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Abstract

The existence of optimal ordering policies for the perishable pro-
duct has been demonstrated by Fries and Nahmias and Pierskalla. Unfor-
tunately, computation of the optimal order function is difficult due to
the large state spaces needed to describe the process. Consequently, the
existing theory has limited utility because it is difficult to understand
and virtually impossible to implement, especially in the context of a
blood bank inventory. This paper examines a class of simple decision rule
ordering policies which eliminate the objections noted above. Application
of this theory and further results on issuing and inventory return policies
is then made to the blood bank situation. Stability of the optimal poli-
cies under certain parametric changes is examined and a decision rule for
the computation of the optimal order quantity is estimated. In addition,

information and data processing requirements are discussed.



I. Introduction

The analysis of inventory systems with a perishable product has been
underway for the past few years. Over a longer period of time, blood bank
administrators and management scientists have been looking at the manage-
ment of a blood inventory. The legal requirement that whole blood be
transfused within 21 days of being drawn, tue mechanics of issuing blood
to meet demands and the organizational structure of regional blood banks
lead to a complex inventory system. This paper will consider the manage-
ment of a regional blood bank in terms of an inventory model and will
analyze various components of optimal operating policy.

The inventory system associated with a blood bank is characterized
by a perishable product with a fixed lifetime of 21 days. The system is
subject to both stochastic supply and demand. Blood supply can be of any
age between zero and 21 days where fresh units are usually donated and
older units enter the system through shipments from other blood banks.
Procurement (supply generation) policy can be defined in terms of call-up
sequences from lists of previous donors, investment in donor recruitment »
campaigns to attract new donors and orders from other blood banks. Or-
dering policy is concerned with the amount to order under the assumption
that the order will be filled% A further area of policy control which
may be identified relates to issuing policy in terms of the age sequence
of units issued to meet demands. The most common examples are FIFO (first-
in-first-out) and LIFO (last-in-first-out) which are equivalent to issuing
the oldest and youngest available units, respectively, when all supply is

assumed to be fresh.

1 The results of this paper will be applicable to the single hospital blood
bank and those regional blood banks where the central bank must meet all

orders placed by the local bank.



Supply

The blood inventory is structured into assigned and unassigned sub-
inventories due to the phenomenon of cross-matching. Demands for blood
are associated with particular patients. Units issued to meet these de-
mands must be cross-matched (assigned) to the patients before actual trans-
fusion takes place. This procedure involves testing a sample of the issued
unit with a sample of the patient's blood and it insures that transfused
units will not have an adverse physiological reaction with the patient's
blood. Accordingly, uncross-matched units make up the unassigned inven-
tory and cross~matched units make up the assigned inventory.

In response to the costs associated with delays due to cross-matching
blood in the face of an emergency, many doctors overorder when requesting
blood. Consequently there are a large number of reﬁurns of stock from
the assigned to the unassigned inventory. The amount returned is random
since the blood bank has no a priori information on how many issued units
will ultimately be returned. The delay, in days, between initial issue
and subsequent return for nontransfused units can be viewed as a further
control parameter, A, and is referred to as the cross-match (return) pol-
icy. We note that supply is received and that outdated (spoiled) units

are retired from the system at the unassigned inventory.
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The two stage structure of the blood inventory (see Figure 1) leads
to a breakdown of demand into two categories. Permanent demands are those
demands which lead to transfusion for the issued unit. Temporary demands
lead to return of the issued unit to the unassigned inventory after a de-
lay of A days. Finally, in general, units are stored at all locations of
the regional bank and control of the inventory is usually shared between

_the central bank and the local hospital banks.

