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SOME MATHEMATICAL MODELS IN HEALTH PLANNING

William P. Pierskalla}
University of Penmsylvania

ABSTRACT. There are many areas in which mathematical models are
useful in health care delivery. Two of these will be discussed
here: 1) Diagnostic screening for early detection of disease,
and 2) Planning regional blood banking systems.

Non contagious diseases arise in a population in a seemingly
stochastic manner. If testing procedures exist which are capable
of detecting the disease before it would otherwise become known,
and if such early detection provides benefit, the periodic
administration of such a test procedure to the members of the popula-
tion, that is, a mass screening program, may be advisable. More-
over, if the population is composed of sub-populations which
exhibit different disease incidence rates and different unit costs
of test applications, and if different tests which have different
reliabilities for detecting the disease are available, then the
question of allocating limited screening resources among the sub-
populations arises. The optimal allocation depends upon the form
of the disutility functions of the sub-populations. Comprehensive
analytic models are needed to perform this allocation.

Health planning can be viewed from many perspectives. Perhaps

the most critical one facing the United States today is to contain
the costs of health care and yet deliver quality care to the entire
population of the U.S. Certain aspects of planning to achieve
these objectives must be undertaken on a regional level, others

at a sub-regional level, and still others at the institutional
level. An integrated hierarchy of analytical models is needed to
link the decisions at each of these levels. Decisions at the
macro level involve the appropriate numbers of people by skills,
numbers of facilities, and technological sophistication for a
region. At the middle level, the decisions involve facility loca-
tions, their levels of technology and services and personnel needs
to achieve minimum cost yet provide accessibility and quality of
care in the sub-regions. At the institutional or micro level,
analytic models are used to determine admissions and appointments,
inventory levels and capital equipment, daily and weekly staffing,
and facility scheduling. These different levels of modeling are
illustrated in the context of planning for regional blood-bank
systems.
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I. DIAGNOSTIC SCREENING FOR EARLY DETECTION OF DISEASE

1. INTRODUCT ION

There are many situations where a defect can occur randomly among the
members of a population -- either a population of human beings, inanimate
objects, or perhaps livestock -- and once present, exist and develop, at
least for a time, without any manifest symptoms. If the early detection of
such a defect provides benefit, it may be worthwhile to employ a test cap-
able of revealing the defect's existence in its earlier stages. (A defect,
disorder, or disease will generally be referred to simply as a defect; and
the word unit or individual will refer to a member of the population.)

Of course, continuous monitoring would provide the most immediate such
revelation. But considerations of expense and practicality will frequently
rule out continuous monitoring so that a schedule of periodic testing -- a
screening program -- may be the most practical means of achieving early
detection of the defect. In general terms, the question then becomes one
of how best to trade off the expense of testing against the benefits to be
achieved from detecting the defect in an earlier stage of development. The
expense of testing increases both with the frequency of test appliéations
and with the cost of the type of test used. The benefits increase with the
frequency and the quality of test used and the quality of a test is often
directly related to its cost.

The benefits of early detection also often depend upon the application
considered. For example, in a human population being screened for some
chronic disease (cancer, glaucoma, heart disease, etc.) the benefits of
early detection might include an improved probability of ultimate cure,
diminished time period of disability, discomfort, and loss of earnings, and
reduced treatment cost. If the population being screened consists of
machines engaged in some kind of production, the benefits of early detection
might include a less costly ultimate repair and a reduction in the time
period during which a faulty product is being unknowingly produced. If the
population being screened consists of machines held in readiness to meet
some emergency situation, an early detection of a defect would reduce the

the time the machine was not serving its protective function. This process
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of inspecting a sizable population for defects is called mass screening.

The expense of testing includes easily quantifiable economic costs such
as those of the labor and materials needed to administer the testing. How-
ever, there can also be other important cost components which are more diffi-
cult to quantify. For example, in the case of a human population subject to
medical screening, the cost of testing includes the inconvenience and possible
discomfort necessitated by the test; the cost of false positives which
entails both emotional distress and the need to do unnecessary follow-up
testing; and even the risk of physical harm to the testee, e.g., from the
cumulative effect of X-ray exposure.

The rationale for constructing a mathematical model of mass screening
is to provide a conceptual framework within which a mass screening program
might best be designed and its worth evaluated. Such a design must deter-
mine which kind of testing technology will be used. Several candidate
technologies may be available, each with different reliability character-
istics and costs. In addition, the frequency of testing must be decided.

If the target population can be partitioned into sub-populations according
to susceptibility to the defect (e.g., by age, family background, time since
last overhaul (for a machine), etc.), then the best allocation of the test-
ing budget among the sub-populations must be determined. Lastly, a decision
must be made, for the population and type of defect under consideration,
whether a mass screening program is justified at all. It is felt that the
above determinations are best carried out within the conceptual framework
of a cogent model of mass screening.

In the following sections a reasonably comprehensive model for deci-
sion making with regard to mass screening is presented. The model utilizes
a time-based approach. But rather than seeking to analyze or minimize
detection delay, as in some of the literature on this topic, the objective
function is an arbitrary increasing function of detection delay. (Detec-
tion delay is the time between the incidence of the defect and its detection,
regardless of whether that detection is the result of a screening test or
of the defect becoming self-evident.) The reason for choosing a general
function is that the disutility experienced upon the delayed detection of
a defect may well vary in a highly nonlinear way with the length of the
delay.

Another objective sometimes used for inspection models is to maximize
the lead time where the lead time is defined as the difference between the
time of detection via a screening test and the time detection would other-
wise have occurred had not a screening program been in existence. However,

in the case in which the test being used is perfectly reliable then it be-
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comes possible to consider the lead-time criterion in terms of the follow-
ing simple function of detection delay. Suppose that at the (possibly
random) age T (measured from the time of incidence of the defect) the
defect, in the normal course of its development, would become manifest even
without a screening test. Then, if the defect is detected at age t, the
lead-time gained is (T - t)+.1 Therefore, if sup T is finite, the function
D(t) = sup T - E(T—t)+ may be used as a disutility function which, when
minimized, will maximize the expected lead-time.

Consequently, the results discussed here based on an arbitrary dis-
utility function, generalize as well as extend results in earlier work. In
addition, new results are presented.

In the next section a brief review of the literature is given. Since
the work on inspection models is very large, only the most relevant papers
are discussed. The interested reader may refer to the surveys by McCall
[1965] and Pierskalla and Voelker [1976] for a more comprehensive review.

In the third section the model is formally stated and an expression
derived for the expected disutility per unit time incurred under a regime of
uniformly spaced test applications.

This model can be specialized to the case of a perfect test; i.e.,
when the test is administered to an individual with the defect, the defect
will be detected with certainty. Under this assumption, a regime of uni-
form test intervals is optimal within a wider class of 'cyclic" testing
schedules for a single sub-population. The problem of allocating a screen-
ing budget among various sub-populations can then be analyzed. As part of
this analysis, the explicit screening schedule (rl, Ths vees rQ), where rj
designates the optimal testing frequency for members of the jth sub-popula-
tion, can be obtained in terms of the sub-population-specific incidence
rates N.Xj and the budget constraint for the disutility function D(t) = at™.
For D(-) convex, the above solution (when m = 1) provides a bound on the
ratios ri/rj.

Other uses of the model involve the analysis of the case when the prob-
ability of detection is a constant over all values of elapsed time since
incidence. The long-run expected disutility per unit time can be derived;
its differential qualities (with respect to variations in the test reli-
ability parameter and testing frequency) exhibited; and explicit solutions
provided for various special forms of D(-). Also for special forms of

D(-), decision rules can be presented to select between two different kinds

1The function u' = max(u, o).
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of tests which differ with respect to their reliabilities and cost per applica- '

tion.

If it is assumed that the test will detect the defect if and only
if the elapsed time since incidence exceeds (or equals) a critical threshold %
which characterizes the test, an expression for the long-run expected dis-
utility per unit time can be derived. Then decision rules can be developed to
select between two alternative test types which differ with respect to their
critical threshold % and their cost per application. Some interesting examples
for linear and quadratic disutility are given in the fourth section.

The last section in Part I provides a technique to estimate the shape of
the disutility function from empirical data in the case of a perfect test.

