS's with higher volume needs which have higher transfusion

probabilities.
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Optimal policies include:

1) Cross-match Release Period, D, should be 1 or 2 days (the
smaller. that D is the lower are the shortages, out dates,

and costs).

2) For TS's which received daily or triweekly deliveries, the
units which are shipped to them should be issued on a FIFO
basis (unless fresh units are needed for special purposes
such as cardiac surgery).

3) For TS's with infrequent deliveriesi(once or twice a week),
the units which are shipped to them should be issued on a
LIFO basis and unused units from the prior shipment should
be picked up and replaced with younger units.

Also in the study by Cohen and Pierskalla,4 it was shown
that the optimal target inventory level at the central bank,
Spr, was not greatly dependent upon the cross-match release
time D, provided that D was not allowed to get too large. This
result is the only instance found so far where the choice of one
aspect of operational policy, namely, "how large should D be,”
is not strongly interactive with the ordering policy Sg at the
CBB. If the size of D does get large, such as D > 4 days, then
its value will influence the target optimal inventory levels at
each TS (see equations 4.and 5).

Transshipment Policies Between TS's. Several conditions
may trigger a transshipment by the CBB between two TS's. The
most important condition is when a TS has an emergency demand
and the CBB does not have sufficient stock on hand to meet it.
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In this case a check of the other TS's should be conducted and a
transshipment made provided the TS which furnished the units
will not be placed in a precarious shortage situation, that is,
provided the probability of shortage at the sending TS does not
become too large after depletion of its stock.

Less important transshipments occur due to shortage or out-
date anticipating transshipments. For shortage anticipating
transshipments, a unit is transshipped from location A to B if
the shortage probability in A is greater than that in B and if
the difference of the two probabilities is greater than a cer-
tain number. The number should be large enough so that the
transshipment will be beneficial to the system. It is calcula-
ted according to the following formula:

(8) [shortage probability in A -~ shortage probability in B]
>transportation cost/shortage cost.

If the transportation cost is estimated to be about 5 per-
cent of the shortage cost, then the number used in the determin-
ation of whether or not to transship a unit is 0.05 (i.e., ini-
tiate a transshipment if shortage probability is reduced by
0.05). Note that the shortage cost is assumed to be the same
for all TS's and the transportation cost is independent of the
facilities where the transshipment occurred. This simplifica-
tion is justified because the majority of the transportation
costs are often not the direct costs, e.g., gas and time consum-
ed in the shipment, rather the indirect costs related to the
handling, labeling, accounting and information exchanged between
the two facilities. All these indirect costs, however, depend
upon the size of the system. Therefore, the number 0.05 can at
best be described as an educated guess.

-77-



For outdate anticipating transshipments, a unit is trans-
shipped from A to B if the outdate probability in A is greater
than that in B and if the difference of the two probabilities is
greater than the transportation cost divided by the outdate

cost:

(9) [outdate probability at A - outdate probability at B]
>transportation cost/outdate cost.

Again, 0.05 was used for this ratio (the number 0.05 is based on
similar calculations and assumptions as those used above). It
should be noted that in both cases the number 0.05 is somewhat
arbitrary since actual costs are not known precisely. However,
in the range between 0.03 and 0.20 there appears to be no signif-
icant difference in the number of units transshipped. Indeed,
for this range, virtually no shortage or outdate anticipating
transshipments will occur (based on simulation results from Yen's

model).

One reason why there are few shortage anticipating trans-
shipments stems from the allocation policy in the CBB. Recall
that units are available for transshipment only after each TS
has received its delivery. But under allocation policies 2 or 3,
the units in the CBB are issued one by one to the location with
the highest shoftage probability or proportionally to their tar-
get needs. So at the end of the allocation process each TS will
have an essentially identical shortage probability exbept when
there is insufficient inventory in the CBB to make them equal or
when there is a tie in shortage probabilities before the issuance
of the last few units. 1In both of these cases some discrepancies
among shortage probabilities will occur, but they are rather neg-
ligible under relatively wide ranges of target inventory levels
at all locations. Consequently, the conditions to initiate a
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shortage transshipment would rarely occur, hence hardly any
units are shortage transshipped. For this reason the shortage
transshipment policy has virtually no significant effect on the

shortages in the system.