Analysis of a product which undergoes deterioration throughout the
planning horizon and which has a maximum useable lifetime began with the
work of Van Zyl [15] who considered the two period lifetime case. Fries
[ 3] and Nahmias and Pierskalla [ 8] and Nahmias [ 7] extended this work
and were able to solve for the‘optimal order policy for an inventory sys-
tem with constant utility of the pfoduct throughout its useable lifetime,
no return of issued stock, fresh supply, arbitrary lifetime of m periods,
FIFO issuing and an independent (identically) distributed demand process,
The cost structure included shortage, holding, ordering and outdate (wast-
age) costs. Order policies to minimize discounted total expected costs
were examined and the resulting optimal order function turned out to be
nonstationary and of a noncritical number form in that it could not be
expressed in terms of a single order-up-to quantity. Indeed, the amount
ordered in any given period was a function of the age distribution of
the inventory on hand at the beginning of that period. Moreover, the
optimal policy was to be computed by solving a dynamic program with

m
state variable in R,



To illustrate, consider the following:
Let x = (xm_l, Xpsenes xl) be the vector of initial inventory af the be-
ginning of the review period and before ordering.
X, = amount of stock with i periods of useable lifetime

remaining.

]

Let Bn(x, y) expected n period discounted total cost function, given
an initial inventory of x and an order of y in period n.

We seek an order function yn(x) such that

C_(x) = yi;fo{Bn(f’ N} = Bn(g, yn(35)>-

From the results described in Nahmias and Pierskalla [ 8], we note the

following:
vV xe ™1

1. Bn(x, y) is convex in y.

oB_(x, ¥)
2. lim -J-‘—af———— < 0.
y=0 Y
9B (x, ¥)
3. 1lim —————— > 0.

4., 3 unique yn(x) solving

0B (X, ¥)

R =0
7 y =y,
and y_(x) e (0, =).
dy_(x) dy_(x)
5. -1s — < .,..s5s —2Z < 0.
% ox
1 m-1

The inequalities in (5) order the contribution of an incremental unit of

initial inventory to the amount ordered in period n.



It should be pointed out that a nonstationary, noncritical number
order policy would be difficult to implement in a blood bank situation.
Recently attempts have been made to examine the optimal stationary crit-
ical number (S type) order policy for the simplified system we have been
discussing. Results for the m = 2; two period lifetime case can be found
in Cohen [ 2] and Nahmias [ 9].

In [ 2], Cohen demonstrated that the limiting expected average cost
function (shortages plus outdates) for the m = 2 case can be expressed in

terms of the order quantity S and the demand distribution F as follows:

W

c(s) lim Cn(S)

n—®
S S
s I (u-8)dF(u) + B8
S 0

F(u)F (S - u) = F2(u)F (S - u)du
T -F(DFS - o)

it

where

expected average cost for n periods when an order-up-to

C,(8)

quantity of S is in force

n
1]

unit shortage cost

[en]
il

unit outdate cost.

Moreover, C(8) is convex and

i)  1im 28G8) < o if F(0) = 0 or s> er(O)/<1—F2(O)>

sogr es
i1y 1im 288 » o .
gow 08

*
Thus, C(S) has at least one minimum point, say S , which solves:

9C(8)
08 *
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The extension of the aﬁalysis to the case of an arbitrary lifetime of m
periods is clearly needed before the theory can be applied to the blood
invéntory model,

Recently, attempts have been made to solve for bounds on the expected
cost function associated with the S type policy. Nahmias [ 10] has results
for a myopic model approximating the perishable problem and Cohen [ 2] has
generated the following bounds for the expected number of outdates for the
general m period lifetime-critical number order policy problem,

Let Z = random variable denoting the number of outdates in period n.
Then

l=<s , n=1, 2,...

. m
*m
F (s) < 2 Ez
k=1 ntk

ot B

where F*m is the m-fold convolution of the demand distribution. A dis-
cussion of the m period lifetime problem is presented in [ 2].

All of the existing inventory theory (that we are aware of) for a
perishable product has thus been primarily concentrated on ordering pol-
icy for the simplified case where all issued units are consumed, all sup-
ply is fresh and FIFO issuing is in force. This situation clearly does
not coincide to that of the previously described regional blood inventory.
Consequently, there is some question on the relevance of the policy rules
developed to date. Moreover, no attention has been given to return pol-
icy and the only useful result for issuing policy is the proof that FIFO
minimizes cumulated outdates and shortages in Pierskalla and Roach [11].
This latter result is for a perishable inventory model with no returns
and a nonincreasing utility for the product over its lifetime.

