APPENDIX C

Contents:

Instructions for BTAP User Exhibit C1

Exhibit C2 BTAP Computer Program

Example of BTAP Output Exhibit C3

The Mathematical Model and Algorithims for BTAP Exhibit C4

Appendix C1

1.	********************
2.	******* INSTRUCTIONS FOR BTAP USER **************
3.	******************
4. 5.	
6.	
7.	
8. 9.	
10.	
11.	
12.	July 1979
• .	
13.	
14.	This program is based on "BIAP: A Computer Program
15.	to Obtain Solutions to the Transportation-Allocation
16.	Problem and Other Travelling Salesman Type Problems" by
17.	Or and Pierskalla (1976)*. Several modifications are made
18.	to the original program:
19.	(a) Some machine dependent features are replaced by
20.	standard FORTRAN IV statements.
21.	(b) Plotting routines and program timers are not used
22.	in this version.
23.	(c) Five built-in options are available to the user
24.	for selecting the allocation algorithms.
25.	(d) The input instructions are simplified.
26.	(f) Bounds on the capacities of each blood banks can be
27.	specified.
28. 29.	
30.	
31.	* Or and Pierskalla, Dept. of Industrial Engineering and
32.	Management Sciences, Northwestern University, Evanston,

34. I. Program Options

35.	The current version of this program has five options for
36.	selecting the allocation and allocation improvement algorithms.
37.	In addition, vehicle routing and dispatching can be performed
38.	in each option. These five options are:
39.	Option 1: To find the optimal allocation and routing which
40.	minimize the expected emergency blood delivery
41.	cost.
42.	Option 2: To find the optimal allocation and routing which
43.	minimize the vehicle routing cost.
44.	Option 3: To find the optimal allocation and routing which
45.	minimize both emergency blood delivery and vehicle
46.	routine cost. An improvement algorithm is used to
47.	test pair-wise independent exchanges of hospitals
48.	between two banks for any possible cost saving.
49.	Option 4: Same as Option 3 except that the exchanges of
50.	hospitals are performed among several banks in
51.	various combinations. This option will slow down
52.	the program excution considerably but may yield
53.	better results.
54. 55. 56.	Option 5: To provide the allocation by user himself.
57.	For each option, the user should decide whether the vehicle
58.	dispatching and bounds on the blood bank capacities are to be
59.	used or not. The bounding method in this program is a penality

function technique. The penality for the excessive amount X over

61. the bound is given by the following function
62.

60.

63.

where [X / 1000] is the integer part of X/1000; a and b are

benality parameters. The values of a and b can be modified in

SUBROUTINE PNALTY. They are currently set at a=10, b=500.

67.

68. 69.

70. II. Input Instructions

71.

76.

77.

78.

79.

80.

81.

82.

83.

84.

72. This program needs two to three input files depending on 73. which program is selected. Files are numbered by the reading 74. unit in the program. File #3 and #5 are necessary for all 75. options: File #8 is needed only when Option 5 is used.

File #3 contains the informations for the geographical coordinates of hospitals and the corresponding emergency frequencies and expected blood usage. File #5 contains the program option control cards, number of blood banks, blood bank ID numbers, and bounds on the capacities for each bank. File #8 contains the allocation of hospitals assigned by the user. File #3 and #8 are assumed to be tape files or disk files. File #5 can be read in from keyboard or card reader. All of them are card image files.

85. The details in each file are listed below:

86. 87.	a) File (±3	-	
88.				
89.	Card	Column	Format	Information
90.				***************************************
91.	1	1-4	14	Number of hospitals, n
92.	2	1-5	£5.0	X-coordinate of hospital 1
93.		6-10	F5.0	Y-coordinate of hospital 1
94.	•	11-15	F5.0	Expected number of emergency deliveries
95.				per period for hospital 1
96.	3	;	same as ca	rd #2 for hospital 2
97.	4		same as ca	ri #2 for hospital 3
98.			,	
99.				
100.				
101. 102.		-		
103.	n	9	same as ca	rd #2 for hospital n
104.	n+1	1-4	14	Hospital index
105.		5-10	16	Amount of blood used per year in this
106.				hospital
107.	n+2		same as ca	rd #n+1
108.	n+3	9	same as ca	cd #n+1
109.				
110.				
111.		-		
112.		-		
113.				
114.				
115.	2n+1	9	same as ca	rd #a+1
		_		