Finally, it should be mentioned that the population (or each sub-popula-
tion, in the instances where a heterogeneous population is considered) is
assumed to be of fixed size, N, and the defect to arise according to a sta-
tionary Poisson process with rate NA (N could be a very large but finite
number). It may be somewhat more realistic to set the defect occurrence rate
(sometimes called the defect arrival rate) proportional to the number of
defect-free units, rather than to the total number of units in the population.
However, it is also assumed that no defect can remain undetected longer than
T*, even without any screening tests being given. Hence, T*NA is an upper
bound on the expected number of undetected defects in the population. If it is
the case that once a defect is detected, the afflicted unit is replaced in the
population with a healthy unit, then T*NK represents a bound on the expected
difference between the number of healthy units and the total number of units in
the population. For A small, as would be the case for a relatively infrequent-
ly occurring disorder, this should represent no difficulty. Consequently, it
is assumed that A is small relative to N, which is consistent with the examples

of potential applications which have been or will be mentioned.

2. LITERATURE REVIEW

Some of the early papers which have a bearing on time dependent models of
mass screening are: Derman [1961], Roeloffs [1963, 1967], Barlow, Hunter, and
Proschan [1963] and Keller [1974]. Kirch and Klein [1974], whose paper is
addressed explicitly to a mass screening application, seek an inspection
schedule which will minimize expected direction delay subject
to a constraint on the expected number of examinations an individual would
incur over a lifetime; the test is assumed perfectly reliable. The point of
view adopted here in Part I is similar to that of Kirch and Klein. However,

one respect in which the approach here differs from that of Kirch and Klein is

that several sub-populations are considered each with its own characteristic
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incidence rate for the disorder. The idea is then to allocate optimally a
fixed screening budget among the sub-populations. Kirch and Klein instead
take a longitudinal view. An individual through his lifetime is subject to
different probabilities of incurring the defect and a screening schedule is
optimized subject to a constraint on the expected number of examinations over
a lifetime.

McCall [1969] considered the problem of scheduling dental examinations
under the assumption that the time between the incidence of a cavity and the
scheduled dental examination controls whether the cavity results in a filling
or an extraction. Cavities are assumed to occur according to a Poisson pro-
cess. As a generalization, he permits the time required for a cavity to be-
come beyond repair (by a filling) to be a random variable.

Lincoln and Weiss [1964] studied the statistical characteristics of detec-
tion delay under the assumption that the times of examinations form a renewal
process and that the probability of detecting the defect, p(t), is a function
of the defect's age, t. They derive equations, similar to renewal type equa-
tions, which relate the density functions for the following entities: the
probability of detection at a test application (p(t)), the time until the
defect becomes potentially detectable and from this time the forward recurrence
time to the first test, the probability of the event that at a particular time
a test occurs and all prior tests had failed to detect the defect, and the
detection delay. For the two special cases where p(t) is a constant and where
p(t) is exponential, the moments for the detection delay are derived in closed
form. For uniform testing intervals (and general p(-)), the distribution and
moments of the detection delay are computed. For p(t) = 1, they solve for that
testing schedule which maximizes the time between tests subject to a constraint
on the performance of the screening program relative to detection delay. Two
such constraints are considered. The first bounds the probability of detec-
tion delay exceeding some threshold T. The second bounds the mean detection

delay.

THEOREM I.3.1 in the next section, which gives the expected disutility
in terms of the test interval and test type, is similar to the objective func-
tion given by Lincoln and Weiss although their approach, as outlined above,
is different.

Several recent papers have studied the statistical characteristics of the
lead-time provided by a screening program -- either a one-shot screen of the
population or a periodic screening program. Some of these papers are:

Hutchison and Shapiro [1968], Zelen [1971], and Prorok [1973].
In some recent work, Eddy [1978a, 1978b] describes a semi-Markov Chain

analysis for the screening and detection of cancer. This modeling effort was
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undertaken to devise a practical planning tool based in the reality of a
breast cancer screening program.

Finally a few authors, Schwartz and Galliher [1975], Thompson and Disney
[1976] and Voelker [1976] let both the reliability of the test and the dis-
utility (or utility) of detection be a function of the defect's state rather
than of time since the defect's incidence. Although such models are more
general and do utilize a general concept of disutility, they have not been
amenable to closed form evaluation of expected disutility.

To incorporate random defect occurrences into their models, previous
researchers focus upon an individual who will incur the defect. They use the
density function for the age when that individual incurs the defect as a
fundamental element of their model. Since the density function reflects age-
specific incidence rates, a "life time" testing schedule can, thereby, be
developed to tailor testing frequency at each age to the probability that the
defect will occur at the age.

Our way of modeling the randomness of these occurrences reflects a some-
what different perspective on the mass screening problem. We look through the
eyes of a decision-maker charged with intelligently allocating a fixed budget.
The time frame over which the allocation must be made is often short compared
to a typical life time of a member of the client population. Therefore, the
decision-maker does not plan lifetime screening schedules for particular
individuals. Instead, he tries to maximize the benefit that can be derived
from his available budget over a much shorter planning horizon.

With the problem viewed in this perspective, the random nature of defect
occurrences is most naturally modeled as a Poisson process with its parameter
determined by the incidence rate of the defect and the size of fhe.population.
This approach has proved particularly useful in the following context: if
different segments of the client population exhibit different incidence rates,
sub-populations can be defined with defect incidence within each of them
modeled as a Poisson process with its respective parameter. Then the budget
can be so allocated among the sub-populations as to permit appropriate rela-
tive testing frequencies (cf. Voelker and Pierskalla [1978]). 1In this way,
age-specific incidence rates can be incorporated into the notion of Poisson
defect occurrences. Moreover, factors other than age which affect defect
incidence rates (family history, smoking habits, work environment, etc.) can

also be incorporated into the model.

3. A MODEL FOR MASS SCREENING

Although most of the definitions are stated prior to their use in each

section, listed below are some notation and conventions used as various times
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throughout the paper.

1 if <t 5"‘;1
) 297w ey
T r’ T .
0 otherwise
n
2y - I x, =1 for n < 1
. i
1=1
n
(3) I x. =0 for n < 1
. i
i=1
(4) [x] is the largest integer not exceeding x.
(5) The phrase '"increasing function'" shall mean a strictly increasin
b g y g
function.

As mentioned previously, the objective function will not be to maximize
expected utility, but rather to minimize expected disutility. The disutility
associated with a particular detection will depend only on the elapsed time
since the defect's incidence. The notation D(t) will express the disutility
incurred if detection occurs t units of time after incidence. D(:) is assumed
throughout this paper to be a nonnegative increasing function.

In those cases where sup D(s) < o, there is a natural relation between
s >0

the notion of a utility function and D(.); namely,

u(t) = sup D{s) - D(t)
s >0

U(t) is a decreasing function expressing the disutility avoided by detecting a
defect t units of time after its incidence.

Initially, only a single susceptibility class of size N will be con-
sidered. The results will then be generalized to an arbitrary number of sub-
classes. The times of incidence for the defect in the population are assumed
to form a Poisson process with parameter N\ and are designated by the sequence
{Sk}, k=1, 2,... This assumption is motivated by the fact that any occur-
rence or arrival process with the following characteristics is a Poisson pro-
cess: at the time of an arrival there is almost surely (i.e., with probability
one) only one arrival, that the number of arrivals in a time interval does not
depend on past arrivals, and that the number of arrivals in intervals of equal
length are identically distributed (Cinlar [1975]). For many applications

such as the occurrence of diseases like cancer, heart trouble, etc., this
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assumption is quite reasonable.
Were a screening test of type % to be administered to the individual with
the kth defect (i.e., kth in the order of defect incidence) at time Sk + t,

then the test outcome random variable is:

DEFINITION:
p
0 if kth defect is not detected at time t
after incidence
k
Y (t) = \ (3.1)
1 if kth defect is detected at time t after
incidence.
.

Since a defect cannot be detected before its incidence, Yg(t) =0 for t < 0.
Notice that the argument of YE(') refers to time relative to the incidence of
the defect. If the population is screened at time s, where s is absolute
time, then the kth defect will be detected if and only if Sk < s and
YE(S - Sk) =1, '

It is assumed that Yt(t), Yi(s) are independent except when k = j and
t = s, and that P(Yﬁ(t) = 1) depends only on £ and t. This latter assumption

makes possible the

DEFINITION:

py(t) = P(Y}L(t) =1). (3.2)

The function pz(-) describes the reliability characteristics of the type
2 screening test, i.e., how likely such a test is to detect a defect as a
function of the defect's age. Note that pz(t) = 0 for t < 0.

In this section the screening test is assumed to be administered to the
entire population at the times 1/r, 2/r, 3/r,... The testing frequency r is
a control variable. In the next section, upon assuming perfect test reliabil-
ity, it is shown that the above schedule of uniform testing intervals is
optimal within a wider class of '"cyclic" schedules.