The insensitivity of the outdated units to the outdate
transshipment policy can be explained as well. By observing
that a unit will be outdated only after several passages through
the cross-matching process, the quantity of expected daily out-
dates is fairly small simply because the probability of outdate
given by (1-Pj)n is usually a very small number. Hence,
there are very few units which outdate, when optimal inventory,
issuing, Py and D policies are followed, regardless of whether
an outdate transshipment policy is in effect or not. Conse-
quently, the outdate transshipment policy can be expected to
have virtually no significant effect on the outdates in the sys-

tem.

It should be mentioned here that the simulation model indi-
cated that while there are some units transshipped, the actual
quantities were insignificant even when the inventory levels at
different locations were varied over wide ranges. However, if
the actual inventory levels used are far larger than the optimal
target inventory levels at the TS's, then as one would expect,
outdate transshipments to become significant if the allocation
policy is changed to the FIFO allocation policy. Both of these
decisions are extreme and should not be followed. That is, the
CBB should use optimal target inventory levels and should not

use allocation policy 1 (FIFO).

Transshipment and Allocation Policies

1. Use allocation policy 2. Allocation policy 3 is also good
but requires more computation and time for implementation.
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2. Transship units from one TS to another

a) If there is an emergency need at a TS, if the CBB is
out of stock, and if the sending TS does not incur an
excessive probability of shortage (say over 10 per-

cent).

b) If the probability of shortage at TS; minus the prob-
ability of shortage at TSj is greater than or equal
to the ratio of unit transportation cost to shortage

cost.
c) If the probability of outdate at TS; minus the proba-
bility of outdate at TSy is greater than or equal to

the ratio of unit transportation cost to outdate cost.

Expected Number of Shortages and Outdates When Optimal

Ordering, Issuing, Crossmatch Release, Allocation and Trans-

shipment Policies Are Followed. The equations for the expected

number of shortages and outdates are derived in Yen! and will
be summarized briefly here. A shortage occurs whenever the
daily demand Dy, at the CBB exceeds the available supply,

Sg. However, the daily demand Dy is a random variable so

the expected shortage at the CBB is given by:

o0
Expected Shortage=E[vgl= k§1 P {Dp>So+kl

where P {Dg>Sp+k} is the probability that the daily demand Dg
exceeds the amount Sy+k.

Since a TS orders up to a target inventory level, Sj, it
will order more if there is less stock on hand. If there is
less stock on hand there is a higher shortage probability. So
the shortage probability is directly related to the amount or-
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dered. Furthermore, once there is a shortage in the CBB, it im-
plies that not all the TS's may get what they ordered. The
amount received by each TS depends on how the available inven-
tory in the CBB is allocated. For the following equations, al-
location policy 2 is followed.

Thus, there is a shortage at the jth TS whenever the de-

mand, D, exceeds the estimated supply Sy - Elvol (E[D41/ [D’\ Z,V-~
E[Dgl) (where d4=E[D4] and do=1&1 P4E[D4y]). Consequently, .i“‘

Estimate of the expected shortage at TWJ = E[vj] =
Z{p Dy + (E[D31/E[DQl)E[vol2S5 + k}.
k=1

In order to determine the expected number of outdates
in the total CBB system, it is necessary to estimate the
number of of times, n, a unit is likely to be cross-matched
before it outdates. Once n has been determined, then, at the
jth TS, the probability that the unit will outdate is just (1 -
Pj)n, i.e., it is just the probability that the unit is not
transfused every time it is cross-matched. Now each day the
expected number of units demanded is just E[Dj], so the

(12) Expected daily outdates at Tsj = E[qj] = (1 -
Pj)nE[Dj]. And the total system outdates are

N
(13) Total daily outdates = Z (1-P5)RE[D4].

In 6rder to compute n, it is necessary to know the average
age of a unit when it is first cross-matched, a, and the cross-
match release time,)(j) where P(j) is a parameter which is set
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by TSj (recall that B?j) should be only 1 or 2 days). After a
unit enters the system at the CBB, it will be stored there for a
period of Su/E[Dgpl days before being issued to one of the

TS's. After the TS receives its order, the units will be placed
in the unassigned inventory and will be cross-matched at the
appropriate time. Since each day there is an average of ED5
units.cgoss-matched and (1 - Pj)E[Dj] returned to the un-
unassigned inventory, the units will be stored in the TS un-
assigned inventory for an average time of Sj-EDj/EDij days be-
fore being cross-matched for the first time. Under the assump-
tion that a fresh unit was received at the CBB, its average age
when cross-matched for the first time, a, is:

(14) a = Sg/EDg + (S4§~ED5)/ED4Pj.