	116. 117.	b) File	# 5		
	118. 119. 120.	Card	column	Fromat	Information
	121.	1	1-2	I2	Number of blood banks, m
	122.		3-7	15	Inlex of hospital which is used as bank 1
	123.		8-12	I 5	same as above bank 2
	124. 125.		13-17	I5	same as above bank 3
	126. 127. 128.		• • • • • •		••••••
	129.	2	1-2	12	Inlax of the options to be used.
	130.		4	L1	'I' if bounds are used for the capacities
•	131.				of each bank; 'F' if not used.
	132.		5	L1	*I* if wehicle dispatching is to be
	133.				performed; 'F' if not.
	134.		(The	followin	q columns are needed if column 5 is T.)
	135.		6-10	15	Maximum number of stops allowed for each
	136.				vahicla
	137.		., .,	15	Carrying capacity for each vehicle
	138. 139.		lowing ca is T.)	rd(s) is	necessary only when column 4 of the second
	140. 141. 142.	3	1-10 11-20	I10 I10	Lower bound for bank 1 Upper bound for bank 1
	143. 144. 145.	·	21-30 31-40	I10 I10	Lower bound for bank 2 Upper bound for bank 2
	146. 147.		41-50 51-60	I10 I10	bank 3
	148. 149. 150. 151.		••••••	• • • • • • • •	
	152. 153. 154. 155.	4	1	I1	SYSTEM COST OPTION. OPTIONS 1 THROUGH 4 COMPUTE THE COST FOR BOTH THE REGION AND THE CENTRAL BANKS. OPTION 5 COMPUTES THE COST ONLY FOR THE CENTRAL BANKS.

```
157.
           c) File #8
158.
              (This file is needed only when Option 5 is chosen.)
159.
160.
161.
162.
             Card Column
                          Format Information
163.
164.
             1
                    6-10
                             I5
                                   Index of the bank to which hospital 1 is
165.
                                   assigned.
166.
                    11-15
                             15
                                                               hospital 2 ---
167.
                    16-20
                             15
                                                               hospital 3 ---
168.
                     • • •
                             • •
                                    • • • • • • • •
169.
                     • • •
                             • •
                                     • • • • • • • •
170.
                    50-55
                             15
                                                              hospital 10 --
171.
             2
                    6-10
                             15
                                                              hospital 11 --
172.
                    11-15
                             I5
                                                                        12 --
                                    ------
173.
                     • • •
                                    • • • • • • • •
174.
                     • • •
                             • •
175.
                    50-55
                             I5
                                                                        20 --
176.
177.
178.
                     179.
                        and so on ....
180.
181.
                                    ------
                                                              hospital n ----
182.
183.
          **** Note 1: Format I indicates an integer without decimal point.
184.
185.
                        Format F indicates a real number with a decimal point.
186.
          ****
                        Format L indicates a 'T' or 'F'.
187.
          **** Note 2: The maximum number of hospitals allowed is 150; the
188.
                        maximum number of banks allowed is 10.
          **** Note 3: When bounds on the capacities are used, the SUBROUTINE
189.
190.
                       TEST performs interchange testing even when the
191.
                       direction of caange may increase the value of the
192.
                       penality function. It is very inefficient but the
193.
                       current program structure only allows such testing.
```

```
1.
         //BTAP JOB (T595,005F,2,005,AA), DEUERMEYER
 2.
         /*LEVEL
         /*JOBPARM R=192
 3.
 4.
         // EXEC FORTX, REGION=192K
 5.
         //GO.FT07F001 DD SYSOUT=A
 6.
         //GO.FT03F001 DD DSN=WYL.AA.TQT.FILE3,DISP=SHR
 7.
         //GO.FT08F001 DD DSN=WYL.AA.FQF.FILE8.DISP=SHR
 8.
         //SOURCE DD *
 9.
                COMMON/C/IBANK(10), NUM(50), IHULL(300,3)
10.
                COMMON/BKSQ/NHOSP, NBANK
11.
               LOGICAL VDP, TIMES, ALLOC1, ALLOC2, PLOTA1, PLOTA2
12.
               LOGICAL IMPRV1, IMPRV2, OPTION (4, 10), BOUND
13.
                INTEGER VCAP
14.
               COMMON/OPT/OPTION, PLOTA1, PLOTA2, TIMES
15.
               COMMON/BDD/BOUND, LVOL(5), MVOL(5)
16.
               COMMON/CO/JD
           311 FORMAT (/2X, COMPUTATIONS ARE NOW STARTING, TIME IS ',F3.3/)
17.
           312 FORMAT (/2X, ROUTINGS BASED ON ALLOC1 ARE COMPUTED, TIME IS 1, F8.3
18.
           313 FORMAT(/2X, ROUTINGS BASED ON ALLOC2 ARE COMPUTED, TIME IS ',F8.3
19.
           314 FORMAT (/2X, 'ALL INDEPENDENT EXCHANGES ARE TESTED, TIME IS ', F8.3)
20.
          315 FORMAT (/2X, DEPENDENT EXCHANGES ARE TESTED, TIME IS ', F8.3)
21.
           316 FORMAT(/2x, MULTIPLE VEHICLE SOLUTION IS COMPUTED, TIME IS ', F8.3
22.
23.
                READ (5,300) NBANK, (IBANK (J), J=1, NBANK)
24.
               WRITE (6,901) NBANK, (IBANK (J), J=1, NBANK)
25.
               READ (5,301) KOPT, BOUND, VDP, MSTOP, VCAP
26.
          301
               FORMAT (12, 1x, 2L1, 215)
27.
               WRITE (6,701) KOPT
28.
          701
               FORMAT ( PROGRAM OPTION #1, 12, 1 IS USED)
29.
               FORMAT (' NUMBER OF BANKS = ', 12, ', BANK ID #= ', 1014)
          901
30.
          300 FORMAT (I2, 10 (1X, I4))
31.
               ALLOC1=OPTION(1,KOPT)
32.
               ALLOC2=OPTION (2, KOPT)
33.
               IMPRV1=OPTION (3, KOPT)
34.
               IMPRV2=OPTION (4, KOPT)
               WRITE (6,702) (OPTION (J,KOPT), J=1,4), BOUND
35.
36.
           702 FORMAT(1X///* ALLOCATION PARAMETERS: ',4X,'ALLOC1',2X,'ALLOC2',
              62x, 'IMPRV1', 2x, 'IMPRV2', 3x, 'BOUND'/25x, 5 (7x, L1))
37.
38.
               IF (.NOT.BOUND) GO TO 88
39.
               READ (5,801) (LVOL (J), MVOL (J), J=1, NBANK)
40.
           801 FORMAT (8110)
41.
               WRITE (6,802)
42.
           802 FORMAT (* BOUNDS ON THE VOLUMES FOR EACH BANK: 1//6X,
43.
              S'BANK', 4X, LOWER BOUND', 2X, 'UPPER BOUND')
44.
               DO 89 J=1, NBANK
45.
           89
               WRITE (6,803) J, LVOL (J), MVOL (J)
46.
          .803 FORMAT (8X, I2, 5X, I10, 3X, I10)
47.
            88 CONTINUE
               WRITE(6,304) VDP, MSTOP, VCAP
48.
               FORMAT (1X///* DISPARCHING PARAMETERS: ', 7X, 'VDP', 3X, 'MSTOP', 4X,
49.
          304
50.
              \varepsilon'VCAP'/32X,L1,2(3X,I5))
51.
               READ(5,305) JD
           305 FORMAT (I1)
52.
53.
               WRITE (6, 308)
```

```
54.
            308 FORMAT (//)
55.
                 WRITE (6,303) JD
 56.
            303 FORMAT (/2X, 'SYSTEM COST OPTION: ',2X,11)
 57.
                CALL READ1
 58.
                CALL DISMAT (2.0)
 59.
                 IF (.NOT.TIMES) GO TO 1
 60.
                 X = SECOND(X)
 61.
                WRITE(6,311) X
 62.
              1 CONTINUE
 63.
                IF (.NOT. ALLOC1) GO IO 20
 64.
                CALL ALOC1 (3.0)
 65.
                CALL TRAVEL(0)
 66.
                IF (PLOTA1) CALL PLOTNG (), NBANK, NBANK)
 67.
                IF (.NOT.TIMES) GO TO 23
 68.
                X = SECOND(X)
 69.
                WRITE (6,312) X
 70.
             20 IF (.NOT. ALLOC2) GO TO 40
 71.
                CALL ALOC2 (3.0)
 72.
                CALL TRAVEL(1)
 73.
                IF (PLOTA2) CALL PLOTNG (1, NBANK, NBANK)
 74.
                IF (.NOT.TIMES) GO TO 40
 75.
                X = SECOND(X)
 76.
                WRITE (6,313) X
          . 40
 77.
                KX = 0
 78.
                IF ((.NOT. ALLOC1) .AND. (.NOT. ALLOC2)) KX=-2
 79.
                IF ((.NOT. ALLOC1) .OR. (.NOT. ALLOC2)) GO TO 41
 80.
         C
 81.
                IF (IMPRV1) CALL IMPROV(1)
 82.
                IF (IMPRV2) CALL IMPROV(2)
 83.
                IF (.NOT.TIMES) GO TO 41
 84.
                X=SECOND(X)
 85.
                IF (IMPRV1 .AND. TIMES) WRITE (6,314) X
                IF (IMPRV2 .AND. TIMES) WRITE(2,315) X
 86.
 87.
             41 CONTINUE
 88.
                IF (.NOT. VDP) STOP
 89.
                IF (ALLOC2) KX=1
 90.
                IF (IMPRV1 .OR. IMPRV2) KX=-1
 91.
                CALL DISPAC (KX, MSTOP, VCAP)
92.
                IF (.NOT.TIMES) STOP
 93.
                X=SECOND(X)
94.
                WRITE (6, 316) X
 95.
                STOP
 96.
                END
 97.
                BLOCK DATA
98. .
                LOGICAL BOUND, OPTION (4, 10), PLOTA 1, PLOTA 2, TIMES
 99.
                COMMON/OPT/OPTION, PLOTA1, PLOTA2, TIMES
100.
               DATA PLOTA1, PLOTA2, TIMES /. FALSE. , . FALSE. , . FALSE. /
101.
               DATA OPTION/.TRUE.,.FALSE.,.FALSE.,.FALSE.,.FALSE.,.TRUE.,
102.
              . & . FALSE., . FALSE., 3*. TRUE., . FALSE., 2*. TRUE., . FALSE., . TRUE.,
103.
              84*.FALSE.,20*.FALSE./
              END
104.
105.
               SUBROUTINE READ1
106.
               COMMON /E/X(150), Y(150), ALFA (150), IBLAD (150)
107.
             COMMON/BKSQ/NHOSP, NBANK
```

```
108.
                    COMMON/K/TSCOST (9), ENCOST (5), NBLAD (5)
   109.
                102 FORMAT (3F5.0)
   110.
                104 FORMAT (14, 16)
   111.
                    DO 2 I=1,150
   112.
                  2 \text{ IBLAD}(I) = 0
   113.
                    READ (3,700) NHOSP
   114.
                     WRITE (6,701) NHOSP
              701
   115.
                    PORMAT(1X/// NUMBER OF HOSPITALS=', 14)
               700 FORMAT (14)
   116.
   117.
                    IF (NHOSP.GT. 150) STOP
   118.
                    DO 1 N=1, NHOSP
   119.
                  1 READ (3, 102) X(N), Y(N), ALFA(N)
   120.
                    DO 10 J=1, NHOSP
  121.
                    READ (3, 104) I, IBLD
  122.
                    IBLAD(I) = IBLD
   123.
                 10 CONTINUE
  124.
                    RETURN
   125.
                    END
   126.
                    SUBROUTINE DISMAT(Z)
   127.
                    COMMON /E/X(150), Y(150), ALFA(150), IBLAD(150)
   128.
                    COMMON/BKSQ/NHOSP, NBANK
   129.
                    COMMON/CMM/DM (11325)
  130.
                    N=NHOSP
              ٠.
  131.
                    DO 16 I=1, N
   132.
                    II1=I-1
... 133.
                    I1=I-1
  134.
                    KK = II1*N-(I*I1)/2
... 135.
                    DO 16 J=I,N
. 136.
                    DUM = (Y(I) - Y(J)) **2 + (X(I) - X(J)) **2
  137.
                    K = KK + J
  138.
                16 DM(K) = SQRT(DUM)
  139.
                    RETURN
  140.
                    END
   141.
                    SUBROUTINE ALOC1 (Z)
10 142.
                    COMMON/A/IHOSP(150,5)/E/X(150),Y(150),ALFA(150),IBLAD(150)
  143.
                    COMMON/K/TSCOST(9), EMCOST(5), NBLAD(5)
                    COMMON/C/IBANK(10), NUM(50), IHULL(300,3)
 . 144.
   145.
                    COMMON/BKSQ/NHOSP, NBANK
   146.
               100 FORMAT (5X, 1015)
  147.
                    N=NHOSP
  148.
                   DO 1 I=1, NBANK
  149.
                    EMCOST(I)=0
  150.
                    NBLAD(I) = 0
  151.
                    NUM(I) = 0
  152.
                 1 CONTINUE
  153.
                   DO 5 I=1,N
  154.
                    II=IBANK (1)
  155.
                   DUM=DMAT (I, II)
  156.
                    NBR=1
  157.
                    IF (NBANK. EQ. 1) GO TO 6
  158.
                   DO 4 J=2, NBANK
  159.
                    KK=IBANK (J)
  160.
                   DMT=DMAT (I,KK)
                   IF (DMT.GE.DUM) GO TO 4
  161.
```

```
162.
                  DUM=DMT
163.
                 NBR=J
               4 CONTINUE
164.
165.
               6 CONTINUE
166.
                 IHOSP (I, 4) = NBR
167.
                 NUM(NBR) = NUM(NBR) + 1
168.
                 EMCOST (NBR) = EMCOST (NBR) + ALFA (I) *DUM
169.
                 NBLAD(NBR) = NBLAD(NBR) + IBLAD(I)
170.
               5 CONTINUE
171.
                 WRITE(7, 100) (IHOSP(I, 4), I=1, N)
172.
                 RETURN
173.
                 END
174.
                 SUBROUTINE ALOC2 (Z)
                 COMMON/A/IHOSP(150,5)/D/CANDID(600,4), IADRES(600)
175.
176.
                 COMMON/C/IBANK (10), NUM (50), IHULL (300,3)
                 COMMON /E/X(150), Y(150), ALFA(150), IBLAD(150)
177.
178.
                 COMMON/K/TSCOST(9), EMCOSI(5), NBLAD(5)
179.
                  COMMON/BKSQ/NHOSP, NBANK
180.
            100 FORMAT (5X, 1015)
181.
                 N=NHOSP
182.
                 NSIZE=0
183.
                 KPOINT=0
184.
                 DO 5 I=1,N
185.
              5 IHOSP(I, 3) = 0
186.
                 DO 6 J=1.NBANK
187.
                 EMCOST(J) = 0
188.
                 NBLAD(J) = 0
189.
                 JJ = IBANK(J)
190.
              6 IHOSP(JJ, 3) = J
191.
                 DO 10 I=1, NBANK
192-
                 II=IBANK(I)
                 ISTAR=II
193.
194.
                 DO 7 MM=1,3
195.
                 DMIN=9999
                 DO 9 J=1,N
196.
197.
                 IF (IHOSP(J_3) .NE. 0) 30 TO 9
198.
                 DJ=DMAT(II,J)
199.
                 IF (DJ.GE.DMIN) GO TO 9
200.
                 DMIN=DJ
201.
                 IEND=J
202.
              9 CONTINUE
203.
                 IHOSP(IEND, 3) = I
204.
                 CALL PFIND (NSIZE, ISTAR, IEND, 0, 4, 4, 4)
205.
                 ISTAR=IEND
              7 CONTINUE
206.
207.
                 NUM(I) = 4
                 CALL PFIND (NSIZE, ISTAR, II, 3, 4, 4, 4)
208.
209.
             10 CONTINUE
                 MM=N-4*NBANK
210.
                 DO 30 JJ=1,MM
211.
212.
              11 KPOINT=KPOINT+1
                 ISTAR=IADRES (KPOINT)
213.
                 IBAR=CANDID(ISTAR, 2)
214.
215.
                 K1=CANDID (ISTAR, 3)
```

```
216.
                    K2=CANDID (ISTAR, 4)
   217.
                    IF (IHOSP (IBAR, 3) .EQ. 3) GO TO 25
   218.
                    CALL PFIND (NSIZE, K1, K2, KPOINT, 4, 4, 4)
   219.
                    GO TO 11
   220.
                 25 IGRUP=IHOSP(K1.3)
   221.
                    IHOSP (IBAR, 3) = IGRUP
   222.
                    NUM (IGRUP) = NUM (IGRUP) +1
   223.
                    CALL PFIND (NSIZE, K1, IBAR, KPOINT, 4, 4, 4)
   224.
                    CALL PFIND (NSIZE, IBAR, K2, KPOINT, 4, 4, 4)
   225.
                 30 CONTINUE
   226.
                    DO 40 I=1.N
 . 227.
                    IHOSP (I,5) = IHOSP(I,3)
   228.
                    IB=IHOSP(I.3)
 229.
                    IBK=IBANK (IB)
   230.
                    EMCOST (IB) = EMCOST (IB) + ALFA (I) *DMAT (I, IBK)
 . 231.
                39 NBLAD (IB) = NBLAD (IB) + IBLAD (I)
 . 232.
                 40 CONTINUE
   233.
                    WRITE (7,100) (IHOSP (I,5), I=1, N)
                    RETURN
   234.
   235.
                    END
   236.
                    SUBROUTINE TRAVEL (KX)
   237.
                    COMMON/C/IBANK (10), NUM (50), IHULL (300, 3) /B/IHULLA (150, 2)
 . 238.
                    COMMON/K/TSCOST(9), EMCOST(5), NBLAD(5)
 239.
                    COMMON/BKSQ/NHOSP, NBANK
   240.
                    N=NHOSP
   241.
                    ISTAR=0
   242.
                    DO 5 II=1, NBANK
   243.
                    MEM=NUM(II)
   244.
                    CALL CHULL1 (IC, KX, II)
. . 245.
                    CALL BOUND1(IC, TSCOST, KX, II)
                    IF (NUM(II) .GE. 5) CALL REFINT (TSCOST, KX, II)
 . 246.
   247.
                    DO 6 I=1, MEN
12 248.
                 6 IHULLA (ISTAR+I, KX+1) = IHULL (I, 1)
249.
                    ISTAR=ISTAR+NUM(II)
   250.
                 5 CONTINUE
   251.
                    CALL PRINTS (KX, 1, 1, 1)
   252.
                    RETURN
  253.
                    END
   254.
                    SUBROUTINE DISPAC(KX.STOPS.UNITS)
   255.
                    INTEGER BPRDAY, STOPS, UNITS
  256.
                    COMMON/A/IHOSP (150,5)
   257.
                    COMMON/BKSQ/NHOSP, NBANK
   258.
                    COMMON/C/IBANK (10), NUM (50), IHULL (300, 3) /B/IHULLA (150, 2)
                   COMMON/F/IBLDTR(50), IBFR(5), R(150), TETA(150), IPOL(100), NUMFR(50)
   259.
   260.
                   1, COST (9), IBLADT (9), IDUM (352)
   261.
                    COMMON/K/TSCOST(9), EMCOST(5), NBLAD(5)
   262.
                   COMMON/E/X(150), Y(150), ALPA(150), IBLAD(150)
   263.
               100 FORMAT (5X, 1015)
              200 FORMAT(1H1/9X, THE FOLL) WING ALLOCATION IS SUPPLIED EXPERNALLY 1//
   264.
              210 FORMAT (6X, 1015)
   265.
   266.
                   KK = KX
   267.
                    N=NHOSP
  268.
                   PI=3.141593
  269.
                   IF (KX .LT. 0) KK=0
```

```
270.
                 IF (KX \cdot NE \cdot -2) GO TO 3
271.
                 READ (8,100) (IHOSP(I,4+KK), I=1,N)
272.
                 WRITE(6,200)
273.
                 WRITE (6,210) (IHOSP (I,4+KK), I=1,N)
274.
               3 DO 5 IB=1, NBANK
275.
                 INUM=IBANK (IB)
276.
                 EMCOST(IB) = 0.0
277.
                 NBLAD(IB) = 0
278.
                 DO 4 I=1.N
279.
                 IF (IHOSP(I,4+KK) .NE. IB) GO TO 4
280.
                 DMT=DMAT (I,INUM)
281.
                 EMCOST (IB) = EMCOST (IB) + DMT
282.
                 NBLAD(IB) = NBLAD(IB) + IBLAD(I)
283.
                 IF (INUM .EQ. I) GO TO 4
284.
                 R(I) = DMT
285.
                 IF (X(I) \cdot EQ \cdot X(INUM)) 30 TO 1
                 TETA(I) = ATAN((Y(I) - Y(INUM)) / (X(I) - X(INUM)))
286.
287.
                 IF((Y(I)-Y(INUM))/(X(I)-X(INUM)).Lr.0.0) TERA(I)=TERA(I)+PI
288.
                 IF (Y(I) .GT. Y(INUM)) 30 TO 4
289.
                 IF (Y(I) .EQ. Y(INUM)) GO TO 2
290.
                 TETA(I) = TETA(I) + PI
291.
                 GO TO 4
292.
               1 IF (Y(I) \cdot GE \cdot Y(INUM)) \cdot FETA(I) = PI/2 \cdot 0
293.
                 IF (Y(I) \cdot LT \cdot Y(INUM)) \cdot FERA(I) = (3.0*PI)/2.0
294.
                 GO TO 4
295.
              2 IF (X(I) \cdot LT \cdot X(INUM)) rera(I) = PI
296.
              4 CONTINUE
297.
              5 CONTINUE
298.
                 ISTAR=0
299.
                 JSTAR=0
300.
                 DO 50 IB=1, NBANK
301.
                 INUM=IBANK (IB)
302.
                 TSCOST(IB) = 0.0
303.
                 NS=0
304.
                 IBTR(IB) = 0
305.
              . DO 15 J=1,N
306.
              IHOSP (J_*5-KK)=0
307.
                 IF (IHOSP(J, 4+KK) .NE. IB) GO TO 15
                 IF (INUM .EQ. J) GO TO 15
308.
309.
                 NS=NS+1
                 IF (NS .EQ. 1) GO TO 10
310.
311.
                 IEND=NS-1
312.
                 DO 7 I=1, IEND
313.
                 JPOINT=IPOL(I)
314.
                 IF (TETA(J) .LT. TETA(JPOINT)) GO TO 8
315.
                 IF (TETA(J) .GT. TETA(JPOINT)) GO TO 7
316.
                 IF (R(J) .LT. R(JPOINT)) GO TO 8
              7 CONTINUE
317.
318.
             10 IPOL(NS)=J
319.
                GO TO 15
320.
              8 JEND=NS-I
321.
                DO 9 JJ=1, JEND
              9 IPOL(NS+1-JJ)=IPOL(NS-JJ)
322.
323.