The random variable §k denotes the time at which the kth defect is

_ r,%
detected. Si 9 depends on the arrival time of the defect (Sk), the type of

>

test used (), and the testing frequency (r).

DEFINITION:

ko . o 1vk.on ky _
Sr,% = min 1n/rlY2(;-- sy = 1} (3.3)

n=1,2,...
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Given the application of test type £ at the times {1/r, 2/r,...}, the
disutility incurred by the kth defect is D(é? 0 " Sk). The total disutility
incurred due to those defects which occurred in the interval [j/r, (§+1)/1)],

when test % is used is:

DEFINITION:

ok
D(Sr,l

o]
i
I ™

k k
- S )lj/r(S ).

The following proposition provides an expression for E[Br 2 .] in terms
only of the disutility due to detection delay (as expressed by D(-)) and of
the reliability of test type % (as expressed by pz(-)). In addition, the

] = E[Br,Q,O] for j =0, 1, 2,...

theorem shows that E[B
r,%,]

THEOREW I.3.1:

n
© T n-1 .
BB, g,50 =M I [ p(wpyw) T [ - pyu -l
n-1
T

for j =0, 1, 2,...

This proposition yields a relatively simple expression for the expected
total disutility in any interval of length 1/r and using test type 2 with prob-
ability of detection pﬁ(-). This expectation is used in the objective func-
tion of a mathematical program to determine the optimal testing frequency for
a mass screening program for a heterogeneous population. In order to develop

this mathematical program, the following definitions are useful.

DEFINITION :
- T n-1
B = 1im = £ E[B 7.
r,L oo I j=0 r,%,]
B is the long-run expected disutility per unit time given the testing fre-

r,%
quency r and the test type &. (The factor r enters the definition to convert

disutility per unit testing-interval into per unit time.) By Theorem I.3.1,

E[Br,z,j] = E[Br,l,o] for j =0, 1, 2,... Therefore,
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Br,Q = rE[Br,%,O]
n
o T n-1
=rNx DWp ) T [1 - pe(u - %)]du. (3.4)
n=1 m=1
n-1
T

Notice that if test type & provides perfect reliability, i.e., pg(t) =1
for t > 0, then (3.4) gives

1

ér,l = rN A fz D(u)du. (3.5)

Now consider the problem of selecting testing frequencies and test-types
for each of Q different susceptibility classes which together comprise the
whole population. These classes may differ from one another in the number of
units they contain, in their defect incidence infensity, and in the cost per
test application to an individual for a particular type of test. The sub-
populations, however, are assumed to share a common D(-) function.

Using (3.4) the expected long-run disutility per unit time for sub-popula-

tion j with frequency r(j) and test £2(j) where j =1, 2,...,Q is given by:

i
- . @ r(j) i-1 n
Fir(y,egy T rONAG T [ p@pg gy 1 [epy gyt - gyl
i-1
*G)

This expression can be used to formulate a multi-sub-population screening

problem subject to a budget constraint as follows:

Minimize Q
QY x @ 20,2 @) By gy 45 (3.6)
such that
Q
B e BIO RS (3.7)
r. >0 j=1,...,Q (3.8)

2(3) e j=1,...,Q (3.9)
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where
c. ., = cost per application of a test of type 2(j) to an
3,20G) individual of sub-population j,
Nj = number of units (or individuals) in sub-population j,
b = budget per unit time.
54 = set of all feasible tests

In order to make this mathematical program even more comprehensive, it

is possible to add constraints on the amount of testing labor available and on

the capacity of the testing facilities in terms of the number of arrivals, the

frequency of testing and the type of tests used. In addition, the cost of

false positives can be included as a part of the test costs in inequality

(3.7).

For example, a constraint on the total labor available is:

Q
I N6, T, <L
Pl TG

and on the total testing facilities available is:

(3.10)

(3.11)

for each type of test £(:) used over the sub-populations being tested, where

$. 2(3) = amount of labor needed to administer test type 2(j)
15543 to an individual of population j,

£, L) = amount of testing facility time needed to administer
3,24 test type 2(j) to an individual of sub-population j,

L2 = total amount of labor available to administer test
type 2(-) per unit time,
Fz = total amount of facility time available to administer

test type £{(¢) per unit time.

4. SOME EXAMPLES OF DISUTILITY FUNCTIONS

Suppose a production process is subject to a randomly occurring defect.

Although production appears to proceed normally after the incidence of the

defect, the product produced is, thereafter, defective to an extent which

remains constant until the production process is returned to its proper mode
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of operation. The only way to learn if the production process is in this
degraded state is to perform a costly test. Now, if a test detects the
existence of the degraded mode of production t units of time after its in-
cidence, the harm done will be proportional to the amount of defection pro-
duct (unknowingly) produced which, in turn, is proportional to t. Hence,
D(t) = at for some a > 0.

Another example where a linear D(:) function may be appropriate would be
for the periodic inspection of an inactive device (such as a missile) stored
for possible use in an emergency. If t is the time between the incidence of
the disorder and its detection, the disutility incurred is proportional to the
probability that the device would be needed in that time interval. If such
"emergencies'" arise according to a Poisson process with rate u, then the prob-

ut’ which,

ability of an emergency in a time interval of length t is 1 - e
for y small, is approximately ut. Hence, if b is the cost incurred should
there be an emergency while the device is defective, and if u is the (small)
arrival rate of emergencies, then D(t) = but.

A quadratic disutility could arise in the following situation. Suppose
the magnitude of a randomly occurring defect increases linearly with time
since the occurrence of the defect. For example, the magnitude of the defect
might be the size of a small leak in a storage container for a fluid, and as
fluid escapes, the leak gets larger. Further, suppose that the harm done
accumulates at a rate proportional to the magnitude of the defect. Hence, the
quantity of fluid lost (at least initially) increases the longer the defect
exists, and the rate of fluid loss is proportional to the size of the leak.

Let the size of the leak (as measured by rate of fluid loss), at a time
s since the leak's incidence, be cs. Then, if the defect is detected at time
t since ingidence, the disutility incurred (fluid lost) is D(t) = fg csds

= 1/2 ct

5. EMPIRICAL ESTIMATION OF D(.)
Although data may not be available currently to support the utilization

of particular models, that should not deter the development of such models.
It is reasonable to expect that in many application areas in the future much
additional data will become available; for example, more data will become
available concerning the stochastic pattern of a particular disease's develop-
ment. Furthermore, a good model will serve as a guide to the kinds of data
which should be gathered.

It is also reasonable to expect the future development of improved test-
ing technologies capable of detecting a disorder in a much earlier stage of

development than is now the case. Such innovations will make screening
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programs more attractive and, consequently, make more important the analytical
tools to design such programs intelligently.

However, it is possible to provide a simple procedure to estimate
empirically the disutility function D(-) under the assumption of perfect
detection. Such a procedure is necessary, since upon the detection of a dis-
order there may be no way of directly determining how long the disorder has
been present, although that length of time could not exceed X = %. It is
assumed, however, that at each detection of a defect, the degree of disutility
incurred due to that defect can be observed. For example, in the case of
“medical screening, at the detection of a tumor its degree of development can
be noted even if it is not possible to determine exactly when, since the last
test, the tumor originated.

In order to allocate optimally a screening budget among differing sub-
populations (susceptibility classes), as was discussed in Section 3, it is
necessary to know the shape of the disutility function. Under the reasonable
assumption that D(.) is an increasing continuous function, the function may be
derived in the following manner. For a particular population subject to a
Poisson defect arrival {Sk} with rate N\, arbitrarily select a value for x
and set up a prototype mass screening program for the population in which
tests are made (using a perfect test) at times 0, x, 2x,... The manner of
defects detected at the time jx, which are characterized by a disutility less

than or equal to y, record and designate by Qj(y). Then,

o

. .k k .
QY(Y) - kio 1[0,},] (D(JX S )) l[jX-X, jX](S ): J 1,2’3,---

Qj(y) is observable for all values of disutility y > 0. Further, Qi(y) and

Q. (y) are independent and indentically distributed random variables for i#j

and y > 0. Therefore, by the law of large numbers,

n
lim = I Qj(y) = E[Ql(y)] for all y > 0.

Hence, the function y E[Ql(y)] may be estimated by collecting a
sufficiently large sample of the functions Ql’ QZ""
Let H(y) = E[Ql(y)]. Once H(:) is estimated in this manner, the follow-

ing theorem shows how the desired function D(-) may be obtained from H(-).
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THEOREM I.3.2: 1If D(0) = 0 and D(-) is continuous and increasing on [0, x].
then

D(t) = ™' (NAt) for 0<t<x.