Analytic models which capture the complexities of the inventory sys-

tem and explicitly consider interactions of the various policy components



are evidently needed. Such theoretical work is ongoing but the models are
very complex and it will take time before they are well understood. An al-
ternative approach, which will be considered in this paper, is that of simu-
lation. The simulation results derived will be associated with a more real-
istic blood inventory model and will also provide insights into policy inter-
actions which are useful in their own right and are helpful in making simpli-
fying assumptions for further theoretical work. Specifically, we seek a
management policy which will be relevant to the blood bank situation and
will be both easy to compute and implement.

A number of simulation models for blood bank systems have been con-
structed (see [ 5, 6 , 14 ]). These models have been primarily concerned
with order policy and do not consider interactions of the previously out-
lined policy components. The empirical results of this paper are based
on the simulation models of Cohen and Pierskalla [ 1] and Pinson [13]
which were both specifically designed to test for such policy interaction.

The next section will briefly describe the basic simulation model and

its data requirements.

I11. Simulation Model and Data Requirements

The purpose of the simulation model is to evaluate the set of alter-
native blood management policies with respect to shortage and outdate costs.
Specifically, we consider the interaction among the three major policies:
issuing, ordering and cross-match returns.

The class of order functions considered are given by:

21
y=8S - b a.x
jop 3



where
y = amount ordered
S = order-up-to quantity
xj = amount of inventory of age j
aj = prespecified order weight

0.5+ (21 - 3) *0.05 .

The weights aj are a simple linear approximation which satisfy the inequali-
ties listed in (5) previously. Pinson [13] showed that these weights are
reasonable but that the optimal cross-match, ordering and issuing policies
were not overly sensitive to changes in them. Indeed, weights of aj =1
are also acceptable. Issuing policy was restricted to FIFO and LIFO and
the (cross-match) return policy was specified by a nonnegative integer \.

Data requirements for the model included the distribution for total
daily demand, the breakdown between temporary and permanent demand, the
age distribution of ordered units and unit shortage and outdate costs.
In much of the analysis, empirical distributions derived from the observed
pattern of shipments in local and regional blood banks was used. In addi-
tion, for comparative purposes, specified theoretical distributions were
used for demand and age distributions.

A simultaneous variation of the three policy components for fixed
sets of input data was carried out. The results generated by the simu-

lation model will be briefly summarized in the next section.



I11. Results
1. 1Issuing and Return Policies

LIFO and FIFO issuing pblicies were considered in conjunction with
values of the cross-match release parameter A of 0 through 7. A =0
corresponds to an inventory system where all issued units are consumed
and A = 7 corresponds to a system where untransfused cross-matched units
remain in the assigned inventory for a period of one week. 1In all, 16
issuing-cross-match policy combinations were considered.

Table 1 gives results averaged over a number of runs and Figure 1
is a graph of cumulated outdates vs. A for both FIFO and LIFO. The fol-

lowing observations can be made.

FIFQO Issuing

A 0 1 2 3 4 5 6 7
Transfused |2272. | 2272. | 2272. { 2272. | 2272. | 2272. | 2272. 2242.4
Outdated 0. 16.3 | s8.7 {117.0 | 173.1 | 202.1 | 272.1 | 330.8
Unassigned | o453 | 445 7 | 364.3 272 161.9 | 121.9 35.9 0
Inventory
Assigned 0 41.0 | 80.0 | 114.0 | 168.0 | 179.0 195 201.8
Inventory
Total 2775. | 2775. | 2775. | 2775. | 2775. [ 2775. | 2775. 2775.
Shortage 0 0 0 0 0 0 0 72.5

LIFO Issuing

Transfused | 2272. 2272, 2267.8 | 2266.2 | 2257.2 | 2254.0 | 2241.0 | 2234.4

Outdated 477. | 449.3 | 428.6 | 403.6 | 372.2 | 366.3 | 357.5 | 338.8
Unassigned 26 12.7 0 0 0 0 0 0
Inventory

Assigned 0 41 78.6 | 105.2 | 145.6 | 154.7 | 176.5 | 201.8
Inventory

Total 2775. § 2775, | 2775, | 2775. | 2775. | 2775. | 2775. | 277s.
Shortage 0 0 10.9 14.8 47.6 46.3 74.6 90.6

Table 1: BLOOD INVENTORY POLICY EVALUATION RUNS
ISSUING AND CROSS-MATCH POLICIES
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1. When A = 0, as predicted by the theory of Pierskalla and Roach

[11], FIFO is optimal in terms of minimizing the cumulated out-

dates and shortages.