                IPOL(I) = J
```

```
324.
                 15 CONTINUE
   325.
                    WRITE (6,100) (IPOL(J), J=1, NS)
   326.
                    IBLD=0
 327.
                    NM = 0
   328.
                    NTR=1
   329.
                    DO 30 J=1,NS
   330.
                    I=IPOL(J)
   331.
                     BPRDAY=IBLAD(I)/260.+0.999
                    IF ((IBLD+BPRDAY .GT. UNITS) .OR. (NM+1 .GT. SIOPS)) GO TO 25
  332.
   333.
                    IBLD=IBLD+BPRDAY
   334.
                    NM = NM + 1
   335.
                    IHOSP (I, 5-KK) = NTR
 336.
                    GO TO 30
                25 NUM (NTR) = NM
   337.
   338.
                    IBLADT (NTR) = IBLD
   339.
                    NTR=NTR+1
   340.
                    NM = 1
   341.
                    IBLD=BPRDAY
   342.
                    IHOSP (I, 5-KK) = NTR
   343.
             30 CONTINUE
   344.
                    NUM(NTR) = NM
   345.
                    IBLADT (NTR) = IBLD
  346.
                    IBTR (IB) = NTR
   347.
                    WRITE (6, 100) NTR, (NUM(J), J=1, NTR)
  348.
                    DO 40 J=1,NTR
 . 349.
                  IHOSP (INUM, 5-KK) = J
350.
                    NUM(J) = NUM(J) + 1
 . 351.
                    CALL CHULL1 (IC, 1-KK, J)
  352.
                    CALL BOUND 1 (IC, COST, 1-KK, J)
   353.
                    IF (NUM(J) .GE. 6) CALL REFIN1(COST, 1-KK, J)
 354.
                    NS = NUM(J)
   355.
                    DO 41 I=1,NS
                41 IHULLA (ISTAR+I, KK+1) = IHULL (I, 1)
   356.
14. 357.
                    TSCOST (IB) =TSCOST (IB) +COST (J)
 . 358.
                    NUMTR(JSTAR+J) = NUM(J)
   359.
                    IBLDTR (JSTAR+J) = IBLADF (J)
   360.
                    ISTAR=ISTAR+NUM(J)
.. 361.
                40 CONTINUE
 . 362.
                    JSTAR=JSTAR+NTR
   363.
                50 CONTINUE
   364.
                    DO 55 J=1, JSTAR
                55 NUM (J) = NUMTR (J)
  365.
   366.
                    I=STOPS
  367.
                    J=UNITS
                    CALL PRINTS (KX,2,I,J)
  368.
 369.
                    CALL PLOTING (KX, NBANK, JSTAR)
   370.
                    RETURN
 . 371.
                    END
  372.
                    SUBROUTINE CHULL1 (IC, KX, IX)
                    COMMON/A/IHOSP(150,5)/E/X(150),Y(150),ALFA(150),IBLAD(150)
 .. 373.
                    COMMON/C/IBANK(10), NUM(50), IHULL(300,3)
   374.
  375.
                    COMMON/BKSQ/NHOSP, NBANK
   376.
                    N=NHOSP
   377.
                    IC=0
```

```
378.
                 DO 1 KY=1, N
379.
                 I = KY
380.
                 IF (IHOSP(I, 4+KX) .EQ. IX) GO TO 2
381.
               1 CONTINUE
382.
                 STOP
383.
               2 BEST=X(I)
384.
                 MEND=I
385.
                 XLAST=X(I)
386.
                 MSTAR=I
387.
                 DO 5 KY=1, N
388.
               5 IHOSP (KY,3)=0
389.
                 ISTART=I+1
                 DO 10 J=ISTART, N
390.
391.
                 IF (IHOSP(J,4+KX) .NE. IX) GO TO 10
                 IF (X(J) .GE. BEST) GO TO 8
392.
393.
                 MSTAR=J
394.
                 BEST=X(J)
395.
           8 IF (X(J) .LE. XLAST) GO FO 10
396.
                 MEND=J
397.
                 XLAST=X(J)
398.
              10 CONTINUE
399.
                 IHOSP (MSTAR_3) = 1
400.
                 M=MSTAR
401.
              11 BEST=-10000
402.
                 DO 20 I=1.N
403.
                 IF (IHOSP(I,4+KX) .NE. IX) GO TO 20
              IF (X(I)-X(M)) 20,16,17

16 IF (Y(I) .EQ. Y(M)) 30 TO 20
    IF (Y(I) .GT. Y(M)) SLOPE=9999
404.
405.
406.
407.
                 IF (Y(I) . LT. Y(N)) SLOPE=-9999
                 GO TO 18
408_
409. ...
              17 SLOPE= (Y(I) - Y(M)) / (X(I) - X(M))
410.
              18 IF (SLOPE .LE. BEST) 30 TO 20
411.
                 BEST=SLOPE
412.
                 MNEXT=I
          20 CONTINUE
413.
414.
                 IHOSP (MNEXT, 3) = IC+2
415.
                 CALL PFIND (IC, M, MNEXF, O, KX, IX, 1)
416.
                 IHULL (IC, 1) = M
417.
                 IHULL (IC, 2) = MNEXT
418.
                 M=MNEXT.
419.
                 IF (M .NE. MEND) GO TO 11
             21 BEST=-10000
420.
421.
                 DO 30 I=1.N
422.
                 IF (IHOSP(I,4+KX) \cdot NE \cdot IX) GO TO 30
                 IF (X(I)-X(M)) 24,23,30
423.
424.
              23 IF (Y(I) .EQ. Y(M)) 30 TO 30
425.
                 IF (Y(I) \cdot LT \cdot Y(M)) SLOPE=9999
426.
                 IF (Y(I) \cdot GT \cdot Y(M)) SLOPE=-9999
427.
                 GO TO 25
428.
             24 SLOPE= (Y(I) - Y(M)) / (X(I) - X(M))
429.
             25 IF (SLOPE .LE. BEST) 30 TO 30
430.
                 BEST=SLOPE
431.
                 MNEXT=I
```

```
432.
                 30 CONTINUE
    433.
                     IHOSP (MNEXT, 3) = IC+2
    434.
                     CALL PFIND (IC, M, MNEXI, O, KX, IX, 1)
   435.
                    IHULL (IC, 1) = M
   436.
                    IHULL (IC,2) = MNEXT
   437.
                    M=MNEXT
   438.
                    IP (M .NE. MSTAR) GO TO 21
   439.
                    RETURN
   440.
                    END
   441.
                    SUBROUTINE PFIND (NSIZE, K1, K2, KPOINT, KX, IX, IENT)
   442.
                    COMMON/A/IHOSP (150,5) /D/CANDID (600,4), IADRES (600)
   443.
                    COMMON /E/X(150), Y(150), ALFA(150), IBLAD(150)
   444.
                    COMMON/BKSQ/NHOSP, NBANK
   445.
                    N=NHOSP
   446.
                    BESS=100000
   447.
                    IF (IENT. EQ. 4) GO TO 100
                 19 DO 20 I=1,N
   448.
   449.
                    IF (IHOSP(I,4+KX) .NE. IX) GO TO 20
   450.
                    IF (IHOSP(I,3) .GE. 1) GO TO 20
 451.
                    D1=DMAT(I,K1)
  452.
                    D2 = DMAT(I,K2)
   453.
                    D12=DMAT(K1,K2)
   454.
                    DIF=D1+D2-D12
   455.
                    ANG = (D1 + D2) / D12
   456.
                    DIS=DIF*ANG
   457.
                    IF (DIS .GT. BESS) GO PO 20
  458.
                    BESS=DIS
   459.
                    IBEST=I
   460.
                20 CONTINUE
   461.
                    GO TO 25
   462.
               100 CONTINUE
   463.
                    YMID = (Y(K1) + Y(K2))/2.0
16 464.
                    XMID = (X(K1) + X(K2))/2.0
   465.
                    DO 10 I=1.N
  466.
                    IF (IHOSP(I,3) .GE. 1) 30 TO 10
   467.
                    DMID=SQRT ( {XMID-X (I) ) **2+ (YMID-Y (I) ) **2)
  468.
                    D1=DMAT(I,K1)
  469.
                    D2=DNAT(I,K2)
  470.
                    D12=DMAT (K1,K2)
  471.
                   DIS=AMIN1(D1,D2,DMID)
   472.
                    COSI = (D1**2 + D2**2 - D12**2)/(2.0*D1*D2)
  473.
                    DIS=DIS+COSI
  474.
                   IF (DIS .GT. BESS) GO TO 10
  475.
                   BESS=DIS
  476.
                   IBEST=I
  477.
                10 CONTINUE
  478.
                25 NSIZE=NSIZE+1
  479.
                   CANDID (NSIZE, 1) = BESS
  480.
                   CANDID (NSIZE, 2) = IBEST
  481.
                   CANDID (NSIZE, 3) = K1
  482.
                   CANDID (NSIZE, 4) = K2
  483.
                   CALL ADRES (NSIZE, KPOINT)
  484.
                   RETURN
  485.
                   END
```

```
486.
                 SUBROUTINE ADRES (NSIZE, KPOINT)
487.
                 COMMON/A/IHOSP (150,5) /D/CANDID (600,4), IADRES (600)
488.
                 IF (NSIZE .EQ. 1) GO TO 10
489.
                 ISTAR=KPOINT+1
490.
                 IEND=NSIZE-1
491.
                 DO 1 I=ISTAR, IEND
492.
                 JPOINT=IADRES (I)
493.
                 IF (CANDID (JPOINT, 1) . Gr. CANDID (NSIZE, 1)) GO TO 8
494.
              1 CONTINUE
495.
             10 IADRES (NSIZE) = NSIZE
496.
                 RETURN
497.
              8 JEND=NSIZE-I
498.
                 DO 9 J=1, JEND
499.
              9 IADRES (NSIZE+1-J) = IADRES (NSIZE-J)
500.
                 IADRES(I) = NSIZE
501.
                 RETURN
502.
                 END
503.
                 SUBROUTINE BOUND1 (IC, COST, KX, IX)
504.
                 COMMON/A/IHOSP (150,5) /D/CANDID (600,4), IADRES (600)
505.
                 COMMON/BKSQ/NHOSP, NBANK
506.
                 COMMON/C/IBANK(10), NUM(50), IHULL(300,3)
507.
                DIMENSION COST (9)
508.
                 N=NHOSP
509.
                KPOINT=0
510.
                NSIZE=IC
511.
                ICONT=IC
512.
                DO 1 I=1,300
513.
            1 IHULL(I,3)=0
514.
                 MM=NUM(IX)-IC
                IF (MM .EQ. 0) GO TO 31
515.
516.
                DO 30 JJ=1.MM
517.
           . 11 KPOINT=KPOINT+1
518.
                 ISTAR=IADRES (KPOINT)
519.
                IBAR=CANDID(ISTAR, 2)
520.
                K1=CANDID (ISTAR, 3)
521.
                K2=CANDID(ISTAR, 4)
522.
                IF (IHOSP(IBAR, 3) . EQ. 0) GO TO 25
523.
                CALL PFIND (NSIZE, K1, K2, KPOINT, KX, IX, 1)
              . GO TO 11
524.
525.
             25 DO 26 I=1,IC
526.
                IF (IHULL(I,1) \cdot EQ \cdot K1) IHULL(I,3) = 1
527.
             26 CONTINUE
528.
                ICONT=ICONT+1
529.
                IHOSP (IBAR, 3) = ICONT
530.
                IC = IC+1
531.
                IHULL(IC, 1) = K1
532.
                IHULL (IC, 2) = IBAR
533.
                CALL PFIND (NSIZE, K1, IBAR, KPOINT, KX, IX, 1)
534.
                IC=IC+1
535.
                IHULL (IC, 1) = IBAR
536.
                IHULL(IC,2)=K2
537.
                CALL PFIND (NSIZE, IBAR, K2, KPOINT, KX, IX, 1)
538.
             30 CONTINUE
             31 COST(IX) = 0
539.
```

```
540.
                    DO 40 I=1,IC
   541.
                    IF (IHULL(I,3) .EQ. 1) GO TO 40
   542.
                    ISTAR=IHULL(I,1)
   543.
                    IHOSP (ISTAR, 2) = IHULL (I, 2)
   544.
                    IEND=IHULL (I.2)
   545.
                    IHOSP (IEND, 1) = IHULL (I, 1)
                    COST(IX) = COST(IX) + DMAT(ISTAR, IEND)
   546.
   547.
                40 CONTINUE
   548.
                    DO 41 II=1,N
   549.
                    IF (IHOSP(II, KX+4) . EQ. IX) GO TO 43
   550.
                41 CONTINUE
   551.
                    STOP
   552.
                43 IPREV=II
                    INEXT=IHOSP(II, 2)
   553.
   554.
                    IEND=NUM (IX)
   555.
                    DO 45 I=1.IEND
   556.
                    IHULL (I, 1) = IPREV
   557.
                    IHULL (I. 2) = INEXT
   558.
                    IPREV=INEXT
   559.
                    INEXT=IHOSP (INEXT, 2)
   560.
                45 CONTINUE
   561.
                    RETURN
   562.
                    END
   563.
                    SUBROUTINE REFIN1 (COST. KX. IX)
                    COMMON/C/IBANK (10), NUM (50), IHULL (300, 3)
   564.
   565.
                    COMMON/BKSQ/NHOSP, NBANK
   566.
                   COMMON/A/IHOSP (150.5)
   567.
                   DIMENSION COST(9)
  568.
                    N=NHOSP
  569.
                   DO 11 JJ=1.2
  570.
                   KK=3-JJ
                   DO 11 I=1.N
  571.
  572.
                   IF (IHOSP(I,4+KX) .NE. IX) GO TO 12
18 573.
                   I1=I
  574.
                   J1 = IHOSP(I, 1)
  575.
                   I2=IHOSP(I,1)
  576.
                   DO 6 IN=1,KK
  577.
                 6 I2=IHOSP(I2,2)
  578.
                   J2=IHOSP(I2,2)
  579.
                   DIF1=DMAT(I1,J1) + DMAT(I2,J2) - DMAT(J1,J2)
  580.
                   ISTAR=J2
 . 581.
                   IEND=NUM(IX)-KK-1
  582.
                   DO 10 J=1, IEND
  583.
                   K1=ISTAR
  584.
                   K2=IHOSP (ISTAR, 2)
  585.
                   DIF2=DMAT (I2, K1) + DMAT (I1, K2) - DMAT (K1, K2)
  586.
                   IF (DIF1 .GT. DIF2) GO TO 7
  587.
                   ISTAR=IHOSP (ISTAR, 2)
                10 CONTINUE
  588.
  589.
                   GO TO 12
  590.
                 7 CALL CHANGE (I1, I2, J1, J2, K1, K2)
  591.
                12 CONTINUE
  592.
             . 11 CONTINUE
  593.
                   COST(IX) = 0
```

```
594.
                DO 13 J=1,N
                IF (IHOSP(J,4+KX) .EQ. IX) GO IO 14
595.
596.
             13 CONTINUE
597.
                STOP
598.
             14 IPREV=J
599.
            INEXT=IHOSP(J,2)
600.
                IEND=NUM(IX)
601.
                DO 15 I=1, IEND
               COST (IX) = COST (IX) + DMAT (IPREV, INEXT)
602.
603.
                IHULL (I, 1) = IPREV
604.
                IHULL (I, 2) = INEXT
                IPREV=INEXT
605.
606.
                INEXT=IHOSP(INEXT,2)
            15 CONTINUE
607.
608.
               RETURN
609.
                END
                SUBROUTINE CHANGE (I1, I2, J1, J2, K1, K2)
610.
             COMMON/BKSQ/ALCS____COMMON /A/ IHOSP (150,5)
                COMMON/BKSQ/NHOSP, NBANK
611.
612.
613.
614.
           IHOSP(J1,2)=J2
            IHOSP (J2,1)=J1
615.
          IHOSP (K1, 2) = I2
THOSP (K2, 1) = I1
616.
617.
                IHOSP(K2,1)=I1
618.
               IHOSP(I1,1)=K2
619.
            INEXT=12
620.
               IPREV=K1
621.
           10 IHOSP (INEXT, 2) = IHOSP (INEXT, 1)
              IHOSP (INEXT, 1) = IPREV
622.
          IF (INEXT .EQ. I1) GO TO 15
623.
624.
               IPREV=INEXT
625.
               INEXT=IHOSP(INEXT,2)
626.
                GO TO 10
            15 CONTINUE
627.
628.
               RETURN
629.
                END
630.
               SUBROUTINE IMPROV(EXINDP)
631.
                INTEGER EXINDP
                COMMON/BKSQ/NHOSP, NBANK
632.
               COMMON/F/IALTER (5,5,10), NALFER (5,5), IIHOSP (150,3), IDUM (150)
633.
                COMMON/A/IHOSP (150,5)
634.
              COMMON/C/IBANK(10), NUM(50), IHULL(300,3)/B/IHULLA(150,2)
635.
636.
          110 FORMAT(1H1//5X, LIST OF POSSIBLE EXCHANGES'/)
           120 FORMAT (///5x. HOSPITALS IN GROUP', 13, ' TO BE TRIED IN GROUP'
637.
638.
               1,13/)
639.
           121 FORMAT (2X, 1015)
               N=NHOSP
640.
               DO 1 I=1, NBANK
641.
            DO 1 J=1, NBANK
NALTER (I, J) =0
642.
643.
644.
               DO 1 K=1, 10
               IALTER(I,J,K)=0
645.
           . 1 CONTINUE
646.
647.
              DO 10 I=1.N
```

```
IIHOSP(I,3) = -1
  648.
                   IF (IHOSP(I,4) .EQ. IHOSP(I,5)) GO TO 10
 ... 649.
                   II=IHOSP(I,4)
  650.
  651.
                   JJ = IHOSP(I,5)
  652.
                   IBI=IBANK (II)
  653. .
                   IBJ= IBANK (JJ)
                   DI=DMAT(IBI, I) -DMAT(IBJ, I)
 654.
                   NALTER (II, JJ) = NALTER (II, JJ) + 1
  655.
... 656.
                   NFIND=NALTER (II, JJ)
                   IF (NALTER (II, JJ) .Gr. 10) NALTER (II, JJ) = 10
  657.
  658.
                   NM=NALTER(II.JJ)
. 659.
                   JEND=NM-1
                   IF (NM .EQ. 1) GO TO 7
660.
661.
                    DO 6 J=1, JEND
                   JX=IALTER(II,JJ,J)
. 662.
                   DJ=DMAT (IBI, JX) - DMAT (IBJ, JX)
. 663.
664.
                   IF (DI.LE.DJ) GO TO 8
  665.
                 6 CONTINUE
666.
                   IF (NFIND.LT. 11) IALTER(II, JJ, NM) = I
667.
                   JX=IALTER (II, JJ, NM)
                   DJ=DMAT (IBI, JX) - DMAT (IBJ, JX)
  668.
669.
                   IF(DI.LE.DJ) IALTER(II, JJ, NM) = I
                   GO TO 10
670.
  671.
                 8 JEND=NM-J
.. 672.
                   DO 9 J=1_JEND
                   IALTER (II, JJ, NM+1-J) = IALTER (II, JJ, NM-J)
673.
                 9 CONTINUE
  674.
                 7 IALTER (II, JJ, NM-JEND) = I
  675.
676.
              10 CONTINUE
                   WRITE (6, 110)
  677.
                   DO 12 I=1, NBANK
  678.
                   DO 11 J=1, NBANK
.. 679.
                   IF (NALTER (I.J) .EQ. 0) 30 TO 11
680.
                   WRITE (6, 120) J, I
  681.
                   NM=NALTER(I,J)
 682.
                   WRITE (6, 121) (IALTER (I, J, K), K=1, NM)
  683.
رن 684.
                11 CONTINUE
 . 685.
                12 CONTINUE
  686.
                   DO 15 I=1,N
  687.
                   IHOSP (I, 4) = IHOSP(I, 5)
                   IIHOSP(I,1) = IHOSP(I,1)
  688.
                   IIHOSP(I,2) = IHOSP(I,2)
  689.
                   IHULLA (I, 1) = IHULLA (I, 2)
 690.
                15 CONTINUE
  691.
                   IF (EXINDP.EQ. 1) CALL ALTER1 (3.0)
  692.
                   IF (EXINDP.EQ.2) CALL ALTER2 (3.0)
  693.
  694.
                   CALL PLOTNG (-1, NBANK, NBANK)
  695.
                   CALL PRINTS (-1, 1, 1, 1)
  696.
                   RETURN
  697.
                   END
  698.
                   SUBROUTINE ALTER 1 (Z)
  699.
                   LOGICAL INDIC
                   COMMON/F/IALTER (5,5,10), NALIER (5,5), IIHOSP (150,3), IDUM (150)
  700.
                   COMMON/BKSO/NHOSP, NBANK
  701.
```

```
702.
                 DIMENSION COST (9), LIST (5)
703.
                 N=NHOSP
704.
                 IEND=NBANK-1
705.
                 DO 30 I=1, IEND
706.
                 JSTAR=I+1
707.
                 DO 29 J=JSTAR, NBANK
708.
                 ITER=MAXO (NALTER (I, J), NALTER (J, I))
709.
                 IF (ITER .EQ. 0) GO TO 29
710.
                 DO 25 K1=1, ITER
711.
                 IF (K1 .GT. NALTER(I,J)) GO TO 20
712-
                 LIST (1) = IALTER(I, J, K1)
713.
                 CALL TEST (I, J, COST, LIST, 1, 1, INDIC)
714.
                 IF (INDIC) CALL UPDATE(I, J, COST, LIST, 1, 1)
715.
          C*** THE MODIFIED PLOTNG CALLS ONLY PLOT THE RESULTS
716.
          C*** THE INTERMEDIATE WILL NOT BE PLOTTED
717.
          C**
                 IF (INDIC) CALL PLOTNG (-1, NBANK, NBANK)
718.
             20 IF (K1 .GT. NALTER (J.I)) GO TO 25
719.
                 LIST (1) = IALTER(J, I, K1)
720.
                 CALL TEST (J, I, COST, LIST, 1, 0, INDIC)
721.
                 IF (INDIC) CALL UPDATE(J,I,COST,LIST,1,0)
722.
          C**
                 IF (INDIC) CALL PLOTNG (-1, NBANK, NBANK)
723.
             25 CONTINUE
724.
             29 CONTINUE
             30 CONTINUE
725.
726.
                RETURN
727.
                END
728.
                SUBROUTINE ALTER2(Z)
729.
                LOGICAL INDIC
730.
                COMMON/BKSQ/NHOSP, NBANK
731.
                COMMON/F/IALTER (5,5,10), NALIER (5,5), IIHOSP (150,3), IDUM (150)
732.
                DIMENSION COST (9), LIST (5)
733.
                N=NHOSP
734.
                IEND=NBANK-1
735.
                DO 30 I=1, IEND
736-
                JSTAR=I+1
737.
                DO 29 J=JSTAR, NBANK
738.
                ITER=MAXO (NALTER (I, J), NALTER (J, I))
739.
                IF (ITER .EQ. 0) GO IO 29
                DO 25 K1=1, ITER
740.
741.
                IZ=I
742.
                JZ=J
743.
                KX = 1
744.
             15 IF (K1 .GT. NALTER(IZ, JZ)) 30 TO 20
745.
                J1=IALTER (IZ, JZ, K1)
746.
                IF (IIHOSP(J1.3) .EQ. 0) GO TO 20
747.
                NBR=1
748.
                LIST(1) = J1
749.
                CALL TEST (IZ.JZ, COST, LIST, NBR, KX, INDIC)
750.
                IF (INDIC) GO TO 19
751.
                J2=IIHOSP(J1,1)
752.
                IF (IIHOSP(J1,3) .EQ. J2) 30 TO 16
753.
                IIHOSP(J1,3)=J2
754.
                LIST(2) = J2
```