By observing the Qj(y) and taking the inverse of their expectation, an
estimate for D(t) may be obtained. For some diseases such as heart disease,
glaucoma, and some cancers, there may be enough data currently available to
begin estimating the disutility functions and to start computing optimal test-

ing frequencies and tests.

II. PLANNING REGIONAL BLOOD BANKING SYSTEMS

1. A HIERARCHY OF PLANNING MODELS

Although health planning involves many activities and mathematical model-

ing aspects, we will only discuss hierarchies of models to link decisions at
the regional, sub-regional and institutional levels. Decisions at the macro
level involve the appropriate numbers of people by skills, numbers of facil-
ities, and technological sophistication for a region. At the middle level,
the decisions involve facility locations, their levels of technology and serv-
ices and personnel needs to achieve minimum cost yet provide accessibility and
quality of care in the sub-regions. At the institutional or micro level,
analytic models are used to determine admissions and appointments, inventory
levels and capital equipment, daily and weekly staffing, and facility schedul-
ing. At all levels it is necessary to make these decisions by trading.off
competing objectives such as minimizing costs, increasing quality of care, and
increasing accessibility and availability of services.

Rather than discuss these modeling activities in an abstract form, which
could easily be done, we will focus on regionalization in blood banking.

Blood banks are an important and integral part of health service systems.
Their main functions are blood procurement, processing, cross~matching,2 stor-
age, distribution, recycling, pricing, quality control and outdating. The

large blood banks are often also responsible for blood research, disease and

2Cross—matching is the procedure of testing the donor's blood with a sample of
blood from a potential recipient (patient) to determine whether the two types
of blood are compatible and therefore will not lead to medical complications
when the patient 1is transfused.
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reaction prevention. In recent years, there has been much discussion on the
issue of regionalization of blood banking systems, in the hope of decreasing
shortages, outdates and operating costs, without sacrificing blood quality,
research and education.

In a broad sense, regionalization is a process by which blood banks with-
in a given geographical area move toward the coordination of their activities.
Such coordination may range from cases in which the blood banks merge into a
large, centralized unit, to cases where the existing structure remains un-
altered and only certain functions, such as donor recruitment, processing and
distribution, are coordinated among the blood banks. 1In most of these cases,
questions of optimal region size, central and local bank locations, regional
boundaries, optimal distribution and communication network configurations must
be answered. Also, administrative policies, ordering and cross-matching
policies, and donor recruitment and component therapy strategies must be
analyzed and coordinated.

In an earlier paper on regionalization, (Cohen [1975]), hierarchical
structures for different types of regional blood banking systems were discussed.
The appropriate structure for any area depends on a complex interaction be-
tween the level of activity, the economies or dJdiseconomies of scale, the cost
effectiveness and efficiency, as well as the interactions of the interested
parties. In this section, the impact of size and structure on the different
costs of operation of blood banking activities in a region will be analyzed.
The main determinants of cost are the personnel, the space, the equipment,
the location and allocation of facilities and the transportation used to carry
out the activities of the blood center.

Sinceregions vary in terms of their geography, number of donors, and
number of recipients of blood services, the most effective and efficient
organizational structure will also vary from region to region. It is not our
purpose here to delve into all the many different ramifications of the differ-
ent regional structures. Rather for this analysis it is sufficient to
consider three generic structures of regional blood banking in the United
States. Most systems which do not exactly fit into one of these structures
can be closely approximated by one of them. The structures are given in
Figure 1, and represent (i) a community blood center which services the entire
needs of a particular region, (ii) a collection of (communicating) community
blood centers each under its own independent control, which services the blood
needs of a particular region, and (iii) a regional blood center which either
coordinates or controls the activities of a collection of community blood
centers which in turn fulfill the needs of the community in the region. As a

general rule, as the size of a region changes due to an increase in demand or
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Figure 1: Regional Blood Banking
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geography, the single community blood center may not adequately fulfill the
needs of the region and one of the other two structures tends to replace the
single center over time. In some cases, the new structure consists of a
regional community blood center with satellite facilities.

In the next section, we focus on the location-allocation-transportation
aspects of regionalization. Our variables will be central bank locations,
regional boundaries and blood distribution network configurations. 1In the
first model, all the other aspects of regionalization are summarized by
certain terms called system costs, which are primarily functions of two fac-
tors: the number of hospitals in a region and the amount of blood used by
each hospital in the region. Both of these factors are functionally related
to the variables considered in the laéation—allocation—transportation model
(since they vary with the regional boundaries.) The other factors that affect
the non-transportation aspects of regionalization tend to be independent of
the variables in the model, consequently they are independent of the location-
allocation-transportation decisions.

The third section describes some middle level and institutional level
models in their abstract forms. Although these mathematical models are direct-
ly applicable to the blood bank decision process, they do provide qualitative
insights into the considerations underlying the optimal decisions and the
general structure of such decisions.

The final section briefly summarizes the findings.

2. THE REGIONAL MODEL AND DECISIONS

The regionalization model is verbally described as follows: "Within a

given geographical area, there are N hospitals. Regionalization is to be
achieved by dividing the area into M regions and establishing a central blood
bank in each region. All blood banking activities in a region are to be
coordinated. Supply generation is to be done mainly by each central bank and
each hospital is to obtain its primary blood supply from the central bank in
its region. The blood distribution operation consists of periodic and
emergency deliveries. The hospitals in a region receive their periodic daily
requirements from their central bank. The blood deliveries are made by
vehicles which, starting from the central bank, visit one by one the hospitals
they are scheduled to supply, and return to the central bank. These vehicles
have given capacities and given limits on the number of deliveries they can
make per day. Because of the wide fluctuations in demand, a hospital may
deplete certain blood types before the next periodic delivery is due. In that

case, a delivery vehicle is dispatched immediately, from its central bank.



SOME MATHEMATICAL MODELS IN HEALTH PLANNING 123

The delivery vehicle makes an emergency blood delivery to that hospital and
returns to the blood bank. The problem is to decide how many central blood
banks to set up, where to locate them, how to allocate the hospitals to the
banks, and how to route the periodic supply operation, so that the total of
transportation costs (periodic and emergency supply costs) and the other system
costs are a minimum." This problem will be called the Blood Transportation-
Allocation Problem (BTAP).

In modeling the BTAP it is necessary to describe the costs as functions
of the decision variables. The periodic delivery costs, which are a set of
linear terms, depend on all three types of variables in this problem, that is,
routing the periodic supply operations, locating the banks, and allocating
the hospitals to the banks. The emergency costs are also a set of linear terms
and depend on only two types of variables, locating the banks and allocating
the hospitals. The system costs are nonlinear functions of the size of the
blood banks and the number of hospitals allocated to the blood banks, and
therefore, of all the variables in this problem they depend only on hospital
allocations. So, if the system costs were constant and the emergency costs
were negligible, the model would be equivalent to the General Transportation
Problem (GTP) (see Or [1976], or Magnanti et al. [1975]). If the system
costs were constant and the periodic delivery costs were negligible, the model
would reduce to a Location-Allocation problem (LAP) (see Cooper [1963, 1964],
Hurter and Wendell [1973a, 1973b], or Francis and White [1974]). So the model
is a complex combination of these two large problems. The basic strategy we
use in order to obtain a good solution depends heavily on these two sub-
problems. We solve each subproblem independently and then combine them at the
end, making tradeoffs between them and superimposing the system costs consider-
ations, to obtain a good solution to the model. However, it should be noted
that, unlike the GTP, solving the LAP does not produce a complete,  feasible
solution to the main model. It only gives the locations and the allocations,
and in order to get the missing periodic delivery routes, one must solve a set
of vehicle dispatch problems.

Other work on regionalization or centralization of blood bank activities
does not consider the location-allocation-transportation aspects. Jennings
[1970, 1972] used a simulation model to construct part of a regional blood
banking system. He grouped a number of identical hospitals together; however,
he did not have a central blood bank. Transshipment policies and inventory
levels were studied to see their impact on shortages and outdates. Yen [1965]
also studied multiechelon inventory systems. He concentrated his efforts on
the optimal inventory levels and the optimal issuing policies. Prastacos

[1977] and Prastacos et al. [1977] were interested in the allocation of exist-
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ing stocks among the hospitals. Neither Jennings, Yen nor Prastacos et al.

studied the location of central banks or the allocation of hospitals to them.