2. As )\ increases under FIFO issuing, system performance deteriorates.

3. As )\ increases under LIFO issuing, outdates decrease and shortages

increase.

4. TFor reasonable A, FIFO dominates LIFO.

5. Although not shown, it is possible to generate examples where out-

dates under FIFO exceed those under LIFO for A sufficiently large.

6. There is great sensitivity to changes in A under both issuing policies.

520

480

440

400 J

360 J
OQutdates

(in units 320

of whole “1
blood for
three
months of 2804
operation)

240+

FIFO

200

160 4

1204

80
40 4
0 f + —+ — } } -
1 2 3 A 5 6 7

Cross-match Release Period A (in days)

Figure 1: OUTDATES VS. CROSS-MATCH RELEASE PERIOD
FOR FIFO AND LIFO ISSUING
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2. Ccentralized vs. Decentralized Cross-Match Control

For the purposces of this study we define centralized control to mean
that the cross-match period A is a constant determined by the central bank
administrator. Decentralization is introduced into the model by treating A
as a random variable. Specifically, A was chosen to have a positive truncafed
normal distribution. The mean of the distribution represents the broad policy
guideline set by the central bank as to the maximum time a unit should remain
assigned, and the variance reflects the degree of control exerted by the cen-
tral bank in enforcing this mean time. Once A is reached for a particular
cross-matched unit, the unit then becomes available to the central bank for
redistribution to other hospitals if needed.

The simulation model was thus run with a sample of cross-match return
times drawn from the truncated normal distribution with the specified mean

and variance. The results are given in Table 2 and Figure 2.

FIFO Issuing

Variance of )\ 0 1 2 3 4 6 8
Transfused 2272 | 2272 | 2272 | 2272 | 2272 | 2243 | 2173
Outdated 165 183 195 223 254 310 350
Unassigned 170 154 136 91 37 0 0
Inventory

Assigned 168 166 172 189 212 222 252
Inventory

Total 2775 | 2775 | 2775 | 2775 | 2775 | 2775 | 2775
Shortage 0 0 V] 0 o 71 211

LIFO Issuing

Transfused 2257 2255 2258 2245 2230 2198 2153
OQutdated 378 378 367 368 366 369 378
Unassigned o 0 0 0 0 0 0
Inventory

Assigned 140 142 150 162 179 208 204
Inventory

Total 2775 2775 2775 2775 2775 2775 2775
Shortage 43 49 39 68 100 157 255

Table 2: BLOOD INVENTORY POLICY EVALUATION RUNS FOR
CROSS-MATCH RELEASE PARAMETER A DRAWN FROM
A TRUNCATED NORMAL DISTRIBUTION WITH MEAN OF 4 DAYS



The costs of decentralization are clear from these numbers.
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Under FIFO

the number of outdates and shortages increase with increasing variance.

Under LIFO shortages and outdates do not change in a monotonic fashion.

Of importance here is the observation that the advantages of issuing with

FIFO can be lost

Thus, FIFO and a

if the variance for A is allowed to become excessive,

tighter control on the mean and variance of A\ lead to sig-

nificant reductions in outdating and shortages.

480
4004
LIFO
Qutdates 3204 FIFO
(in units
of whole
blood for
three
months of
operation) 2404
160~
80—F
0 } + t t t t 4 t
1 2 3 4 5 (] 7 8

Figure 2:

3.

Variance of Cross-match Release Period A (with a mean of )\ = &4 days)

OUTDATES VS. CROSS-MATCH RELEASE PERIOD VARIANCE
FOR FIFO AND LIFO ISSUING

Optimal Order Quantity

Using the linear ordering function described previously, the variation

between S, the order-up-to quantity and average costs (outdates + shortages)

was investigated.