755.

NBR=2

```
756.
                   CALL TEST (IZ, JZ, COST, LIST, NBR, KX, INDIC)
   757.
                   IF (INDIC) GO TO 19
   758.
                16 J3=IIHOSP(J1,2)
                    IF (IIHOSP(J3,3) .EQ. J1) GO TO 17
   759.
   760.
                   IIHOSP(J3,3)=J1
   761.
                   NBR=2
   762.
                   LIST (2) = J3
   763.
                   CALL TEST (IZ, JZ, COST, LIST, NBR, KX, INDIC)
   764.
                   IF (INDIC) GO TO 19
   765.
                17 LIST (2) = J2
   766.
                   LIST (3) = J3
   767.
                   NBR=3
  768.
                   CALL TEST (IZ, JZ, COST, LIST, NBR, KX, INDIC)
   769.
                   IF (INDIC) GO TO 19
                   GO TO 20
  770.
  771.
                19 CALL UPDATE(IZ, JZ, COST, LIST, NBR, KX)
  772.
             C*** NO INTERMEDIATE PLOTTING
  773.
             C** CALL PLOTNG (-1, NBANK, NBANK)
   774.
                20 IF (IZ .EQ. J) GO TO 25
  775.
                   IZ=J
  776.
                   JZ=I
  777.
                   KX = 0
  778.
                   GO TO 15
                25 CONTINUE
  779.
  780.
                29 CONTINUE
  781.
              30 CONTINUE
  782.
                   RETURN
  783.
                   END
                   SUBROUTINE TEST (I, J, COST, LIST, NBR, KX, INDIC)
  784.
  785.
                   COMMON/BKSQ/NHOSP_NBANK
  786.
                   LOGICAL INDIC, BOUND
  787.
                 COMMON/BDD/BOUND, LVOL(5), MVOL(5)
                   COMMON/F/IALTER (5,5,10), NALIER (5,5), IIHOSP (150,3), IDUM (150)
  788.
  789.
                   COMMON/K/TSCOST(9), EMCOST(5), NBLAD(5)
12-790.
                   COMMON/C/IBANK (10), NUM (50), IHULL (300,3)
                   COMMON /E/X(150), Y(150), ALFA(150), IBLAD(150) /A/IHOSP(150,5)
 791.
  792.
                   COMMON/CO/JD
  793.
                   DIMENSION COST (9), LIST (5)
  794.
               100 FORMAT (1H1/10X, TEST DATA 1//)
               110 FORMAT(///2X, *ORIGINAL ROUTING COST FOR GROUP*, I3, *=*, F14.2/
  795.
                  12x, REVISED ROUTING COST FOR GROUP', I3, '=', F9.3//)
  796.
               115 FORMAT (///2X, 'ORIGINAL VOLUME FOR GROUP', I3, 'IS', I8/2X,
  797.
  798.
                  & REVISED VOLUME FOR GROJP', 13, 'IS', 18//)
               120 FORMAT (/2x, MARGINAL DIFFERENCE IN EMERGENCY COST=1, F9.3///)
  799.
               130 FORMAT (2X, 'MARGINAL DIFFERENCE IN SYSTEM COST=',F14.2///)
  800.
               140 FORMAT (2X, 'TOTAL MARGINAL DIFFERENCE=', F14.2///)
  801.
  802.
               153 FORMAT (2X, 1015)
               160 FORMAT(//5x, 'HOSPITALS ASSIGNED TO GROUP', 13,
  803.
                      FROM GROUP', 13, ' > ', 515//)
  804.
               200 FORMAT (//2X, REVISED ROUTING FOR GROUP', 13/)
  805.
  806.
                    N=NHOSP
  807.
                   EMDIF=0
                   SYDIF=0.
  808.
  809.
                   INDIC=.PALSE.
```

```
810.
                 NUM(I) = NUM(I) + NBR
811.
                 NUM(J) = NUM(J) - NBR
812.
                 IVOL1=NBLAD(I)
813.
                 IVOL 2=NBLAD (J)
814.
                 DO 1 II=1,NBR
815.
                 JJ=LIST(II)
816.
                 IVOL1=IVOL1+IBLAD (JJ)
817.
                 IVOL2=IVOL2-IBLAD (JJ)
818.
               1 IHOSP (JJ, 4+KX) = I
819.
          C**
                 IF (.NOT.BOUND) GO TO 9
820.
          C**
                 IP(IVOL1.GT.MVOL(I)) 30 TO 14
          C**
821.
                 IF(IVOL2.LT.LVOL(J)) GO TO 14
          C** 9 CONTINUE
822.
823.
                 CALL CHULL1 (IC, KX, I)
824.
                 CALL BOUND1(IC, COST, KX, I)
825.
                 IF (NUM(I) .GE. 5) CALL REFIN1(COST, KX, I)
826.
                 NI=NUM(I)
827.
                 DO 5 II=1,NI
828.
              5 IDUM(II) = IHULL(II, 1)
829.
                 CALL CHULL1(IC, KX, J)
830.
                 CALL BOUND1(IC, COST, KX, J)
                 IF (NUM(J) .GE. 5) CALL REFIN1(COST, KX, J)
831.
832.
                 NJ=NUM(J)
833.
                 TSDIF=COST(I) +COST(J) -FSCOST(I) -TSCOST(J)
834.
                 SYDIF=CBC(JD, IVOL1) -CBC(JD, NBLAD(I))
                 SYDIF=SYDIF+CBC (JD, IVOL2) -CBC (JD, NBLAD (J))
835.
836.
                 IF (.NOT.BOUND) GO TO 99
837.
                 ADIF=PNALTY(IVOL1,I)-PNALTY(NBLAD(I),I)+PNALTY(IVOL2,J)-
838.
                SPNALTY (NBLAD (J), J)
839.
            99
                CONTINUE
840.
                 IB=IBANK(I)
841.
                 JB=IBANK (J)
842.
                 DO 10 II=1,NBR
843.
                 I1=LIST(II)
844.
                 EMDIF=EMDIF+ALFA (I1) * (DMAT (IB, I1) -DMAT (JB, I1))
845.
             10 CONTINUE
846.
                 DIF=SYDIF+TSDIF*260*.03/5.1+EMDIF*20.*.03*.25
847.
                 TADIF=DIF+ADIF
848.
          C ** THE QUANTITY TO BE TESTED: DIF
                                                      HAS BEEN CHANGED TO TADIF **
849.
                 IF (TADIF .LE. O.) INDIC=. PRUE.
850.
                 WRITE (6, 100)
851.
                 WRITE (6, 160) I, J, (LIST (II), II=1, NBR)
852.
                 WRITE(6,200) I
                 WRITE (6, 153) (IDUM (II), II=1, NI)
853.
854.
                 WRITE(6,200) J
                WRITE (6, 153) (IHULL (II, 1), II=1, NJ)
WRITE (6, 110) I, TSCOST (I), I, COST (I)
855.
856.
857.
                WRITE (6,110) J, TSCOST (J), J, COST (J)
858.
                WRITE (6, 115) I, NBLAD (I), I, IVOL1
859.
                WRITE (6, 115) J. NBLAD (J), J. IVOL2
                WRITE (6, 120) EMDIF
860.
                WRITE(6,130) SYDIF
861.
862.
                WRITE (6, 140) DIF
863.
                IF (.NOT.BOUND) GO TO 14
```

```
864.
                    WRITE (6, 310) ADIF
   865.
                    WRITE (6,320) TADIF
                    FORMAT (2X, 'MARGINAL DIFFERENCE OF ARTIFITIAL PENALIFIES=', E14.2)
   866.
               310
                    FORMAT (2X, *TOTAL COMBINED MARGINAL DIFFERENCE=*, E14.2)
   867.
              320
                 14 CONTINUE
   868.
   869.
                    IF (INDIC) RETURN
                    NUM(I) = NUM(I) - NBR
   870.
   871.
                    NUM(J) = NUM(J) + NBR
   872.
                    DO 15 II=1, NBR
                    JJ=LIST(II)
   873.
   874.
                 15 IHOSP (JJ, 4+KX) = J
 875.
                    RETURN
   876.
                    END
                    SUBROUTINE UPDATE (I, J, COST, LIST, NBR, KX)
   877.
                    COMMON/C/IBANK(10), NUM(50), IHULL(300,3)
   878.
   879.
                    COMMON/BKSQ/NHOSP, NBANK
                    COMMON/F/IALTER (5,5,10), NALTER (5,5), IIHOSP (150,3), IDUM (150)
   880.
   881.
                    COMMON/K/TSCOST (9), EMCOST (5), NBLAD (5)
                    COMMON/B/IHULLA (150,2)/E/X (150), Y (150), ALPA (150), IBLAD (150)
   882.
                    COMMON/A/IHOSP (150,5)
   883.
                    DIMENSION COST (9) LIST (5)
   884.
   885.
                    N=NHOSP
                    ISTARX=0
   886.
                    ISTAR=0
   887.
   888.
                    DO 40 II=1, NBANK
   889.
                    IEND=NUM (II)
                    IF (II .EQ .I) GO TO 23
   890.
                    IF (II .EQ. J) GO TO 30
   891.
                    DO 15 JJ=1, IEND
   892.
                    IHULLA (ISTAR+JJ, 1) = IHULLA (ISTARX+JJ, 1)
   893.
                 15 CONTINUE
   894.
 ...895.
                  . ISTARX=ISTARX+NUM(II)
   896.
                    GO TO 39
                20 ISTARX=ISTARX+NUM(II) -NBR
   897.
af 898.
                    GO TO 39
                30 DO 35 JJ=1, IEND
                    IHULLA (ISTAR+JJ, 1) = IHULL (JJ, 1)
   900.
                35 CONTINUE
   901.
                    ISTARX=ISTARX+NUM(II) + NBR
   902.
                39 ISTAR=ISTAR+NUM(II)
   903.
                40 CONTINUE
   904.
                    ISTAR=0
   905.
                    DO 45 II=1, NBANK
   906.
                    IF (II .NE. I) GO TO 44
   907.
   908.
                    IEND=NUM(II)
   909.
                    DO 41 JJ=1, IEND
   910.
                    IHULLA (ISTAR+JJ, 1) = IDUM (JJ)
                41 CONTINUE
   911.
   912.
                    GO TO 46
                44 ISTAR=ISTAR+NUM(II)
   913.
                45 CONTINUE
   914.
                46 TSCOST(I) = COST(I)
   915.
   916.
                    TSCOST (J) = COST (J)
```

917.