THE BLOOD TRANSPORTATION-ALLOCATION MODEL

Because the BTAP is a complex optimization problem, we will make a few

reasonable assumptions to decompose the problem into smaller subproblems.

ASSUMPTION 1: The number of banks, M, is a given number.

Even in cases in which the above assumption doesn't hold, M is almost always
restricted to a small, finite, feasible set (M is always an integer and

1 <M< N). So, in those cases one could solve the problem for each feasible
value of M to get the optimal solution. In this respect, Assumption 1 is not

restrictive.

ASSUMPTION 2: The blood delivery period is daily for each hospital.

Considering that some hospitals use more than 7000 units of blood per year,
while some others use less than 10, this is an unrealistic assumption.
Unfortunately, determining the aptimal multiple delivery periods as well as
the location-allocation and routings increases the complexity of the problem
considerably and makes it almost impossible to find a direct solution proce-
dure. A simple, multiple period problem should have three options for the
periodic deliveries (daily, biweekly, weekly). However, the problem of
choosing optimal periods for each hospital would be a very large (and time
consuming) combinatoric process. If the periods are set in advance (daily,
biweekly, weekly) these multiple periods can be easily incorporated into the
present location-allocation model merely by adjusting the costs to reflect
costs per day. The routes of the delivery vehicles however would have to be

adjusted later.

ASSUMPTION 3: The potential locations of the M banks are a finite (and
usually small) number.

The set of practical feasible locations is almost always a small, finite
set (usually one does not want to build a blood bank from scratch; instead,
they are most frequently located in the area's largest hospitals or at exist-

ing blood centers). So, if necessary, we could solve the problem for all
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combinations of feasible locations, to get the optimal solution. In a design
problem, this is not an impossible enumeration, since even a region the size
of the Chicago metropolitan area (using the amount of blood transfused as a
measure of hospital size) has only six central blood banks and has only seven
hospitals with consumption rates of over 7000 units per year.

Finally, it is assumed that each vehicle makes one (nom-emergency) trip
per day. If multiple trips per day are allowed in a real setting this model
would need to be modified appropriately. Most of the latter do not qualify
to be central blood banks for various reasons. So, in this respect Assumption
3 is not very restrictive. ‘

The following notation will be used in formulating the BTAP.

i} N is the number of demand points (i.e., hospitals).
ii) M is the number of supply points (i.e., banks)

iii) is the maximum number of supply vehicles available.

iv) = {Hl,...,HN} is a set of N demand points.

N+1""’HN+M} is a set of M supply points.

I3
v) 1 - {H
AV

WUs is the set of all points involved in the problem.

i

vi)

vii) dij is the '"distance" from Hi to Hj. It should be noted that

although Euclidean distances among locations of hospitals and
central banks are used in the solution procedure, one could
obtain a matrix of accurate travel times between all pairs

" of hospitals and banks, and one could use this matrix or any
other "distance measure' instead of the Euclidean distance

matrix.

viii) Ck, k =1,...,n is the capacity of supply vehicle k.

ix) Qi’ i=1,...,Nis the requirement of demand point i.

X) Dk’ k =1,...,n is the maximum distance supply vehicle k may

travel on a non-emergency delivery route.

xi) Yo i=1,...,N is the expected number of emergency deliveries
to hospital Hi per period. Y is the probability that the
demand at H.l exceeds the supply at Hi given the optimal inventory

level at Hi is used.

xii) s(%, q) is the systems cost function of a region, where % is the
number of hospitals in that region, and q is the amount of blood

used per year in that region.
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xiii) yij’ i=1,...,N; j = N+1,...,N+M is a zero-one variable such that
yij is 1 if hospital Hi is assigned to central bank Hj and is

0 otherwise.
xiv) xijk’ i=1,...,N#+M; j = 1,...,N+M; k=1,...,n is a zero-one

variable such that xijk is 1 if vehicle k goes from hospital

Hi to Hj and is 0 otherwise.
The BTAP is:

PROBLEM 1:

1 N+M N+M n N N+M
min z~ (x,y) = I z Zd..x.., + L X v.d..Y..
i=1 j=1 k=1 P0HK 5o ganey 1T
N+M N N :
+ L s(Z y.., T Qvy..) i (1)
j=N+1  i=1 M og=p MY
subject to
n N+M .
I I x.,., =1 i=1,...,N (2)
k=1 j=1 K
N+M N
I I Qx.., <C k=1,...,n (3)
521 i=1 iTijk k
N+M N+M
T L d..x... <D k=1,...,n (4)
=1 i=1 ijk k
n -
I by z X; 5k > 1 for all (S, S) (5)

{i:H, €S} {j:H, €S} k=1
i J

where S is any proper subset of )4 containing X' and S is the complement of
S.

"
L x = I X. k=1,...,n; h=1,...N+M (6)
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N+M N+M
Yii > I X, + I x..., -1 i=1,...,N; j = N+1,... ,N+M (7
1 = po1 ihk h=1 jhk
k=1, ,n
ijk 0,1 i= 1,00 ,N+M; § = 1,.. . ,N+M; (8)
k=1, ,n

(note that Xk T 0)
y = 0,1 i=1,...,N; j = N+1,...,N+M, (9

ij

The explanation of these constraint sets are as follows. Constraints
(2) require that every hospital receive a shipment from some vehicle; (3)
are the vehicle capacity constraints; (4) are the maximum travel distance
constraints (note, it is implicitly assumed that Qi ;=Ck for i=1,...,N and
k=1,...,n); (5) require that graphéi corresponding to x is connected; (6)
imply that a vehicle departs from a point h if and only if it enters there
(conservation of flow); (7) contains the coupling constraints between vari-
ables x = {Xijk} and y = {yij}' It means that if there is vehicle k passing

N+M N+M

from both hospital i, ( I Xipg = 1), and from bank j, (Z x
h=1 * h=1

hospital i is assigned to bank j, (y,. > 1+#1-1 = 1). As shown in Or [1976],
p ij =

jhk = 1), then

these constraints imply that there is an optimal solution in which each
vehicle is based at a particular supply point.

In Problem 1 the variables x = {xijk} correspond to the routing of the
periodic delivery vehicles and the variables y = {yij} correspond to the
allocations of the hospitals to the blood banks. For a given x = {xijk}’

y = {yij} is uniquely determined, but the converse is not true; if we are
given the allocations, a series of M vehicle dispatch problems have to be
solved, in order to obtain the routings. Problem 1 has a finite feasible
solution set and a nonempty optimal solution set. However, the underlying
Multiple Vehicle Dispatch Problem (MVDP) makes it a complex integer program-
ming problem. For N of any significant size (N > 20), the BTAP is too large
to be solved by conventional mathematical programming techniques in a reason-
able amount of time. ‘

In problem 1, if Yio» i=1,...,N are small or emergency costs negli-
gible (actual Yi's range from .0002 to .06 when optimal ordering policies are
followed, see Pierskalla and Yen [35]) and the function s(&, k) is essentially

constant, then




128 William P. Pierskalla
2 N+M N+M n
z7(x) = X z z d..x..k
i=1 j=1 k=1 M

would be the dominating term in the objective function (1).

just solve the MVDP,

PROBLEM 2
N+M N+M n
min I I z d..x..k
i=1 j=1 k=1 1 *J
subject to
n  N+M
z Lox,.. =1
k=1 j=1 3K
N+M N
z I Q.x.., <C
j=1 i=1 i"ijk — 7k
N+M N+M
z I LiX, ., <
j=1 i=1 ij7ijk — "k
n
>
z z z Xijk > 1

N+M N+M
LOX, ., = L X.
5=1 hjk i=1 ihk
ijgk = 01

i=1,...,N
k=1,...,n
k=1,...,n

for all (S, §)

k=1,...,n; h=1,...,N+M

i=1,...,N+M; j=1,...,N+M
k=1,...,n

24

Then we could

(1

(12)

(13)

(14)

(15)

(16)

(17)

*
in order to obtain the optimal x for Problem 1. The optimal allocations,

* *
y , would then be uniquely determined by x .

On the other hand, if Yo i=1,...,N are relatively large (which might

happen under nonoptimal ordering policies) or system costs and periodic
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delivery costs are negligible, then

3 N N+M
27 (y) = L z Y.d..Y..
i=1 j=N+1 * P H

would be the dominating term in the objective function. Then we could just

solve the allocation problem,

PROBLEM 3

N N+M
min X z Y.d,.y.. (18)
i=1 j=N+1 * P
subject to
N+M
Z y.. =1 i=1,...,N (19)
j=N+1 M
Y.. = 0, 1 1= l)-'-)N; (20)
13 j o= N+1,...,N+M

in order to get the optimal y° for Problem 1. Then, optimal routings, x°,
would be obtained by solving a vehicle dispatch problem for each one of the
M regions determined by y°.