All runs were made with FIFO issuing and per unit shortage
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and outdate costs of $55.00 and $25.00, respectively. These particular
costs were chosen because many studies have estimated the cost of pro-
cessing one unit of whole blood at about $25,00 and a unit of emergency
blood at $55.00. The $55.00 cost could be an emergency drawing and/or
shipping cost or the cost of a frozen unit of packed red cells. 1In the
study by Pinson [13], other costs were considered and it was shown that
the magnitude and shape of the cost curves and the magnitude of the op-
timal order quantity S* were not greatly influenced by reasonable changes
in costs. A further verification of this result will be given later on
in this paper. The resulting cost curves for A = 2, 5, 7 are illustrated
in Figure 3.

The cost minimizing order quantity, S*, was computed by using a
Fibonacci search technique in conjunction with the simulation model. A
simulation run was made with each chosen value for S (all other policy
factors and data inputs held constant). By varying S, the cost curve of
Figure 3 is built up, point by point. This procedure assumes unimodularity
of the cost function; an analytical question under consideration. (As men-

tioned in Section I, the cost function is convex when m = 2.) The results

of the Fibonacci search are in Table 3. We can make the following obser-

vations.
Cross-Match Release Period )\ 2 5 7
S*, the Optimal Order-Up-To Quantity 30 32 29
Cost/day at S~ $7.25 $36.55 $54.55
Outdates at S* 29 144 216
Shortage at s’r ' 0 1 1
Transfused at S 493 493 493
Average Unassigned Inv. at S 23.99 24.87 21.58
(before ordering)
Average Assigned Inv, at S* 18.77 39.42 53.29

*
Table 3: SYSTEM PERFORMANCE AT OPTIMAL ORDER POINT, S
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(a) Costs arc far morc sensitive to cross-match policy A than they
are to the order policy (S). (This is seen by the fact that the
mean cost/day increases from $7.25 to $36.55 to $54.55 as \ goes
from 2 to 5 to 7 days.)

(b) The cost minimizing value, S*, is fairly insensitive to the value
of A even though the overall cost level increases significantly
with . (This is seen by the relatively flat (near S*) curves
of Figure 3.)

(¢) The simulated running a§erage cost curve is approximately of the
desired convex shape.

(d) Loosely speaking, the optimal S* is chosen to be the minimum S

such that there are no shortages.

100

Shortage
-+
Qutdate

Cost/Day
3

20}

101 —

o 3 I 3 S I e L 3 8 S
Y T Al g y T T y T T

20 22 24 26 28 30 32 34 36 38 40
Order Quantity S (units of whole blood)

Figure 3: AVERAGE SHORTAGE/OUTDATE COSTS VS. ORDER QUANTITY FOR
FIFO ISSUING, $55 UNIT SHORTAGE COST, $25 UNIT OUT-
DATE COST AND A 100 DAY SIMULATION PERIOD
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The implications of the first two observations are as follows:
(i) The effect on shortages and outdates of the ordering policy is
*
minimal for S's in the neighborhood of S when compared to either

the issuing or cross-match policies. The insensitivity of the

S's in the neighborhood of S* (the optimal S) is important be-
cause a central bank cannot always achieve S* each day. Indeed,
large drawings of blood through donor plans often disrupts the
central blood bank administrator's policy of achieving S* on a
daily basis and he must seek an average S* over time, and
(ii) The optimal order quantity is essentially insensitive to the
value of A. This means that the blood bank administrator can
set his S* and then concentrate his inventory management con-
trol on reducing A knowing full well that his S* will not change
significantly.
Thus, from this analysis we may conclude that an optimal strategy for
a blood bank would involve the following components.
1. Use FIFO issuing,
2. Work to keep A as small as possible.
3. Work to keep A under centralized control.
4, Use the optimal order-up-to quantity, S*, when computing the
daily order.
The results of further investigation indicated a remarkable stability on
the part of S* to changes in age of supply distributions, shortage costs,
order weights {aj} and choices of A. Thus, it would seem that in the ab-
sence of an adequate analytic model, a reasonable approach would be to

*
seek out an empirical procedure for computing S as a function of those
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paramcters which describe the demand, supply and structure of the particular
blood bank under consideration. This approach will be considered in the

next section.