DO 50 II=1, NBR

```
918.
                 JJ=LIST(II)
 919.
                 IIHOSP(JJ,3)=0
 920.
                 EMCOST (I) = EMCOST (I) + ALFA (JJ) *DMAT (I, JJ)
 921.
                 EMCOST(J) = EMCOST(J) - ALFA(JJ) * DMAT(J, JJ)
 922.
                 NBLAD(I) = NBLAD(I) + IBLAD(JJ)
 923.
                 NBLAD(J) = NBLAD(J) - IBLAD(JJ)
 924.
                 IHOSP (JJ, 5-KX) = I
 925.
              50 CONTINUE
 926.
                 DO 51 II=1.N
 927.
                 IIHOSP(II, 1) = IHOSP(II, 1)
 928.
                 IIHOSP(II, 2) = IHOSP(II, 2)
 929.
              51 CONTINUE
 930.
                 RETURN
 931.
                 END
 932.
                 SUBROUTINE PRINTS (KX, NX, ISTOP, IUNIT)
933.
                 COMMON/C/IBANK(10), NUM(50), IHULL(300,3)/B/IHULLA(150,2)
 934.
                 COMMON/BKSQ/NHOSP, NBANK
 935.
                 COMMON/K/TSCOST(9), EMCOST(5), NBLAD(5)
 936.
                 COMMON/F/IBLDTR(50), IBTR(5), IDUM(820)
 937.
                 COMMON/CO/JD
938.
             110 FORMAT (//5x, OPTIMAL ALLOCATION AND ROUTING */6x, ALLOCATION BASED
 939.
                1 ON EMERGENCY COSTS ONLY 1/1)
940.
             111 PORMAT (///3X, BANK ', 12, ', IDENTIFICATION-HOSPITAL', 14/3X, 'ROUTI
941.
                1NG'/)
          C ** THE POLLOWING FORMAT IS NOT REFERENCED **
942.
          C*109 FORMAT (2X,5F10.3)
 943.
944.
             112 FORMAT (10X, 1015)
945.
            113 FORMAT(///3x, 'EMERGENCY COST', 9x, F9.2//3x, 'ROUTINE DELIVERY COST'
946.
                1.F10.2//)
947.
             120 FORMAT (//5x, *OPTIMAL ALLOCATION AND ROUTING */6x, *ALLOCATION BASED
948.
                1 ON ROUTING COSTS ONLY 1//)
949.
             125 FORMAT (//5x, NUMBER OF HOSPITALS IN THE SYSTEM 1,17/)
             126 FORMAT (/5x, *AMOUNT OF BLOOD USED IN THE SYSTEM*, 2x, 19/)
950.
951.
             127 FORMAT (/5X, 'SYSTEM COST FOR CBC', 2X, F11.2/)
952.
            130 FORMAT (// ,5x, 'OPTIMAL ALLOCATION AND ROUTING '/6x, 'ALLOCATION BAS
953.
                1ED ON ROUTING, EMERGENCY AND SYSTEM COSTS'//)
954.
            210 FORMAT (1H1/40X, 'SINGLE VEHICLE SOLUTION'/)
955.
            220 FORMAT (1H1/40x, MULTI VEHICLE SOLUTION 1/5x, CONSTRAINTS>1,4X,
956.
                1 NAXIMUM NUMBER OF SIDPS-1, 14/21X, NAXIMUM NUMBER OF UNITS-1, 14/)
957.
            230 FORMAT (/6x, TRUCK NO, 13,6x, NUMBER OF STOPS, 13,6x, NUMBER OF UNI
958.
                1TS', I5/)
959.
                 N=NHOSP
960.
                 KK=KX
961.
                 IF (KX .LT. 0) KK=0
962.
                 IF (NX .EQ. 1) WRITE(6,210)
                 IF (NX .EQ. 2) WRITE(6,220) ISTOP. IUNIT
963.
964.
                 IF (KX .EQ. 0) WRITE(6,110)
965.
                 IF (KX .EQ. 1) WRITE(6,123)
966.
                 IF (KX .EQ. -1) WRITE (6.130)
967.
                ECOST=0
968.
                RCOST=0
969.
                 SCOST=0
970.
                ISTAR=0
971.
                JSTAR=0
```

```
972.
                   IPREV=0
   973.
                   DO 6 II=1, NBANK
   974.
                   WRITE (6, 111) II, IBANK (II)
   975.
                   IF (NX .EQ. 1) GO TO 4
   976.
                   NTR=IBTR (II)
   977.
                   DO 3 J=1, NTR
   978.
                   WRITE (6,230) J, NUM (JSTAR+J), IBLDTR (JSTAR+J)
   979.
                   JEND=NUM (JSTAR+J)
   980.
                   WRITE (6, 112) (IHULLA (ISTAR+I, KK+1), I=1, JEND)
   981.
                   ISTAR=ISTAR+JEND
   982.
               3 CONTINUE
   983.
                   MEMBER=ISTAR-IPREV-NIR+1
  984.
                   IPREV=ISTAR
   985.
                   WRITE (6, 125) MEMBER
   986.
                   JSTAR=JSTAR+NTR
  987.
                   GO TO 5
               4 MEMBER=NUM(II)
   988.
   989.
                   WRITE(6,112) (IHULLA(ISTAR+I,1+KK),I=1,MEMBER)
   990.
                   WRITE(6,125) NUM(II)
   991.
                   ISTAR=ISTAR+NUM(II)
   992.
                 5 WRITE (6, 126) NBLAD (II)
   993.
                   ECOST=ECOST+EMCOST(II)
   994.
                   RCOST=RCOST+TSCOST(II)
  995.
                   CBCOST=CBC(JD,NBLAD(II))
  996.
            C
                   SCOST=SCOST+CBCOST
   997.
                   WRITE (6, 127) CBCOST
   998.
                 6 CONTINUE
  999.
            С
                   TOT=SCOST+ (RCOST*.03/5.1) *260+ (ECOST*.03*.25) *20
 1000.
                   WRITE(6,113) ECOST, ROOST
 1001.
                   ITOT=0
 1002.
                   CCC=0.
 1003.
                   COREG=0.
 1004.
            C.
                   COST AT THE COMMUNITY CENTERS
                   DO 7 I=1, NBANK
 1005.
                   ITOT=ITOT+NBLAD(I)
 1006.
 1007.
                   CCC=CCC+CBC(JD, NBLAD(I))
२८1008.
                 7 CONTINUE
 1009.
                   IF (JD.EQ.5) GO TO 11
 1010.
            C
                   COST AT THE REGIONAL CENTER
 1011.
                   COREG=REG (JD. ITOT)
 1012.
                11 WRITE (6,8) COREG
 1013.
                8 FORMAT (//3x, TOTAL COST AT THE REGIONAL CENTER ,9x,F11.2)
 10.14.
                   WRITE (6,9) CCC
 1015.
                9 FORMAT (//3x, TOTAL SYSTEM COST AT THE COMMUNITY CENTERS, 9x,
                 * F11.2)
 1016.
 1017.
                   TSC=COREG+CCC
 1018.
                   WRITE (6, 10) TSC
 1019.
               10 FORMAT (//3x, TOTAL SYSTEM COST', 9x, F11.2//)
 1020.
                   RETURN
 1021.
                   END
 1022.
                   SUBROUTINE PLOTNG (KX, NBANK, NTRUCK)
 1023.
                   RETURN
1024.
                   END
 1025.
                  FUNCTION DMAT (I, J)
```

```
COMMON/CMM/DM (11325)
1026.
1027.
                 COMMON/BKSQ/NHOSP, NBANK
1028.
                 MN = I
1029.
                 MX = J
                  IF (I.LT.J) GO TO 1
1030.
1031.
                 MN = J
                 MX = I
1032.
1033.
               1 MN1 = MN - 1
1034.
                 IS=MN*MN1/2
                 K=MN1*NHOSP + MX - IS
1035.
1036.
                 DMAT=DM(K)
1037.
                 RETURN
1038.
                 END
           C ***** THE FOLLOWING IS A DUMMY FUNCTION ******
1039.
1040.
                 FUNCTION SECOND(X)
1041.
                 SECOND=0.
1042.
                 RETURN
1043.
                 END
1044.
                 FUNCTION REG(I, IVOL)
1045.
                 DIMENSION COEFF (4.2)
                 DATA COEFF/2.81,2.2,1.52,0.45,395.,340.,340.,0./
1046.
1047.
                 XVOL=IVOL/1000.
                  REG=IVOL*(COEFF(I, 1) +COEFF(I, 2) /XVOL/XVOL)
1048.
1049.
                  RETURN
1050.
                 END
 051.
                 FUNCTION CBC (I.IVOL)
 052.
                 DIMENSION COEFF(5,2)
                 DATA COEFF/.44,1.19,1.31,2.9,3.29,98.8,178.8,187.,490.4,539./
 753.
 154.
                  XVOL=IVOL/1000.
                 CBC=IVOL*(COEFF(I,1)+C)EFF(I,2)/XVOL/XVOL)
  55.
  56.
                  RETURN
 J57.
                  END
 058.
                 FUNCTION PNALTY (IVOL, K)
1059.
                 COMMON/BDD/BOUND, LVOL(5), MVOL(5)
1060.
                 PNALTY=0.
1061.
                 CM1=500.
1062.
                 CM2=10.
1063.
                  IDIF=IVOL-MVOL(K)
1064.
                  JDIF=LVOL(K)-IVOL
1065.
                  IF(IDIF.LE.0) GO TO 10
                  PNALTY= ((IDIF/1000) **2) *CM2+IDIF*CM1
1066.
                  IF (JDIF.LE.0) GO TO 20
1067.
             10
                  PNALTY= ((JDIF/1000) **2) *CM2+JDIF*CM1
1068.
1069.
             20
                  RETURN
1070.
                  END
           //SYSIN DD *
1071.
                       2
1072.
            3
                  1
                                109
            3 TT 1000 1000
1073.
                                       50000
                                                 150000
                                                             50000
1074.
                 50000
                           130000
                                                                       110000
           2
1075.
```

RU BTP

NUMBER OF BANKS= 3, BANK ID#= 1 2 3 PROGRAM OPTION # 1 IS USED

ALLOCATION PARAMETERS: ALLOC1 ALLOC2 IMPRV1 IMPRV2 BOUND T F F T

BOUNDS ON THE VOLUMES FOR EACH BANK:

BANK LOWER BOUND UPPER BOUND 1 50000 130000 2 50000 150000 3 50000 110000

DISPATCHING PARAMETERS: VDP MSTOP VCAP T 1000 1000

SYSTEM COST OPTION: 2

NUMBER OF HOSPITALS= 117 3 2 2 1.

SINGLE VEHICLE SOLUTION

OPTIMAL ALLOCATION AND ROUTING ALLOCATION BASED ON EMERGENCY COSTS ONLY

BANK	1	7	IDENTIFICATION	-HOSPITAL	1
ROUTIN	lG				

1	93	33	67	16	38	65	49	87	86
71	105	107	113	108	106	112	115	114	27
20	79	10	56	24	8	45	28	5	83
19	32	6							

NUMBER OF HOSPITALS IN THE SYSTEM 33

AMOUNT OF BLOOD USED IN THE SYSTEM 100073

SYSTEM COST FOR CBC 120873.57

BANK 2 , IDENTIFICATION-HOSPITAL 2 ROUTING

17 42 4.4

NUMBER OF HOSPITALS IN THE SYSTEM 27

AMOUNT OF BLOOD USED IN THE SYSTEM 89967

SYSTEM COST FOR CBC 109048.13

BANK 3 , IDENTIFICATION-HOSPITAL 3 ROUTING

3	18	81	39	91	22	94	53	76	13
54	95	48	92	46	31	97	57	51	34
21	85	116	117	102	111	23	12	100	103
110	104	109	101	59	4	35	47	66	55
69	7	58	15	70	75	98	62	43	30
9	29	96	60	78	84	50			

NUMBER OF HOSPITALS IN THE SYSTEM 57

AMOUNT OF BLOOD USED IN THE SYSTEM 177816

SYSTEM COST FOR CBC 212606.57

EMERGENCY COST 43894.99

ROUTINE DELIVERY COST 12120.34

TOTAL COST AT THE REGIONAL CENTER 810207.47

TOTAL SYSTEM COST AT THE COMMUNITY CENTERS 442528.27

TOTAL SYSTEM COST 1252735.70 27 115 20 112 8 107 ර 1.4

MULTI VEHICLE SOLUTION

CONSTRAINTS>

MAXIMUM NUMBER OF STOPS-1000 MAXIMUM NUMBER OF UNITS-1000

OPTIMAL ALLOCATION AND ROUTING ALLOCATION BASED ON EMERGENCY COSTS ONLY

BANK 1 , IDENTIFICATION-HOSPITAL 1 ROUTING

TRUCK	ИО	1	MUM	BER O	F STO	PS 33	NUMBER OF UNITS			335	
	1	93	33	67	16	38	65	49	87	86	
	71	105	107	113	108	106	112	115	114	27	
	20	79	10	56	24	8	45	28	5	83	
	19	32	6								

33

NUMBER OF HOSPITALS IN THE SYSTEM

AMOUNT OF BLOOD USED IN THE SYSTEM 100073

SYSTEM COST FOR CBC 120873.57

BANK 2 , IDENTIFICATION-HOSPITAL 2 ROUTING

TRUCK NO		1.	NUME	BER OF	STO	PS 27		NUMBE	R OF	UNITS	317	
		2	64	14	90	99	37	41	40	73	72	
		68	80	25	74	82	89	61	63	17	42	
		36	1.1	26	77	88	44	52				

NUMBER OF HOSPITALS IN THE SYSTEM 27

AMOUNT OF BLOOD USED IN THE SYSTEM 89967

SYSTEM COST FOR CBC 109048.13

BANK 3 , IDENTIFICATION-HOSPITAL 3 ROUTING

TRUCK NO 1			MUM	BER O	F STO	PS 57		NUMB	ER OF	UNITS	598
	3	18	81	39	91	22	94	53	76	13	
	54	95	48	92	46	31	97	57	51	34	
	21	85	116	117	102	111	23	12	100	103	
	110	104	109	101	59	4	35	47	66	55	
	69	7	58	15	70	75	98	62	43	30	
	9	29	96	60	78	84	50				

NUMBER OF HOSPITALS IN THE SYSTEM 57

AMOUNT OF BLOOD USED IN THE SYSTEM 177816

SYSTEM COST FOR CBC 212606.57

EMERGENCY COST 43894.99

ROUTINE DELIVERY COST 12120.34

TOTAL COST AT THE REGIONAL CENTER 810207.47

TOTAL SYSTEM COST AT THE COMMUNITY CENTERS 442528.27

TOTAL SYSTEM COST 1252735.70

THE MATHEMATICAL MODEL AND ALGORITHIMS FOR BTAP

The Blood Transportation-Allocation Problem (BTAP), can be stated as follows: "Locations and expected blood requirements of a set of N hospitals are given. Each hospital is to be assigned to a community blood center (CBC) which will periodically supply the hospital's blood requirements as well as supply its emergency blood demands at the time of the emergency. The blood shipments are to be made by special delivery vehicles which have given capacities and given limits on the number of deliveries they can make per day. The problem is to decide how many CBCs to set up, where to locate them, how to allocate the hospitals to the banks, and how to route the periodic supply operation, so that the total of transportation costs (periodic and emergency supply costs) and the system costs are a minimum."