Let x* be an optimal solution of Problem 2. Let y* be the allocations
determined by x*. Let y° be an optimal solution of Problem 3.

It directly follows from the above definitions that
*
2y < 22 (x)

%) < 2500

IA

and if the systems costs are essentially constant, then
2.0.* 3. 0
z7(x ) + 27 (y")
would be a good lower bound on the optimal value of Problem 1.

In order to minimize the cost of operation under different regional

system configurations, the economies of scale curves representing feasible
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combinations of the functional areas of blood banking were incorporated into
the model. These cuives form the basis for determining the operating costs
for each of the different regional structures.

For example, if one considers the regional structure.given by the first
figure in Figure 1, then the only questions which arise relative to costs
involve where should the community blood center be located in order to min-
imize total transportation costs for donors, recruiting, phlebotomy3 on
mobiles, and routine and emergency deliveries to the transfusion services.
Since the other costs, such as processing, administration, inventory control
and phelbotomy at the Center are relatively independent of location, these
costs would not be included in the decision process, because they would be
incurred no matter where the community blood center was located.

On the other hand, if the regional structure is that of the second
figure in Figure 1, then all of the costs from the economies of scale curves
are relevant, since not only the location of the community blood centers but
also their sizes in the region are important decision variables. Consequent-
ly, all of the curves are needed, and tradeoffs among these costs and loca-
tions in sizes must be made.

Finally, if one were to analyze the third figure of Figure 1, the appro-
priate use of the economies of scale curves would depend upon the authority
structure and governance relationships between the regional blood center and
the community blood centers. For example, if the regional blood center were
only a coordinating body of information and did not really have any authority
over the community blood centers, then the costs of operation would be very
similar to those in the preceding paragraph. That is, all of the functional
areas of blood banking would be located at the community blood centers;
consequently, virtually all of the costs would be incurred there, and hence
if one were to do a regional design, one would be interested in the location
of the blood centers, as well as their operating size. On the other hand,
if for example, donor recruiting were done at the regional blood center, then
the costs of donor recruiting would not be charged to the community blood
centers but would be a regional blood center cost. Since donor recruiting
costs are related to the distances the donor recruiters have to travel, then
the location of the regional blood center would be a factor in the cost
structure; however, none of the other costs, such as phlebotomy, processing,

inventory control and distribution administration at the community blood

3Phlebotomy is the procedure of drawing blood from a donor. These drawings

often occur at the hospital, blood center, or at a distant location such as
a school, church, company, etc. When drawings are made at a distant loca-
tion, mobile blood vehicles are used and the drawings are thus called
"phlebotomy on mobiles.'



SOME MATHEMATICAL MODELS IN HEALTH PLANNING 131

centers would be included in the cost of the regional blood center itself.
Consequently, wherever the functional areas and authority for administration

of those areas are located in the system, then those costs should be charged

at those appropriate places.

3. DECISIONS AT LOWER ECHELONS

The preceding analysis focused on macro and some middle level decision
making models in a regional system. In this section, we discuss decisions on
inventory control, issuing, and crossmatch release policies at lower levels
in the modeling hierarchy. These decisions impact the decisions at the
higher levels since they affect the system cost structures mentioned in the
previous section. ,

The basic community blood center scheme is that of a '"wheel' structure

as shown in Figure 2, which is another view of Figure la.

[ Blood

\
- | Community jeor!
1
B Center “‘-*———:

Figure 2

The Community Blood Center and Its
Satellite Transfusion Service (TS's)
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The community blood center acts as the hub of activities for its
satellite blood banks and transfusion services. In the centralized system,
the central blood bank supplies a number of TS's and maintains the authority
to redistribute all blood in the system. Most TS's maintain a supply of whole
blood and/or packed red cells. Other components may also be maintained at
some facilities.

Another way to view a CBB and the decisions needed to answer the ques-
tions posed earlier is shown in Figure 3. In this figure, the CBB is shown
at the top and the lines represent the flow of units through the different
activities and TS's in the system. That is, Figure 3 is a schematic drawing
of the inputs, outputs, and flows in a centralized system. Some of the
decisions needed by the CBB are shown in the diamond-shaped boxes. The vari-
ables SO’ Sl,...,SN

the CBB and at the TS's in order to meet the system needs without excess out-

represent the number of units needed on hand each day at

dates. Of course, the Si‘s are different for each ABO-Rh type and each
component4 and they change over time depending upon the changing needs at the
TS's.

Basically the inventory flow system for the CBB operates in the follow-
ing manner. Forecasts of future ABO-Rh blood needs and component needs are
made. The CBB periodically constructs mobile phlebotomy schedules and fore-
casts the corresponding quantities to be drawn at each mobile site. Individ-
ual drawings are also often made at the CBB itself and/or its TS's. These
drawings are scheduled to meet the forecasted demands at the TS's and maintain
a stock of inventories on hand at the CBB. On a daily, semi-weekly or weekly
basis depending on the level of activity and proximity to the CBB for each TS,
orders to the TS's must be filled.

After the CBB receives all the requests from the TS's, the orders are
filled by drawing from the inventories in the CBB. The decision policy as to

which units to send is called the issuing policy. The most common issuing

policies are first-in-first out (FIFO) or last-in-first-out (LIF0). For
purposes of simplification as well as good medical practice, each ABO type
and Rh factor is considered independent of the other types and Rh factors.
When the sum of all TS demands for whole blood/packed red cells (WB/PRC's) or
for particular components exceeds the total inventory in the CBB, the CBB may
backlog the excess demand or may fill all demands by calling in donors, by

contacting other CBB's, by using frozen packed red cells if appropriate, or

4There are many derivative products which comprise whole blood and which can

be separated from the whole blood. These derivatives are called components.
Some commonly derived components are: platelets, granulocytes, leukocyles,
cryoprecipitate,plasma and red cells.
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by requésting an emergency shipment from still higher echelon blood banks.
The CBB uses different approaches to handle the excess demand depending upon
whether the orders are routine or emergency.

Two examples of mathematical models to analyze the inventory levels for
fresh red cells, frozen red cells and platelets are given here. Models for
issuing and allocation of blood units are given in Yen [1975], Pierskalla and

Roach [1972]} and Prastacos, et al., [1977].

4. A TWO PRODUCT PERISHABLE/NON PERISHABLE INVENTORY PROBLEM

As units of blood are drawn from donors they may be refrigerated, in
which case the shelf 1life is twenty-one days, or frozen, in which case the
shelf life is 365 days, which for all practical purposes is non-perishable.
When demands exceed the available supply of fresh blood, frozen blood may

then be thawed.

The One Period Model

We will make the following assumptions:

1) All orders are placed at the start of a period and received

instantly.
2) All stock arrives new.

3) Demands in successive periods are independent identically
distributed random variables with distribution F and density

f. In addition we will assume that f(t) > 0 when t > 0.

4) Inventory of product 1 (the perishable product) is
depleted according to a FIFO policy.

5) All costs are linear. They include:

a) Ordering in both products (at unit costs ¢, and
c2) charged at the start of the period;

b) Holding in both products (at unit costs h. and
hz) charged on what is on hand at the end of

the period;

¢) Shortage (at unit cost r) charged on the un-
satisfied demand at the end of the period (the
shortage cost is either the cost of emergency
shipments from some source on the marginal
cost of an additional day in the hospital for
postponed surgery);

d) Outdating (at unit cost 6) charged on what
deteriorates at the end of the period.

6) If product 1 has not been depleted by demand before reaching
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age m-periods, it must be discarded at the unit cost

given in 5(d).

7) There is a single demand source. Demands first deplete from
product 1 (the perishable product) and then product 2.

Excess demand is backlogged in the second product.

A number of the assumptions may be relaxed or altered. It should be
noted that assumption (4) is quite mild. The optimality of FIFO for deple-

tion of perishable inventory has been established under far more general
circumstances (Nahmias [1974] and Pierskalla and Roach [1972]).