IV. Decision Function Analysis

There are, of course, many exogenous and policy control factors asso-
ciated with any blood bank system.v The exogenous factors identified for
the purposes of this discussion include the parameters specifying the total
demand distribution, the parameters specifying the age of units supplied
distribution, the per unit shortage and outdate costs and the fraction of
total demand which is transfused. As previously noted, control factors
for the system include the issuing policy, the cross-match release period
(\) and the order-up-to quantity (S). The simulation model and Fibonacci
search procedure relate S*, the cost-minimizing order quantity, to these
exogenous and control factors by providing an observation for S* which is
also related to demand and age of supply distribution samples and the model
structure,

The functional relationship between S* and the various control and
exogenous factors will be useful in making policy recommendations to the

blood bank manager. We shall refer to this function as the decision func-

tion and we note that it is the usual object of any analytic study of in-
ventory systems. In this section, the simulation model is used to explore
the decision function and we will now examine the procedure used to generate
the data required for its estimation.

A statistical experiment in which we vary the assorted factors through-

- .
out their range and use the simulation model to compute the S value asso-
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ciated with each factor configuration was carried out. The results of
this experiment were then used in a curve fitting analysis to identify
the desired functional relationship.

The function we seek can in general be written as:

O
w

S = f(61’ 62"0', a].’ az;"'! Yo CS’ CO’ )\) I)
where

61 = parameters describing the demand process;

o, = parameters describing the age of supply process;

v = % of total demand transfused;
C_ = unit shortage cost;
C. = unit outdate cost;

A = cross-match release period;

-
Il

issuing policy indicator.

Due to the previously noted insensitivity of S* to changes in cross-match
policy and other exogenous factors and due to the costs associated with
examining all possible combinations of factor choices, attention was re-
stricted to a subset of the explanatory factors listed above. Specifically,
analysis was centered on the relationship between S* and the parameters
specifying the demand distribution. A compound Poisson (specifically Neyman
Type A) distribution was postulated for the purposes of the experiment. The
advantages of using this distribution are that only two parameters are needed
and that each parameter has an unambiguous interpretation in the blood in-
ventory context, Total demand in a given day is generated by the arrival

of patients needing blood and the "arrival" of requests of units for each
patient. If both arrival processes are Poisson, then specification of the

patient/day arrival rate, § and the request/day arrival rate, 5R’ com-

P)
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pletely specify the total demand process. The identification of the de-
mand process and other statistical analysis of data from regional blood
banks is currently underway by Pierskalla, Sorum and Yen [12].

The desired decision function now has the form:

*
S = £(,, 8§,.).

P’ "R
The experiment to generate data to estimate f involves the following
steps:

1. wvary 5P’ 6, over a reasonable range of values;

R

2. generate a sample of demands for each choice of parameters;

3. run the simulation model and search program with each demand
sample holding all other data and policy inputs fixed;

*
4, compute S for each pair (6P, 8.0

R

5. estimate £ from the generated data;

6. check the sensitivity of f with respect to changes in other ex-

cluded controlling factors.
We note that step 6 is necessary to validate the exclusion of many of the
previously noted exogenous and control variables.

Table 4 presents the results from a typical set of runs. All simu-
lations for this table were made with FIFO issuing, A\ = 2, empirical age
of supply distribution and unit shortage and outdate costs of $55.00 and
$25.00, respectively. 6P had values of 1, 2, 4, and 6, and 6R had values
of 1, 2, and 3, respectively, and thus a total of 12 points were generated.
We note that there seems to be a strong relationship between S* and the

mean demand given by 6P° 8 It is also apparent from Table 4 that there

R
seems to be a monotonic relationship between average costs and changes in

arrival rates 6P and 5R'
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N AVERAGE
) PATIENTS 6R UNITS PER S COST/DAY ($)
PER DAY PATIENT OPTIMAL (OUTDATES +
ARRIVAL RATE ARRIVAL RATE CRITICAL NO. SHORTAGES)
1 1 4 5.80
1 2 7 7.10
1 3 13 10.75
2 1 6 6.35
2 2 13 9.05
2 3 17 13.35
4 1 12 6.00
4 2 24 8.50
4 3 30 9.05
6 1 16 7.50
6 2 28 7.80
6 3 42 10.00