The following notation will be used in formulating the BTAP.

- i) "N" is the number of demand points.
- ii) "M" is the number of supply points.
- iii) "n" is the maximum number of supply vehicles available.
- iv) $\mathcal{P} = \{H_1, \ldots, H_N\}$ is a set of N demand points.
- v) $\mathscr{L} = \{H_{N+1}, \dots, H_{N+M}\}$ is a set of M supply points.
- vi) $\mathcal{X} = \mathcal{B} \cup S$ is the set of all points involved in the problem.
- vii) d_{ij} is the "distance" from H_i to H_j. It should be noted that although Euclidean distances among locations of hospitals and central banks are used in the solution procedure, one could obtain a matrix of accurate travel times between all pairs of hospitals and banks, and one could use this matrix or any other "distance measure" instead of the Euclidean distance matrix.

- viii) C_k , k = 1,..., n is the capacity of supply vehicle k.
- ix) Q_i , i = 1,..., N is the requirement of demand point i.
- x) D_k , k = 1, ..., n is the maximum distance supply vehicle k may travel.
- xi) γ_i , $i=1,\ldots,N$ is the expected number of emergency deliveries to hospital H_i per period. γ_i is the probability that the demand at H_i exceeds the supply at H_i given the optimal inventory level at H_i is used.
- xii) $s(\ell, k)$ is the systems cost function of a region, where ℓ is the number of hospitals in that region, and k is the amount of blood used per year in that region. $s(\ell, k)$ is defined and finite for all feasible combinations of ℓ and k.
- xiii) y_{ij} , i = 1, ..., N; j = N+1, ..., N+M is a zero-one variable such that y_{ij} is 1 if hospital H_i is assigned to central bank H_j and is 0 otherwise.
- xiv) x_{ijk} , i = 1,..., N+M; j = 1,..., N+m; k = 1,..., n is a zero-one variable such that x_{ijk} is 1 if vehicle k goes from hospital H to H, and is 0 otherwise.

- viii) C_k , k = 1, ..., n is the capacity of supply vehicle k.
- ix) Q_i , i = 1,..., N is the requirement of demand point i.
- x) D_k , k = 1,..., n is the maximum distance supply vehicle k may travel.
- xi) γ_i , i = 1, ..., N is the expected number of emergency deliveries to hospital H_i per period. γ_i is the probability that the demand at H_i exceeds the supply at H_i given the optimal inventory level at H_i is used.
- xii) $s(\ell, k)$ is the systems cost function of a region, where ℓ is the number of hospitals in that region, and k is the amount of blood used per year in that region. $s(\ell, k)$ is defined and finite for all feasible combinations of ℓ and k.
- xiii) y_{ij} , i = 1,..., N; j = N+1,..., N+M is a zero-one variable such that y_{ij} is 1 if hospital H_i is assigned to central bank H_j and is 0 otherwise.
- xiv) x_{ijk} , i = 1,..., N+M; j = 1,..., N+m; k = 1,..., n is a zero-one variable such that x_{ijk} is 1 if vehicle k goes from hospital H_i to H_i and is 0 otherwise.

The BTAP is:

Problem 1

$$\min z^{1}(x, y) = \sum_{i=1}^{N+M} \sum_{j=1}^{N+M} \sum_{k=1}^{N} x_{ijk} d_{ij} + \sum_{i=1}^{N} \sum_{j=N+1}^{N+M} v_{i} y_{ij} d_{ij}$$

$$+ \sum_{i=N+1}^{N+M} s \left(\sum_{i=1}^{N} y_{ij}, \sum_{j=1}^{N} (300Q_{i}) (y_{ij}) \right)$$
(1)

subject to

$$\sum_{k=1}^{n} \sum_{j=1}^{N+M} x_{ijk} = 1 \qquad i = 1, ..., N$$
(2)

$$\begin{array}{cccc}
N+M & N \\
\sum & \sum & Q_{i}x_{ijk} \leq C_{k} & k=1,..., n \\
j=1 & i=1 & i \leq k
\end{array}$$
(3)

N+M N+M
$$\sum_{j=1}^{N+m}\sum_{i=1}^{N+m}d_{ij}x_{ijk} \leq D_{k} \qquad k = 1,..., n$$

$$(4)$$

$$\sum_{\{i: H_i \in S\}} \sum_{\{j: H_i \in \overline{S}\}}^{n} x_{ijk} \ge 1 \quad \text{for all } (S, \overline{S})$$
 (5)

where S is any proper subset of $\mathscr U$ containing $\mathscr A$ and \overline{S} is the complement of S.

$$\sum_{i=1}^{N+M} x_{hjk} = \sum_{i=1}^{N+M} x_{ihk} \qquad k = 1, ..., n; h = 1, ..., N+M$$
 (6)

$$\sum_{j=N+1}^{N+M} y_{ij} = 1$$
 $i = 1,..., N$ (7)

$$y_{ij} \ge \sum_{h=1}^{N+M} x_{ihk} + \sum_{h=1}^{N+M} x_{jhk} - 1$$
 $i = 1, ..., N; j = N+1, ..., N+M$ (8)

$$x_{ijk} = 0, 1$$
 $i = 1,..., N+M; j = 1,..., N+M; k = 1,..., n$ (9) (note that $x_{iik} = 0$)

$$y_{ij} = 0, 1$$
 $i = 1,..., N; j = N+1,..., N+M$. (10)

The explanation of these constraint sets are as follows. Constraints (2) require that every hospital receive a shipment from some vehicle; (3) are the vehicle capacity constraints; (4) are the maximum travel distance constraints (note, it is implicitly assumed that $Q_i \leq C_k$ for $i=1,\ldots,N$ and $k=1,\ldots,n$); (5) require that graph $\mathcal L$ corresponding to x is connected; (6) imply that a vehicle departs from a point h if and only if it enters there (conservation of flow); (7) requires that each hospital is assigned to a central bank; (8) contains the coupling constraints between variables $x = \{x_{ijk}\}$ and $y = \{y_{ij}\}$. It means that if there is vehicle k

passing from both hospital i $\binom{N+M}{\sum} x_{ihk} = 1$ and from bank j $\binom{N+M}{\sum} x_{jhk} = 1$ then hospital i is assigned to bank j $(y_{ij} \ge 1+1-1=1)$.

Problem 1 has some redundant constraints, namely constraint set (7). In order to show this, assume (7) was removed and a feasible solution was found such that

$$\sum_{j=N+1}^{N+M} y_{i,j} = 0$$

then, by (8) we have

$$0 \ge \sum_{j=N+1}^{N+M} \sum_{h=1}^{N+M} x_{i^{\circ}hk} + \sum_{j=N+1}^{N+M} \sum_{h=1}^{N+M} x_{jhk} - \sum_{j=N+1}^{N+M} 1$$

$$= (M) \sum_{h=1}^{N+M} x_{i^{\circ}hk} + \sum_{j=N+1}^{N+M} \sum_{h=1}^{N+M} x_{jhk} - M \quad k = 1, ..., n.$$

Through constraint set (2) we know that there exists a $k^{\circ} \in [1, 2, ..., n]$ such that

N+M
$$\sum_{h=1}^{N+m} x_{i^{\circ}hk^{\circ}} = 1 \quad \text{(vehicle k° passes from i°)}$$

and through constraint sets (5) and (6) we know that

N+M N+M
$$\sum \sum_{jhk^0} x_{jhk^0} = 1$$
 (vehicle k° passes from a bank)

which contradicts the above inequality. Therefore $\sum_{j=N+1}^{N+M} y_{ij} = 1$ when j=N+1 constraint set (8) is satisfied, and thus constraint set (7) is redundant. We have included (7) in Problem 1 for the reader's intuition.

In Problem 1 the variables $x = \{x_{ijk}\}$ correspond to the routing of the periodic delivery vehicles and the variables $y = \{y_{ij}\}$ correspond to the allocations of the hospitals to the blood banks. For a given $x = \{x_{ijk}\}$, $y = \{y_{ij}\}$ is uniquely determined, but the converse is not true; if we are given the allocations, a series of M vehicle dispatch problems have to be solved, in order to obtain the routings. Problem 1 has a finite feasible solution set and a nonempty optimal solution set. However, the underlying Multiple Vehicle Dispatch Problem (MVDP) makes it a complex integer programming problem; for N of any significant size $(N \geq 20)$, the BTAP is too large to be solved by conventional mathematical programming techniques in a reasonable amount of time. In the following

section we will introduce and discuss a good heuristic solution procedure for the BTAP. First, let us thoroughly examine the subproblems of the BTAP that we will be using in the heuristic approaches.

In Problem 1, if γ_i , i = 1,..., N are small or emergency costs negligible (actual γ_i 's range from .0002 to .06 when optimal ordering policies are followed, see Pierskalla and Yen [1978]) and the function $s(\ell, k)$ is essentially constant, then

$$z^{2}(x) = \sum_{i=1}^{N+M} \sum_{j=1}^{N+M} \sum_{k=1}^{n} x_{ijk}^{d}_{ij}$$

would be the dominating term in the objective function (1). Then we could just solve the MVDP,

Problem 2

$$\min \sum_{i=1}^{N+M} \sum_{j=1}^{N+M} \sum_{k=1}^{n} x_{ijk}^{d}_{ij}$$
(11)

subject to

$$\sum_{k=1}^{n} \sum_{j=1}^{N+M} x_{ijk} = 1 \quad i = 1,..., N$$
(12)

$$\begin{array}{cccc}
N+M & N \\
\sum & \sum & Q_{i}x_{ijk} \leq C_{k} & k=1,..., n \\
i=1 & i=1
\end{array}$$
(13)

$$\sum_{j=1}^{N+M} \sum_{i=1}^{N+M} d_{ij}x_{ijk} \leq D_{k} \qquad k = 1, \dots, n$$

$$i=1 \quad i=1 \quad i=1 \quad i=1 \quad (14)$$

$$\sum_{\{i:H_{i}\in S\}\{j:H_{i}\in \overline{S}\}} \sum_{k=1}^{n} x_{ijk} \ge 1 \quad \text{for all } (S, \overline{S})$$
 (15)

where S is any proper subset of $\mathcal X$ containing $\mathscr A$,

$$\sum_{j=1}^{N+M} x_{hjk} = \sum_{i=1}^{N+M} x_{ihk}$$
 k = 1,..., n; h = 1,..., N+M (16)

$$x_{ijk} = 0, 1$$
 $i = 1,..., N+M; j = 1,..., N+M$ (17) $k = 1,..., n$

in order to obtain the optimal x^* for Problem 1. The optimal allocations, y^* , would then be uniquely determined by x^* .

On the other hand, if γ_i , $i=1,\ldots,N$ are relatively large (which might happen under nonoptimal ordering policies) or system costs and periodic delivery costs are negligible, then

$$z^{3}(y) = \sum_{i=1}^{N} \sum_{j=N+1}^{N+M} \gamma_{i} y_{ij} d_{ij}$$

would be the dominating term in the objective function. Then we could just solve the allocation problem.

Problem 3

$$\min \sum_{i=1}^{N} \sum_{j=N+1}^{N+M} \gamma_i y_{ij}^{d}$$

$$(18)$$

subject to

$$\sum_{j=N+1}^{N+M} y_{ij} = 1 \qquad i = 1,..., N$$
(19)

$$y_{i,j} = 0, 1 \quad i = 1,..., N; j = N+1,..., N+M$$
 (20)

in order to get the optimal y^o for Problem 1. Then, optimal routings, x^o , would be obtained by solving a vehicle dispatch problem for each one of the M regions determined by y^o .

Let x^* be an optimal solution of Problem 2. Let y^* be the allocations determined by x^* . Let y^* be an optimal solution of Problem 3. Define $P_h(y)$ to be the set consisting of central bank N+h and the hospitals which it serves. Let $P(y) = \{P_1(y), P_2(y), \dots, P_M(y)\}$ such that $H_{N+h} \in P_h(y)$, $h = 1, \dots, M$; $H_i \in P_h(y)$ if and only if $y_{i,N+h} = 1$, $i = 1, \dots, N$; $h = 1, \dots, M$. (It should be noted that $\bigcup_{j=1}^{M} P_j(y) = \mathcal{X}$ and j=1 $P_{j1}(y) \cap P_{j2}(y) = \emptyset$, $j_1 \neq j_2$; j_1 , $j_2 = 1, \dots, M$; for all y feasible in Problem 1.)

Let x^0 be the routings obtained by solving the following vehicle dispatch problem for h = 1, ..., M (and renumbering the vehicles so that each corresponds to a different circuit).

Problem 4

$$\min \sum_{\{i: H_i \in P_h(y^\circ)\}\{j: H_i \in P_h(y^\circ)\}} \sum_{k=1}^n x_{ijk}^d d_{ij}$$
(21)

subject to

$$\sum_{k=1}^{n} \sum_{\{j: H_{i} \in P_{h}(y^{\circ})\}} x_{ijk} = 1 \text{ for all } i \text{ such that } H_{i} \in P_{h}(y^{\circ})$$
 (22)

$$\sum_{\{j: H_j \in P_h(y^\circ)\}\{i: H_i \in P_h(y^\circ)\}} Q_i x_{ijk} \le C_k \qquad k = 1, \dots, n$$
(23)

$$\sum_{\substack{\{j: H_j \in P_h(y^\circ)\}\{i: H_i \in P_h(y^\circ)\}}} \sum_{\substack{ij \\ ijk} \leq D_k} k = 1, \dots, n$$
 (24)

$$\sum_{\{i: H_i \in S\} \{j: H_j \in \overline{S}\}} \sum_{k=1}^{n} x_{ijk} \ge 1 \quad \text{for all } (S, \overline{S})$$
(25)

where S is any proper subset of $P_h(y^o)$

$$\sum_{\{j:H_{i}\in P_{n}(y^{\circ})\}} x_{ljk} = \sum_{\{i:H_{i}\in P_{n}(y^{\circ})\}} x_{ilk}$$
 for all l such that (26)

$$H_{\ell} \in P_{h}(y^{o})$$
 and $k = 1,..., n$

$$x_{ijk} = 0, 1 \{i: H_i \in P_h(y^o)\}, \{j: H_j \in P_h(y^o)\}, k = 1,..., n$$

$$(x_{iik} = 0).$$
(27)

It directly follows from the above definitions that

$$z^2(x^*) \le z^2(x^\circ)$$

$$z^3(y^\circ) \le z^3(y^*)$$

and if the systems costs are essentially constant

$$z^{2}(x^{*}) + z^{3}(y^{\circ})$$

would be a good lower bound on the optimal value of Problem 1.

Heuristic Solution Procedures for the BTAP

Let $\mathrm{EX}(\mathrm{j}_1,\ \mathrm{j}_2)$ be the set of all hospitals such that

$$\mathbf{H_i} \in \mathrm{EX}(\mathbf{j_1},\ \mathbf{j_2}) \text{ if and only if } \mathbf{H_i} \notin \mathscr{A} \text{ and } \mathbf{H_i} \in \mathbf{P_{j_1}}(\mathbf{y^*}),\ \mathbf{H_i} \in \mathbf{P_{j_2}}(\mathbf{y^\circ}) \ .$$

In other words $H_i \in EX(j_1, j_2)$ means that hospital H_i would have been allocated to bank H_{N+j_1} if only periodic delivery costs were minimized, and hospital H_i would have been allocated to bank H_{N+j_2} , if only emergency delivery costs were minimized.