, Once a unit is cross-matched it will return to the unas-
signed inventory if not transfused after D days. Since a FIFO
cross-matching policy is followed those returned units must be
at least as old as all the units which have not ever been cross-
matched; they have a high probability of being issued again the
same day they are returned. Assuming the maximum useful life of
a unit is 21 days including the twenty-first day, the average.
life span of a unit subject to cross-matching is therefore 22-a
days. Therefore, a unit can be cross-matched for about (22-~a)/D
times before it reaches an age between 22-D and 21 days. But if
a unit is returned at ages between 22-D and 21 days, the unit
can only be cross-matched at most one more time. This is be-
cause the next time the unit is returned it already exceeds the
allowable age for cross-matching purposes. Assuming there is an
equal probability for the units to be returned at ages 22-D,
22-D+1,..., 21, then the expected number of times of cross-
matching for units between 22-D and 21 days is about 1 - 1/D
times because if the unit is of age 21 days, then it cannot be
cross-matched for the next day's demands. If we assume the

return units are always cross—-matched again on the day they are
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returned, the the total number of times a unit may be cross-
matched is approximately:

(15) n = (22-a)/D + 1 - 1/D.

The quantities n, a, and E[qj] are easy to calculate
either by hand or with a computer. The quantities E[vpg]l and
E[vj] are more difficult to calculate and a computer is needed
at the present time (tables of. these numbers could be devel-
oped).

It is apparent from these formulae that the expected short-
ages and outdates are complex functions of D, Pjs, Sjs, So
djs and dy. Consequently, when any. blood system control policy
is changed in a manner which can affect any of these parameters,

this change will also affect most of the other decisions.

Delivery Vehicle Routing. As part of a regional blood bank
design model, the problem of vehicle routing for blood product

deliveries was considered. The basic problem involves selecting
‘a route for each central blood bank subsystem which minimizes
overall transportation costs between the CBB and its member TS's.
For each configuration of blood banks, a "sweep" algorithm (see
Or15) was used. The algorithm is a heuristic method which is
incorporated into the overall regional blood bank location and
central bank allocation model. Figure 16 indicates a typical
regional design solution for the metropolitan Chicago area which
also contains optimal wvehicle routes.,
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Figure 16. Allocation based on emergency routing system costs
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SUMMARY

This paper has considered a number of contributions to the
development of operational procedures for blood bank management.
The first section illustrated how some of the data maintained in
blood bank information systems could be used in blood bank man-
agement. In particular, data on cross-matches were analyzed to
develop a forecasting model of demand for blood products. The
underlying variability of cross-match demand was analyzed. Time
series methods were then applied to daily type specific cross-
match and monthly total cross-match data. These methods led to
models for predicting mean daily demand which is required for
inventory control. Conclusions were that on either a daily or
monthly basis, blood demand forecasting is extremely difficult
and can only be accomplished with the use of relatively complex
time series models. Hence, investment in blood inventory, in
better management and in demand pooling are indicated as a
response to this high level of uncertainty. It was possible,
however, to develop a single forecasting equation which was ef-
fective for all blood types.

The second section presented the results of applying a sim-
ulation model and statistical analysis to the problem of con-
trolling hospital blood bank inventory levels. A comprehensive
target inventory level decision function was estimated. This
function can be used to set optimal inventory levels in a manner
which takes into account the scale and particular environmental
features of a hospital blood bank. The mean daily demand, the
transfusion to cross—-match ratio and the cross-match release

period were shown to be significant variables.
The next section considered a variety of operational con-

trol issues relevant to a central blood bank system. Decision
rules for setting optimal daily inventory levels at the central
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blood bank and member transfusion service locations were devel~

oped.

In the final section centralizéd blood bank issuing and al-
location decisions rules such as cross-~match release guidelines
and transshipment guidelines also were analyzed.
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