*
InS = 1.397 + .754 1n 6P 4+ .933 1In 6R
(.0574)  (.0581) (.0386)
s2 = .00833 % = .98306

*
TABLE 4: OPTIMAL ORDER-UP-TO QUANTITY (S ) AND MINIMAL COST/DAY FOR
RETURN PARAMETER (A) = 2, EMPIRICAL AGE OF SUPPLY DISTRIBUTION, UNIT
OUTDATE COST OF $25.00 AND UNIT SHORTAGE COST OF $55.00
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After investigating both linear and polynomial functions, a Cobb-
Douglas function was chosen. This function has the following form:

A, A
* 1 2
S =B 6P 6R

and hence is linear in its logarithms, i.e.,

*
InS = 1n B + A1 in 6P + A2 In 6R s

where B, A, A_ are the coefficients to be estimated. The Cobb-Douglas

1’ 72
formulation has an intuitive appeal since it represents a generalization
of a simple linear function relating S* and mean demand 6P° GR'

Much has been said about the Cobb-Douglas function in the economic
literature in the context of production theory. For example, if the co-
efficients Al’ A2 are such that A1 + A2 = 1, then the firm is said to
exhibit constant returns to scale, i.e., homogeneity of degree A1 + AZ'
While many of the economic insights do not carry over to our situation,
it is interesting to note that positive coefficient values less than one
indicate a concave function along either coordinate direction. For a
blood bank this would mean that if, for example, the number of units per
patient is held fixed and if the number of patients per day is increased,
then a less than proportional increase in the order quantity would be op-
timal,

The results of the regression on the log values is to be found at
the bottom of Table 4. The standard error is shown in brackets under
each coefficient and the adjusted i? and the adjusted residual variance
s2 are indicated at the bottom of the table., The fit is clearly quite

good and the coefficient values are positive fractions close to one. Be-

fore turning to the sensitivity of the results to changes in other exo-
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genous and policy factors, we note that some of the difficulties in using
linear regression for this class of functions has been analyzed by
Goldberger [ 4]. Our fit was such that the problem of a possible bias

in the estimate of the B coefficient is not significant.

Table 5 gives the results of our experiment for A\ = 1, 2, and 4, with
all other factors held constant. The numbers indicate that there appears
to be little significant response to moderate changes in A. Further sets
of runs for each value of A wére made with a triangular age of supply dis-
tribution, with all units supplied fresh and with a per unit shortage cost
of $35.00. 1In all cases, there was almost no change in the observed values
for S* and hence we observe that the estimated decision function is fairly

insensitive to these factors.

A B A1 A2

1 4.22 . 796 .861
2 4,03 .754 .933
4 3.99 .758 .944

TABLE 5: ESTIMATED DECISION FUNCTION COEFFICIENTS FOR
VARIOUS VALUES OF CROSS-MATCH RETURN PARAMETER, \.

We may conclude, therefore, that the Cobb-Douglas relationship pre-
sents a family of decision rules which seem to capture the essentials of
the true optimal order policy over a fairly broad range of those parameters
needed to specify a blood bank inventory system. The insensitivity of the
estimated coefficients to changes in A confirms our earlier observations of

section III and is especially useful in a practical situation. By working
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towards reducing A, the blood bank administrator does not nccessarily
need to recompute his order policy. We note also that for the case of a
compound Poisson demand process data requirements are minimal since only
estimates of the easily observed quantities 6P and 6R are needed. The
decision function estimated for the appropriate value of A can then be
used to compute S*, the optimal inventory level.

The results of this experimental investigation of the decision func-
tion are illustrative of the type of information which the simulation model
can provide. It is, of course, possible to extend the experiment to include
a larger set of explanatory variables and other classes of demand distri-
butions. However, due to the relative importance of the issuing and cross-
match policy components, it is clear that even approximate ordering rules
can be tolerated in a practical situation. For this reason, we may treat
the decision function as an acceptable rule of thumb which has the advan-
tages of easy implementation and minimal information and data processing
requirements. In conjunction with the previous conclusions on issuing and
cross-matching, a management strategy for the blood bank which can effect

significant savings in operating costs can then be implemented.
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