The basic idea behind the solution procedures that will be discussed in this section is fairly simple: First, the feasible solutions (x^{*}, y^{*}) and (x^{9}, y^{9}) of Problem 1, discussed in the previous section, are obtained. Then, they are compared and for each pair (j_{1}, j_{2}) , $j_{1} \neq j_{2}$; j_{1} , $j_{2} = 1, \ldots, M$, hospitals $H_{i} \in EX(j_{1}, j_{2})$ are removed temporarily from $P_{j_{1}}(y^{*})$ and inserted into $P_{j_{2}}(y^{*})$. (Let us call this operation an exchange between sets $P_{j_{1}}(y^{*})$ and $P_{j_{2}}(y^{*})$). After each exchange, Problem 4 is solved for the two sets $P_{j_{1}}(y^{*})$ and $P_{j_{2}}(y^{*})$, under consideration, in order to obtain the corresponding components of the variable (x, y) of Problem 1. The components of (x, y) corresponding to sets $P_{j}(y^{*})$, $j \neq j_{1}$, $j \neq j_{2}$, are left unchanged. The resulting feasible solution, to Problem 1, is compared with the better of (x^{*}, y^{*}) and (x^{9}, y^{9}) . If there is a decrease in the objective function value, $z^{1}(x, y)$, the exchange is made permanent. Then another exchange is considered and so on.

Two algorithms have been developed, both based on the idea described above, and differing only in the way the exchanges implied by the sets $^{"EX(j_1, j_2)}$, $j_1 \neq j_2$, j_1 , $j_2 = 1, \ldots$, $M^{"}$ are ordered and executed. The first algorithm is reasonably fast, but the set of exchanges it tests

 $U \in EX(j_1, j_2)$ only one is not very large; it tests the elements in by one and independent of each other. The second algorithm tests a larger set, besides testing the elements in $\bigcup EX(j_1, j_2)$, it also (j_1, j_2) tests many different combinations of them. Hence, the second algorithm produces a better solution. Unfortunately, these latter tests are time consuming, and they slow down the algorithm considerably. Both of these algorithms were originally developed assuming no vehicle capacity constraints and no maximum number of stops per vehicle type constraints. In other words, constraint sets (3) and (4) of Problem 1 were assumed to be nonbinding (in which case, of course, the underlying MVDP reduces to the Multiple Traveling Salesman Problem (MTSP)). Then both algorithms were extended to provide solutions to the BTAP also when the constraints on the vehicles were binding. It should be noted that, in these algorithms heuristic procedures are employed to solve Problems 2 and 4. So, (x^*, y^*) obtained is not the optimal solution of Problem 2, but a near optimal solution. Similarly, x° is a combination of near optimal solutions obtained by solving Problem 4 for h = 1,..., M. Therefore, the inequality

$$z^{2}(x^{*}) \le z^{2}(x)$$
 for all x feasible for Problem 2

which is always true when x^* is optimal, might not always hold in our heuristic approaches, since there x^* is only "near optimal."

Algorithm 1:

The following algorithm is a solution procedure for the BTAP, when the constraints on the vehicles (constraint sets (3) and (4) of Problem 1)

are not binding. In this algorithm the sets $\mathrm{EX}(j_1,\ j_2)$ are ordered such that for all H_{i_1} , $\mathrm{H}_{i_1+1}\in\mathrm{EX}(j_1,\ j_2)$

$$d_{i_1j_1} - d_{i_1j_2} \le d_{i_1+1,j_1} - d_{i_1+1,j_2}$$

In other words the marginal decrease in the emergency delivery cost if H_{i_1} were to be placed in $P_{j_2}(y^*)$ is greater than the decrease if H_{i_1+1} were to be placed in $P_{j_2}(y^*)$. Then, each set $EX(j_1, j_2)$, $j_1 \neq j_2$, j_1 , $j_2 = 1, \ldots$, M is considered one at a time. Starting with the first element, all elements of the set $EX(j_1, j_2)$, under consideration, are, one by one, temporarily removed from $P_{j_1}(y^*)$ and inserted into $P_{j_2}(y^*)$. Then two traveling salesman problems are solved for these two sets. The resulting feasible solution to Problem 1 is compared with (x^*, y^*) and (x^o, y^o) ; if it is better, the change is made permanent.

Assume the following parameters are given: the coordinates of N hospitals and M banks; the function $s(\ell, k)$; the daily blood usage, Q_i , in each hospital H_i ; the period for the periodic deliveries; and the expected number of emergency deliveries γ_i for each hospital H_i in one period. Then the steps of algorithm 1 are as follows:

- 1: Read in all the data.
- 2: Compute the distance matrix, $D = \{d_{ij}\}$, i = 1,..., N+M; j = 1,..., N+M.
- 3: For each hospital H , determine the closest bank H_{N+j_1} . Set $y^o_{i_1j_1} = 1$ (This step will determine y^o .)
- 4: For each set $P_j(y^\circ)$, $j=1,\ldots,M$, solve the traveling salesman problem, using the convex hull algorithm or any traveling salesman algo-

rithm available. The convex hull algorithm is given in Appendix A. (This step will determine \mathbf{x}° .)

- 5: Apply the multiple assignment algorithm to the given set of points. This algorithm is given in Appendix B. (This step will determine y^* .)
- 6: For each set $P_j(y^*)$, j = 1,..., M, solve the traveling salesman problem, using the convex hull algorithm. (This step will determine x^* .)
- 7: Let $z_{\min} = \min(z(x^*, y^*), z(x^o, y^o))$, where

Note that z(x, y) is just the objective function of Problem 1 with the subscript k of x and summation over k deleted. Since there is only a single vehicle serving each supply point, this deletion does not affect the optimal value of Problem 1.

Let
$$(\widetilde{x}, \widetilde{y}) = (x^*, y^*)$$

- 8: a) Execute the following operations for each pair (j_1, j_2) , $j_1 \neq j_2$, $j_1, j_2 = 1, \dots, M$. When done, go to 9.
- b) Determine the set $\mathrm{EX}(\mathrm{j}_1,\ \mathrm{j}_2)$, if it is empty go to 8a.
- c) Order $EX(j_1, j_2)$ such that for all $H_{i_1}, H_{i_1+1} \in EX(j_1, j_2)$

$$d_{i_1j_1} - d_{i_1j_2} \le d_{i_1+1,j_1} - d_{i_1+1,j_2}$$
.

d) Go to 8a.

Case 15: obtains the solution (x, y) to the BTAP, using the assignments y° obtained in case 9. The vehicle constraints are 20 stops per vehicle and 150 units per vehicle maximum.

Based on these cases, we can make a few interesting observations.

- 1. Algorithm 2, which is far slower than algorithm 1, produces very little significant improvement in the solution.
- 2. The problem is insensitive to the parameter γ_i , $i=1,\ldots,N$. (Even though a large value was assumed for γ_i , $i=1,\ldots,N$, in the marginal analysis of (x^*,y^*) and (x°,y°) , the periodic delivery cost considerations always dominated the emergency cost considerations.)
- 3. In the existence of binding capacity constraints, \widetilde{y} produces very little significant improvement over y° .

These observations, provided that they hold in other cases in future research, imply that complex heuristics do very little over simple heuristics to improve the solution of the BTAP. This is a very interesting result; it might enable us to use simple heuristics and decision rules in the complex blood transportation-allocation problem. For example, if the first observation is true in general, algorithm 2 may be abandoned with considerable savings in execution time. If the last observation is true in general, one might simply use the allocations given by y° , which are very easy to determine, in the solution procedure of the BTAP, and avoid all the complicated processes to obtain y^{*} or \widetilde{y} . The second observation reduces the need for accurate estimates for γ_1 , the expected number of emergency deliveries to hospital H_1 in one period. These observations, of course, have to be further tested, and this is left for future research.

- 9: a) Execute the following operations for each pair (j_1, j_2) , $j_1 \neq j_2$, $j_1, j_2 = 1,..., M$. When done, go to 10.
- b) If $EX(j_1, j_2)$ is empty, go to 9a.
- Remove the first element of $\mathrm{EX}(j_1, j_2)$; let it be H_{i_1} . Define $\overline{y} = \{\overline{y}_{ij}\}$ such that $\overline{y}_{i_1j_1} = 0$, $\overline{y}_{i_1j_2} = 1$, and $\overline{y}_{ij} = \widehat{y}_{ij}$ otherwise.
- d) Solve the traveling salesman problem for the sets $P_{j_1}(\overline{y})$ and $P_{j_2}(\overline{y})$. Store the resulting tours in $\overline{x} = \{\overline{x}_{ij}\}$ such that
 - $\overline{x}_{ij} = 1$ if $H_i \in P_j(\overline{y})$, $H_j \in P_j(\overline{y})$ and the convex hull algorithm solution to $P_j(\overline{y})$ contains an edge between H_i and H_j .
 - $\overline{x}_{ij} = 0$ if $H_i \in P_j(\overline{y})$, $H_j \in P_j(\overline{y})$ and the convex hull solution to $P_j(\overline{y})$ does not contain an edge between H_i and H_j .
 - $\overline{x}_{ij} = 1$ if $H_i \in P_{j2}(\overline{y})$, $H_j \in P_{j2}(\overline{y})$ and the convex hull solution to $P_{j2}(\overline{y})$ contains an edge between H_i and H_j .
 - $\bar{x}_{ij} = 0$ if $H_i \in P_{j2}(\bar{y})$, $H_j \in P_{j2}(\bar{y})$ and the convex hull solution to P_{j2} does not contain an edge between H_i and H_j .
 - $\overline{x}_{ij} = \widetilde{x}_{ij}$ otherwise.
- e) Compare z with $z(\overline{x}, \overline{y})$. If z is smaller go to 9b; otherwise proceed.
- f) Update \widetilde{x} , \widetilde{y} , and z_{\min} . $\widetilde{x} = \overline{x}$, $\widetilde{y} = \overline{y}$, and $z_{\min} = z(\overline{x}, \overline{y})$.
- g) Go to 9b.
- 10: All of the exchanges are completed, terminate. (\tilde{x}, \tilde{y}) is the resulting near optimal solution; z_{\min} is the resulting near optimal value.

In most applications, the above algorithm will produce a very good solution in a reasonable amount of time (see the next section for the actual execution times). However, in some extreme cases (i.e., cases in which most of the sets $\mathrm{EX}(\mathsf{j}_1,\ \mathsf{j}_2)$ are very large), it could be very time consuming, considering that two traveling salesman problems are solved after each exchange and there are as many exchanges as the total number of elements in the sets $\mathrm{EX}(\mathsf{j}_1,\ \mathsf{j}_2)$, $\mathsf{j}_1 \neq \mathsf{j}_2$; j_1 , $\mathsf{j}_2 = 1,\ldots,$ M (i.e., there are " $\sum_{j_1=1}^{M}\sum_{j_2\neq j_1}^{M}|\mathrm{EX}(\mathsf{j}_1,\ \mathsf{j}_2)|$ " exchanges).

Algorithm 2

The following algorithm is a solution procedure for the BTAP, when the constraints on the vehicles are not binding. In this algorithm, the sets $\mathrm{EX}(j_1,\ j_2)$ are ordered such that for all H_i , $\mathrm{H}_{i+1}\in\mathrm{EX}(j_1,\ j_2)$

$$d_{i_1j_1} - d_{i_1j_2} \le d_{i_1+1,j_1} - d_{i_1+1,j_2}$$
.

Then each pair of sets $\mathrm{EX}(j_1,\ j_2)$, $\mathrm{EX}(j_2,\ j_1)$, $1 \le j_1 < j_2 \le M$ are considered one at a time. The first elements H_{i_1} , H_{i_2} of the sets under consideration, $\mathrm{EX}(j_1,\ j_2)$ and $\mathrm{EX}(j_2,\ j_1)$, respectively, are removed, and the following temporary exchanges are done in the given order:

 H_{i_1} is removed from $P_{j_1}(y^*)$ and inserted into $P_{j_2}(y^*)$.

H and one of the hospitals adjacent to it (adjacent in the graph defined by (\widetilde{x}) are removed from P (y^{\star}) and inserted into P (y^{\star}) .

 H_{i_1} and the other hospital adjacent to it (adjacent in the graph defined by (\widetilde{x}) are removed from $P_{j_1}(y^*)$ and inserted into $P_{j_2}(y^*)$.

 H_{i_1} and both of the hospitals adjacent to it are removed from $P_{j_1}(y^*)$ and inserted into $P_{j_2}(y^*)$.

 H_{i_2} is removed from $P_{j_2}(y^*)$ and inserted into $P_{j_1}(y^*)$.

 $^{H}_{\mbox{i}_{2}}$ and one of the hospitals adjacent to it are removed from P $_{\mbox{j}_{2}}(y^{\star})$ and inserted into P $_{\mbox{j}_{1}}(y^{\star})$.

 $^{H}_{\mbox{i}_{2}}$ and the other hospital adjacent to it are removed from $^{P}_{\mbox{j}_{2}}(y^{\star})$ and inserted into $^{P}_{\mbox{j}_{1}}(y^{\star})$.

 H_{i_2} and both of the hospitals adjacent to it are removed from $P_{j_2}(y^*)$ and inserted into $P_{j_1}(y^*)$.

After each exchange the new feasible solution to Problem 1 is determined (as described in the previous section) and compared with (x°, y°) , (x^{\star}, y^{\star}) . If it is a better solution, the corresponding exchange is made permanent. This process is continued until both of the sets $\mathrm{EX}(j_1, j_2)$, $\mathrm{EX}(j_2, j_1)$, for j_1 , j_2 under consideration, are empty. (Details of this algorithm are given in Or [1976].)

Extensions of Algorithm 1 and Algorithm 2

The algorithms presented in previous sections may be extended quite easily, to provide solutions also in the cases in which the constraints on the vehicles are binding (i.e., the underlying multidepot problem is the MVDP rather than the MTSP). One possible extension would be to use the Gillett and Miller sweep algorithm instead of the convex hull algorithm in steps 4, 6, 9d of algorithm 1 and in algorithm 2. Let us call this extension 1. Another extension would be to leave the first nine steps of the algorithm the same and change step 10 to:

10: Consider \widetilde{y} to be the near optimal allocations. For each set $P_j(\widetilde{y})$, $j=1,\ldots,M$, solve the vehicle dispatch problem using the sweep algorithm.

Let us call this last extension, extension 2. Notice that in extension 2 the sweep algorithm is applied only M times (in step 10), whereas in extension 1, it is applied M times in step 4, M times in step 6 and then twice after each exchange (it replaces the convex hull algorithm). Hence, as the sweep algorithm is slower than the convex hull algorithm, extension 1 is slower than extension 2. Extension 2 is coded in fortran IV and tested with the data given in Appendix 1 (see the next section for the computational results).

Considering how large and complex the BTAP is, algorithms 1 and 2 and their extensions are at least a good start; they produce some very acceptable feasible solutions and give us some insights about the BTAP, as will be discussed in the next section. However, we should note that we do not really know how good (or bad) a solution we are getting from these algorithms. For example, we do not know whether the allocations, \tilde{y} (which were obtained for the MTSP and used in step 10 of extension 2, in solving the MVDP) are near optimal allocation for the MVDP or not. Similarly, we do not know how good an assignment for the MVDP will be obtained in step 5 of extension 1 using the assignment algorithm of section 3.5, which was developed for the MTSP. Also, the sweep algorithm itself has an arbitrary nature, the solutions it produces are not guaranteed to be near optimal. These are all relevant shortcomings of our solution procedures and more research will be done to resolve them. (These algorithms and their extensions are available in 0r and Pierskalla [1976].)