The approach will be to charge the outdating cost against the expected
outdating of the present order which will not occur for m periods. The
motivation behind this method is discussed in Nahmias [1975]. 1If

X = (xm ,xl) is the vector of perishable inventory on hand, x; = number

BREERE
of units on hand which will outdate in exactly i periods, and y is the amount
of new perishable inventory ordered, then it has been shown that the
expression fg Gm(u; x)du represents the expected outdating of y, m periods

into the future, where

t
Gn(t; f(n—l)) = g Gn—l(xn—l + V; 5(n—2))f(t—v)dv
1 if t>0
for 1 <n <m; x(n) = (x ,...,xl) and GO(t) = . For each
~ n 0 if t<0

n>1, Gn(t; x(n-1)) is a C.D.F. in its first argument, and may possess a
discontinuity at t = 0.

Letting x2 = amount of product 2 on hand,

Z amount of product 2 on hand after ordering,

the total expected cost of ordering y of product 1 and z - x2 of product 2

is
X+y y 2
c.y + h, [ (x+y-t)f(t)dt + 8 S G (u; x)du + c,(z-x") + h,zF(x+y)
1 1 0 o ™ ~ 2 2
X+y+2z o
+ h2 S (x+y+z-t)£(t)dt + v [ (t-x-y-z)f(t)dt
X+y X+y+z
m-1 2
where x = I X for convenience. Collecting all terms independent of x~ we

i=1
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will write this as L(§, Y, z) - c2x2. A point which should be noted here is
that the decision variables for each product have different interpretations:

y represents the actual quantity of product 1 ordered, while z is the inventory
level of product 2 after ordering. Our interest in the single period model is

secondary to that of the multi-decision dynamic problem. The optimal ordering

policy over the finite horizon will satisfy the functional equations

(o]

C_(x, x2) = inf {L(x, vy, 2) - ¢ NI afC. (s, (x, y, t), s, (x+y, z, t))f(t)dt}
n-~ < 0 n-121°~ 2

y>0 2

2
z>X

for 1 < n < N(N is a fixed positive integer). The transfer functions are

given by:

Sy, ) = sy oy (K ys t)heeinsy ) (Y, 1))

where i
: + +

S1.i (X, ¥y, t) = (x5, - (t - j£1 xj) )}, 1<1i<m1

(we interpret X = y)

and 52(x+y, z, t) = z - (t-(x+y))+ where g+ = max(g, 0). The discount factor
is o £(0, 1).

Again collecting all terms independent of xz, we will write

e
C_(x, x2) = inf {B (x, y, z) - ¢, x"}
n n-x 2
y>0

Qixz
in which

B (x, ¥y, z) = L(x, y, z) + aém Cho1 (81X, vy, ), s, (xvy, z, t))E(r)de.
The functions Cn(f’ xz) have the usual interpretat%on as the minimum expected
discounted cost for an n period problem when (5, x7) is on hand. As is
customary with dynamic programming models, the periods are numbered backwards.
The goal of our analysis will be to answer the two questions: when should

an order be placed and how much of each product should be ordered?
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The Ordering Regions

It becomes notationally and mathematically convenient to introduce the
assumption that inventory remaining at the end of the horizon can be salvaged;
inventory of product lzremaining may be salvaged at a return c X and of pro-
duct 2 at a return c¢,x”. Backlogged demand in product 2 may be made up by an

2
emergency order at a cost - czxz. That is,

Co(x, x2) = - X - czxz.

The assumption is identical to that made by Veinott [1965] in the analysis of
non-perishable multi-product problems. The convenience of this assumption
is that the somewhat artificial fact that the problem terminates in a given
time horizon with inventory remaining is removed and the problem behaves more
like a problem under steady state conditions. In some inventory problems this
assumption allows the decomposition of the n-period problem into n one-period
problems which are easier to solve.

In addition we will make the following four assumptions regarding the

cost parameters:

ii) 0 < ¢, <c
iii) r > (1—a)c2

iv) O 5_(1—@)(c2 - cl) + (h2 - hl) < 9

Since perishable inventory must often be stored under special conditions,
assumption (i) 1s not unreasonable. Assumption (ii) is necessary to insure
that it is economical to stock product 1. Assumption (iii) is a usual one
made for non-perishable inventory (Arrow, et al., [1958]). The expression
of assumption (iv) is precisely the difference in the costs of procuring and
holding one unit of each type of inventory and salvaging it the following
period. If this term were negative then it would never be optimal to order
in product 1 ; or if it exceeded the unit cost of outdating, it would never
be optimal to order to a positive level in product 2.

We will have need to refer to the following constants in the analysis

of theordering regions in the first period:
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u* ) F'l r—cz(l—ai]
h T+h,

. _l[r-cl(l—oc) + (h, - hl):l
w =F .
r+h2

When F is strictly increasing, assumptions (iii) and (iv) guarantee that
* *
u and w both exist and are strictly positive. If the additional condition

ac is satisfied (although we will not require it to be), then we

% Y R c1 + acz
v =F s
2

With the inclusion of the salvage value assumption it follows from the defini-

2 " hy <o

may also define the constant

tion of the transfer functions that

m-~1
Bl({(l Y, Z) = L(’f: Y Z) + (XF(XI)[— cl(y + 152 xi) - CZZ]
X+y
- ucl}g (x+y-t)£(t)dt - acz[FZ(x+y) - F(x)]z
1
- ac, S (x+y+z-t)f(t)dt)
x+y

We will adopt the following notational convention: if h: R -+ Rl and
h e C(Z), then h(l) is the first partial derivative of h with respect to its
ith argument and h(l’J) is the second cross partial derivative with respect
.th .th .
to the 1— and j— arguments respectively.

We have the following

THEOREM II.4.1: Bl(x, ¥y, z) 1is convex in (y, 2z) for all non-negative x. The

functions yl(x), z, (x) solving B, (x, y,(x), z,{(x)})= min{Bl(x, y, z)} satisfy
() z 12 12 71 12 th z
B

1 (5, y1(§), zl(x)) = B£m+1)(x, yl(f), zl(x)) = 0 and are unique for all X.

Since yl(x) > 0 for all x, a necessary and sufficient condition that it
be possible to order to the global minimum of Bl(x, y, 2z) is x2 < zl(x). If
xz‘i zl(x), it may still be optimal to order product 1. 1In this case we

define the function pl(x, x2) to satisfy

B, (x, py(x, %), x%) = inf (B, (x, v, x)).
y

If pl(g, x2) > 0 then it is optimal to order this amount of product 1.
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Hence the following characterization follows:

THEOREM IT.4.2: A necessary and sufficient condition that it is optimal to

order a positive amount of product 1 is Bfm) (x, 0, xz) < 0. If one reasons
analoguously to THEOREM II.4.2, then it is tempting to assume that

+ 2 . . cLos . .
Bfm D (x, 0, x™) < 0 implies it is optimal to order in product 2. However

this is not the case. To see why, let t(§, y) satisfy B£m+1) (g,y,t(f,y)) = 0.

Differentiating implicitly with respect to y we obtain

(m+1, m)
- B (x, y, t(x, ¥))
t™ x, y) = L g = <o.

B L L) oy, i, )

Since t(g, yl(f)) = 21(5) and yl(x) > 0 it follows that t(x, 0) > zl(x). If

2 . o
x  satisfies Zl(f) f_xz < t(x, 0) then B{m+1) (x, 0, x2) < 0 and it is optimal

not to order in product 2.

Hence there are exactly three distinct ordering regions:

Region I - Optimal to order in both products: x2 < zl(x),

Region IT - Optimal to order in product 1 only: x2 i_zl(x)
B{m)(x, 0, xz) <0(p1(x, x2) > 0.

Region III - Optimal not to order: Bfm)(x,o,xz) >0, (pl(x, xz) < 0.

Note from the proof of THEOREM II.4.2 that if it is optimal to order in

product 2 then it is optimal to order in product 1. The boundary between
Regions I and II is quite complex, as it depends on the entire vector (f’ x2).
However the boundary between Regions II and III depends on the vector X only
through the sum of its components, x.

Define g(x) = (1/r+h))) - {r+ac2 - ¢ - F)[(hy - hy) +a(c, - clj]}.
Then

- s 20 ..
THEOREM II.4.3: A necessary and sufficient condition that (x, x7) is in

Regions I or II is that

F(x + x2) < g(x).