The Convex Hull Algorithm

(A Heuristic Algorithm for the Traveling Salesman Problem)

The Convex Hull Algorithm is a "tour building" algorithm. It starts with a subtour and builds that into a tour by including unassigned nodes into the graph one by one. The Karg-Thompson [1964] algorithm is also based on this principle. The two algorithms, however, differ in some very important aspects. The Karg-Thompson algorithm starts with a triangle and "expands" arbitrarily to include the other nodes, whereas the Convex Hull Algorithm starts with the circuit forming the boundary of the convex hull of the nodes and "contracts" in a definite order to include all the other nodes.

Let N be the set of n nodes. The convex hull on N, call G, is the smallest convex set that includes N. So, by definition, the boundary of G is made up of edges that connect nodes of N, and it is a circuit. Also, there exists an optimal tour of N, in which the relative order of nodes on the boundary of G is preserved [Bellmore and Nemhauser, 1968]. This means, if the optimal tour were followed, nodes on the boundary of G would be visited in the same order as if the boundary of G were followed. This observation is one important reason why the boundary of G is a good starting point. The basic idea of the Convex Hull Algorithm will work when nodes are in R³ or for that matter Rⁿ (for whatever physical meaning the Traveling Salesman Problem might have in Rⁿ) and when the underlying distance matrix is not symmetric. However, for descriptive simplicity, computational speed and real world problems of interest to us, we will

confine ourselves to R² and to symmetric problems from now on. Also it should be noted that the distance matrix does not have to obey the triangle inequality for the algorithm to be successful. (This last point is shown by the performance of the algorithm on test problems 2 and 4). However, the Convex Hull Algorithm does depend on the topology of the given set of nodes and is not expected to perform well on randomly generated distance matrices. In this last class of problems there is the additional difficulty of defining the boundary of the convex hull.

The Algorithm

Assume the coordinates of n nodes and a distance norm (Euclidean, Rectilinear, etc.) or a distance matrix and nodes on the boundary of the convex hull of N (this is the starting circuit) are given. The algorithm is as follows:

- 1. If you are given the distance matrix and nodes on the boundary of G, go to step 2. Otherwise, compute the distance matrix and determine the circuit that forms the boundary of G. This is the starting circuit. If the starting circuit has n nodes, stop, this is the optimal solution [Bellmore and Nemhauser, 1968]. Otherwise continue.
- 2. a) For each edge on the starting circuit, find the "closest" (this term will be defined separately) node among nodes that are not in the circuit yet. These are the "candidate nodes" to be included in the circuit.
- b) Store the two endpoints of each edge, the corresponding candidate node and the "distance" between that node and the edge as four attributes of the entity candidate.

- c) Order the stored candidates according to how "close" they are to the circuit (from closest to the farthest).
- 3. Pick and remove the candidate at the top of the ordered list (closest to the existing circuit). Check if the candidate node is already in the circuit by having been chosen at an earlier iteration. If it is not, go to step 5. Otherwise continue.
- 4. Consider the edge defined by the two endpoint attributes of the chosen entity, candidate. For this edge, find the "closest" node among nodes that are not in the circuit yet. Include this node and the edge in the ordered candidate list the same way as in step 2. Go to step 3.
- 5. a) Consider the edge defined by the two attributes of the chosen entity, candidate. Modify the existing circuit by deleting this edge and adding the two edges that connect the endpoints of the deleted edge to the chosen candidate node.
- b) For each of the two new edges find the "closest" node among nodes that are not in the circuit yet, and include the edge and that node in the ordered candidate list the same way as in step 2.
- 6. If all of the n nodes are in the circuit constructed, terminate.

 The existing circuit is the near-optimal Traveling Salesman Tour. Otherwise go to step 3.

In the above algorithm "closeness" of a node v_k to an edge (v_i, v_j) can be measured by many different criteria. The length of the shortest straight line from v_k to (v_i, v_j) is one criterion. The difference given by [D: distance (v_i, v_k) + distance (v_k, v_j) - distance (v_i, v_j)] is

another criterion. The ratio [R: (distance (v_i, v_k) + distance (v_k, v_j))/distance (v_i, v_j)] is still another. We have experimented with all of the above criteria and their combinations. The best results were obtained by using the product of difference and ratio [RxD: $(d(v_i, v_k) + d(v_k, v_j) - d(v_i, v_j)) \times (d(v_i, v_k) + d(v_k, v_j))/d(v_i, v_j)$]; however, we do not yet fully understand why this criterion yields better results. A hypothesis is that D alone has trouble distinguishing between cases of equal differences such as

and R alone has trouble with the equal ratios of similar triangles such as

whereas topology and common sense tell us that case (b) should be considered before case (a) and that case (c) should be considered before case (d).

Extensions

The algorithm described above is very fast; however, its accuracy can be improved. In this case one might be willing to sacrifice some speed for additional accuracy. One source of inaccuracy is the algorithm's inflexibility in changing the order of nodes already in the circuit in later iterations. The extensions we have devised try to solve this problem.

In Extension 1 the search for the "closest" node (to a given edge) in steps 4 and 5 is done over all nodes (rather than being restricted to a subset of nodes, i.e., nodes which are not in the circuit yet). Then in step 4 the chosen candidate node (which is already in the circuit) is not immediately discarded, but it is checked to ascertain whether the solution would improve if that node is removed from its existing position and placed in a new position (as defined by the edge contained in the chosen candidate). If an improvement is found, the route is altered accordingly, and if not then it is discarded and a new candidate is chosen.

In Extension 2 the algorithm (steps 1 to 6) is not changed, but an extra step is added to "refine" the tour obtained. In this refinement process a check is made to ascertain whether the existing tour would improve if the position (in that tour) of any edge is changed. If an improvement is found, the tour is altered accordingly. Then a check is made to discover whether the existing tour would improve again if the position (in that tour) of any node is changed. If an improvement is found, the tour is altered accordingly. This concept of tour improvements is similar to the concept of λ - optimality in the Lin [1973] algorithm.

Results

The Convex Hull Algorithm and its extensions were coded in Fortran IV and run on the CDC 6400 computer of Northwestern University. The execution times obtained are quite impressive even on large (117 node) problems. The solutions obtained for some well-known problems in the literature are 0% to 1.5% above the known optimal solutions. Table A-1 below summarizes the performance of the Convex Hull Algorithm on these problems. Many of the test problems in the literature have a randomly generated distance matrix, this is the main reason why our comparative tests are limited to 5 problems. Table A-2 below gives the performance of the algorithm with and without its extensions and A-3 with different "closeness" criteria. Finally, our calculations and results from the experiments show that this algorithm is of the n³ type. (The execution times increase in proportion to n³ when number of nodes n increases.)

5	4	ú	2	1[1]	Test Prob- lem
Kro1ak 1971	Karg 1964	Dantzig 1959	Karg 1964	Karp 1962	Refer- ence
100	57	42	33	25	Number of Nodes
21282	13066	707	10861	1723	Convex Hull Algorithm Solution [3]
21282	12955	699	10861	1711	Optimal '' Solution
None	0.85%	1.14%	None	0.70%	% Differ- ence
3.897	1.479	0.789	0.496	0.301	Execution Time of C. Hull Alg. [2]

^[1] The convex hull for this problem is obtained by plotting the nodes on a plane from the distance matrix, using a compass.

^[2] All execution times are given in seconds.

^[3] The algorithm used is the convex hull algorithm with both of its extensions.

	6	5	4	w	2	Test Prob- lem
	Appendix 1	Krolak 1971	Karg 1964	Dantzig 1959	Karg 1964	Refer- ence
	117	100	57	42	33	Number of Nodes
	11343.1	22083	13114	724	10929	Convex Hu Without Ex
1	2.84	2.33	1.11	0.54	0.37	Convex Hull Algorithm Without Extensions Solution Exec. Time
25 -		21310	13170	716	10929	Convex Hull Alg. With Extension 1
	•	3.24	1.35	0.69	0.41	1 Alg. sion 1
	11193.4	21366	13066	707	10861	Convex Hull Alg. With Extension 2 Solution Time
	3.72	2.80	1.17	0.66	0.45	l Alg. sion 2
•		21282	13066	707	10861	Convex Hull Alg. With Extension 1,2 Solution Time
·		3.89	1.47	0.79	0.49	1 Alg. sion 1,2

23049	22516	22083	100	5
13957	14482	13114	57	4
724	732	724	42	u
10929	11586	10929	33	2
Solution with [1] criterion	Solution with [1] criterion "R"	Solution with [1] criterion "R × D"	Number of Nodes	Test Prob- lem

[1] The algorithm used is the original convex hull algorithm without its extensions.

Multiple Assignment Algorithm (A Heuristic Algorithm for MTSP)

Given N demand points and M supply points and a distance relation-ship between all pairs of points, the algorithm below first assigns the demand points to the supply points and then uses the Convex Hull Algorithm, discussed in previous sections, to solve M separate Traveling Salesman Problems.

The algorithm is:

- 1. For each supply point create a group and find the p closest unassigned demand points (p can be 1, 2, 3, 4 or 5, the choice of p will be discussed after the presentation of the algorithm). Assign them to that supply point by putting them into the corresponding group.
- 2. For each group construct a circuit that includes all the points in that circuit. These will be the starting circuits and their union will be the starting graph.
- 3. a) For each edge on each starting circuit find the "closest" unassigned point. These are the "candidate" points to be assigned to a supply point by being included in the corresponding groups.
- b) Store the two endpoints of each edge, the corresponding candidate point, and the "distance" between that point and the edge as the four attributes of the entity, "candidate".
- c) Order the stored candidates according to how "close" they are to the existing graph (from closest to the farthest).

- 4. Pick and remove the candidate at the top of the candidate list (closest to the existing graph). Check if the candidate point is already in a group (assigned to a supply point). If it isn't, go to step 6; otherwise continue.
- 5. Consider the edge, defined by the two endpoint attributes of the chosen entity, candidate. For this edge, find the "closest" unassigned point. Include this point and the edge in the ordered candidate list, in the same way as in step 3. Go to step 4.
- 6. a) Consider the edge defined by the two endpoint attributes of the chosen entity, candidate. Modify the existing graph by deleting this edge from the circuit that contained it and adding to that circuit the two edges that connect the endpoints of the deleted edge to the chosen candidate point. Assign the candidate point by including it in the corresponding group.
- b) For each of the two new edges find the "closest" unassigned point and include the edge and that point to the candidate list the same way as in step 3.
- 7. If all of the N demand points are assigned, proceed to step 8. Otherwise go to step 4.
- 8. The assignments are completed. Each group contains one supply point and the demand points assigned to it. Apply the Convex Hull Algorithm to each group, to get the delivery routes, then terminate.

In the above assignment algorithm, a number of different "closeness" criteria have been tried. The best results were obtained by using the

criterion "sum of the shortest straight line from the node to the edge (SH) and the cosine of the angle between the two new edges at the node (ANG)". Again, we do not yet fully understand why this criterion yields better results. The "product of difference (D) and ratio (R)" criterion, which gave good results when used in the Convex Hull Algorithm, did not perform that well in the above assignment algorithm. One hypothesis against the use of the ratio (alone or as a multiplier) is that, in early stages of the algorithm, most of the edges in the existing circuits are relatively short, hence using their lengths as denominators in the ratios will produce large "distances" and will bias the candidate nodes towards the longer edges. For example, using the criterion "RxD", the algorithm would consider the case in figure A-1, which has an RxD value of 80, before the case in figure A-2, which has an RxD value of 90, even though the latter seems like a better first choice.

The criterion SH was also tested in the assignment algorithm. This criterion's major drawback was that it failed to distinguish between cases such as the ones in figures A-3 and A-4 (it is clear that the case in figure A-4 should be considered first). The criterion "SH + ANG" overcame that drawback. A criterion such as "ANG x SH" would also have overcome that drawback, but using ANG as a multiplier would have caused problems similar to the ones caused by using R as a multiplier.

Sometimes, because of the topology of the demand points, the solution we get from the above assignment algorithm is very sensitive to the choice of p, the number of demand points in the starting circuits. If it is too large, the arbitrary nature of the initial assignments will take their toll. For example, given the topology in figures A-5 and A-6, p = 4 would lead to the solution illustrated in figure A-5, and $p \le 3$ would lead to the better solution illustrated in figure A-6. If p is too small, on the other hand, the probability of an unbalance growth

- o represents a supply point
- O represents a demand point

Fig. 5

in the groups will be larger. For an example of unbalanced growth, take the case p=1. At the end of step 3 of the algorithm, there will be two entries in the candidate list for each group (note that the two entities corresponding to the same group will be equal in distance and candidate point attributes). Then, if the candidates corresponding to any one

group have comparatively large distance values, the other groups might grow very large before the algorithm ever reaches those candidates in the expanding ordered candidate list. On the average, lower values of p give better results in smaller problems and higher values of p in larger problems. In the application of the assignment algorithm to the blood transportation allocation problem, three different values of p (two, three and four) were tested. The best results were obtained using p=3.

It should be noted that in the above assignment algorithm, actual construction and storage of the circuits are not really necessary, as long as one keeps track of the assignments and the candidate list accurately; those steps are included only to clarify the reasoning behind the algorithm and to complete the parallel between the Convex Hull Algorithm and this one.

This assignment algorithm is very similar, in structure, to the Convex Hull Algorithm. So, once the latter is coded, it is very easy to extend it to the assignment process as described above. In fact, this assignment algorithm is coded as a subroutine (subroutine ALLOC2, Or and Pierskalla [1976]) and applied to some MTSP in solving the blood transportation allocation problem. Also, it is very easy to adopt the assignment algorithm for solving the MVDP. The first seven steps would be the same and in step 8 an algorithm for the MVDP would be used instead of the Convex Hull Algorithm. This feature too is coded as a subroutine (subroutine DISPATCH).

There is a possible improvement of the assignment algorithm based on a concept first used by Gillett and Johnson [1974]. This is changing step 1 to:

- 1. a) For each supply point initialize a group.
- b) For each demand point i find the closest supply point j_1 and the second closest supply point j_2 and compute the ratio, $r(i) = d_{i,j_1}/d_{i,j_2}$.
- c) Assign all demand points i that have $r(i) > \delta$ (for a predetermined δ) to their closest supply point by including them in the corresponding group.

The original step 1 is very rigid in the way it forms the starting groups, since it does not take into consideration the topology of the problem. "The p closest unassigned demand points to a supply point" might be a very poor decision rule with which to assign points. On the other hand initially assigning only those points i with large r(i) is a more topologically oriented decision rule. If δ is large enough, there is a very good chance that assignments made through this decision rule are optimal assignments (optimal in the sense that there exists an optimal solution in which the assignments of those points are the same). The following example will clarify this argument.

Fig. 7

Given the configuration of figure A-7, original step 1 would assign i_3 , i_4 , i_5 to j_1 and i_1 , i_2 , i_6 to j_2 and the application of the whole algorithm would result in the circuits given by figure A-8.

Fig. 8

Whereas the revised step 1 would assign i_7 , i_8 , i_9 to j_1 and i_1 , i_6 to j_2 and the application of the whole algorithm would result in the circuits given by figure A-9.

Fig. 9

So, through the above arguments, this change is expected to improve the performance of the assignment algorithm; however, it has not yet been coded and tested.