The function g(x) is strictly decreasing in x with g(+®) = F(w*). If
the condition ac, - h2 < ¢ is satisfied then F(w*) <g(x) <1 for all x>0
and v = F 1 (g(0)) will exist. Howeveﬁ, if ac, - h2 > ¢ thfn“g(o) >1. 1In
this case there exists a unique number p > 0 which solves g(p ) = 1. The

. . 2
boundary between Regions II and III may be pictured in the (x, x°) plane
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x+x2=F" [g(x)]

REGION III

REGION 1

)|(+)<2=u”-y1 (5) Xox2=u*-y, (5)

[a] @C,-h, <C, [b] «C,-h,=C,

FIGURE 4. 7WHE ORDERING REGIONS
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independent of m. Figure 4 pictures this boundary for each of the two cases
above. The boundary between Regions I and II may be pictured in the (x, x2)
plane only if m = 2, The arrows indicate the inventory position after order-
ing. Notice that (x, X ) € Region I guarantees that x + yl(x) + z (x)
(which follows from B§ L (x yl(x), z (x)) = 0) while (x, x7) € Reglon II
will yield F(x + x2 + pl(x, x7)) < gx + pl(x, X ))

These results can be extended to the multiperiod dynamic problem.
Even with the inclusion of the salvage value assumption, neither the ordering

regions nor the ordering policies are stationary in time.

5. A BY-PRODUCT PRODUCTION SYSTEM WITH AN ALTERNATIVE

The idea behind this example is that components are made from whole
blood, e.g., red cells and platelets. In such cases, two simultaneous
decisions must be made. First, the inventory level of each product must be
determined to best meet (random) demands. Second, the best (optimal) produc-
tion level (e.g., number of runs) must be determined to achieve these
inventories. Often these decisions cannot be made independently because pro-
duction capacities or design characteristics of the production lines may
prohibit arbitrary combinations. The system we consider is describe in
Figure 5. There are two inventory items, called products 1 and 2, and two
different production processes called types A and B. Type A is capable of
making both products, simultaneously, according to the production coefficients

7, and n,- When type A is operated at the unit level (e.g., a single run),

1
ny and n, units of products 1 and 2 are obtained. We choose to call type A
a by-product production process due to its multi-product capability. Type B
is a single item production process and is capable of making only product 2.

In this context, type B is the alternative method of obtaining product 2.

————————‘~—1 STOCHASTIC
P

RODUCT 1 DEMAND 1

TYPE A

STOCHASTIC
DEMAND 2

PRODUCT 2

TYPE B

FIGURE 5

Block Diagram of the Production System
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The model is of the periodic review type, where the planning horizon is
N periods long. At the beginning of period n, n=1,2,...,N, the initial
(Xn,l’ xn,Z) are reviewed, where Xn,j is
the initial inventory of product j, j=1,2. Then, the starting inventories

inventories (before production) X, =

(stock levels after production but before demand) Yy = (yn 1* Y 2) and the
1] ¥y
the production levels P, = (pn,A,«pn’B) are jointly determined. yn’j is the
starting inventory of product j, j=1,2 in period n and N the produc-
5 L]
tion levels of types A and B, respectively. Then, a random demand
D = (D

n n,l’ Dn,Z
that index N refers to the first period and 1 refers to the last period. When

) is realized. We use a reverse recursion numbering scheme so

focusing attention to quantities within a period, we frequently drop the
period index on the above quantities.
The following is a list of specific assumptions governing the development

of our model.

1) Production Processes

It is assumed that each production process is controlled by specifying
the production level. For type A this level is Pps for type B it is Pp- Thus,
the amount of each product produced is (hlpA, Py * nsz). We assume that Ny
and n, are constant; they are not decision variables. For the present, we
assume that there are no lead times and that there are no upper bounds on

production.

2) Demands

We assume that Dn’ n=1,2,...,N form a sequence of nonnegative independent
and identically distributed random vectors with a continuous joint density
function f(-) and finite expected value. Although we allow dependencies among
demands within a period, we do require that Dn,j be satisfied only from

inventories of product j, j=1,2. It is further assumed that unsatisfied

demands are backlogged and are not lost.

3) Production Costs

a) A is the cost per unit of production on A;

b) g is the cost per unit of production on Bj

c) there are no fixed costs of production.

4) Inventory Costs
Let gi(-) be the holding and shortage cost for product i, i=1,2, over

any single period. We define the expected total holding and shortage over any

period as given by
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oo

L) =/ J [gy(yy - t) + g,(y, - W] £(t, u)dt du.
0

o 8

We assume that
a) L(-) is strictly convex over Rz;
b) L(-) has continuous second partial derivatives;

1
c) n (cp - Mycplyy + cpy, + Lly) >+
whenever ||y|| =+« (where ||.|| is the Buclidean norm). (3) assures the

existence of an optimal policy.

5) Discount Parameter

Let a € [0, 1]. o denotes the parameter which relates costs in future
periods to the present.

We use the following notation for derivatives and partial derivatives of
functions. For a twice continuously differentiable scalar function h(x), let
h'(-) and h"(-) represent its first and second derivatives, respectively. For

a function g(-) defined on Rn with continuous second partial derivatives, let

e o - 5%; gx)  ,  i=1,2,....n

2
(i,3) -9 i
g (X) - axj axl g(x): 1,3-1’2"")n'

The problem is to determine a policy that leads to the minimum. expected
discounted costs over the N period horizon. This leads to an optimization
problem that is most easily conceptualized as a dynamic programming problem,
Before formulating the dynamic program, we first show the relationship between
a feasible set of production levels p = (pA, pB) and starting inventory levels
y = (yl, y2) given any initial inventory x. Given p and x, the starting

inventories y must satisfy
Y1 TMPA T Y
Yy T MaPp T Pg * %y

Given y and x, the production levels p are determined by
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1
P, = (ry - %)
A my 1 1
n‘2 _ nz nz
PB= (yZ _?]—_yl) = (xz“ﬁ—xl) =‘)’2‘ (X2+ﬁ—_(yl _Xl))
1 1 1

Although the dynamic program is most easily defined in terms of p anx x, we
favor using y and x since they characterize the optimal policy.
The dynamic programming recursion is given by
. 1
cn(x) = inf {Gn(y) - Ay (cA - nch)x1 - chz}

subject to

71

jv
™

for

+a [ S Cn_l(y1 -ty Y, - u)f{t, u)dt du
00

where n=1,2,...,N, Yy € R2 and CO(x) = 0 for all x.
The first result is of a purely technical nature, but provides the

properties of Cn(-) and Gn(-) crucial to the characterization theorem.

THEOREM IT.5.1: Under the assumptions made above, the following hold.

1. Gn(;) is continuous and strictly convexX.

2. All sets of the form Qn(B) = {ye R,3 Gn(Y)-ﬁ g} are

compact and convex for each bounded B € R.

3. The point yn(x) that solves the constrained dynamic program
exists and is unique. Hence, inf can be replaced by min for

each bounded x € R2 and n=1,2,...,N.
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4, Cn(-) is convex and nonnegative on RZ"

The optimal policy, yn(x) is completely characterized by a point
S = (S

n n,1’
graphically described in Figure 6. Each arrow represents the path from an

Sn,Z) and three scalar functions rn(-), wn(»), and qn(~) as

initial inventory (the tail) to its beginning inventory (the head) by some
production combination. 1In Region I both A and B are used and notice that the
starting inventory level will always be Sn' In Region III only type B is used
so the starting stock always lies on the graph of qn(~). In Region II only A
is used. The path from x to yn(x) in this region is a line parallel to wn(-).
It is also important to point out that rn(~), wn(~) and qn(-) are functions of
X; -

Many of the assumptions in this example can be relaxed or removed so the
model is more realistic. The demands and costs may be nonstationary, the
production capacities may be finite, unmet demands may be lost, fixed lead
times may be incorporated and the general m-process-n-product case follows
naturally.

In summary, then the analysis presented in these section allows one to
look at the economics of regionalization, including the location of community
blood centers, the allocation of hospital blood banks and transfusion services
to them, and the costs of different structures for a region., As mentioned at
the beginning, these are not the only variables which one would want to con-
sider in implementing a regional system. However, they are extremely
important variables since they affect the system operation and its short and
long-run costs. These costs in turn affect the subsequent charging mechanisms
for blood and components to the patient. This quantitative analysis is a

guide to making important decisions in a more enlightened manner.

6) Concluding Remarks

Finally, it is hoped that the preceding analysis has communicated to
the reader some of the flavor of past and current research in several
pertinent methodological areas of Operations Research: Inventory Theory,
Facility Location, Vehicle Scheduling, and to a small extent Mathematical
Programming and Optimization of Stochastic Models. In addition it is hoped
the reader will be interested in pursuing the design and analysis of models
which better measure health care delivery phenomena and which lead to better

decisions for individuals and institutions in this important societal area.
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~ NO PRODUCTION
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Characterization of the Optimal Policy in Period n
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