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OVERVIEW

One of the areas of successful application of Operations Research in Health Care
Delivery is the scheduling of nurses. The nurse scheduling process may be viewed as one of
generating a configuration of nurse schedules that specify the number and identities of the
nurses working each day of the scheduling period. The authors discuss the cyclic
coordinate descent algorithm of computer-based nurse scheduling which has been
successfully implemented in a number of hospitals in the United States and Canada. The
mathematical programming model underlying the algorithm finds first a feasible solution
and then an optimum solution. The special feature of the model is that there are two types
of constraints, constraints which may not be violated except under rare circumstances and
constraints involving nurse preferences which may be violated occasionally but only if the
cost of violation is greater than the staffing level cost. The model assesses penalties for
violations of nurse preferences and of staffing levels. The two penalties can be weighted
differentially; trial-and-error procedure has been developed to make the costs approx-
imately equal. In the solution procedure, an initial configuration of the nurse schedules is

* Adapted with kind permission from articles published in Operations Research and Proceedings of Nurse
Staffing.
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made, one for each nurse. Fixing the schedules of all nurses but one, say nurse1i, it searches
m;, the set of feasible schedule patterns for nurse i until no lower cost schedule can be found.
If we view the feasibility region as the cartesian product of the feasibility regions n,,
Ty, ..., My, the algorithm is a simple cyclic coordinate descent algorithm along the
coordinate directions n;. T he empirical results of application of the algorithm have been
most favorable, as shown by the detailed discussion of one implementation, i.e., a major
Medical Center, which is a 40-unit, 800-bed hospital with approximately 900 full-time
and part-time nursing personnel. The algorithm chose the lowest cost schedule nearly
449 of the time, and chose a schedule that was in the 90th percentile or better, nearly
88 9, of the time.

1. Successful Multi-Site Implementation

Computer-based nurse scheduling systems have been successfully implemented in a
number of hospitals in the United States and Canada. The theoretical basis is
mathematical programming; and the computer basis is the cyclic coordinate descent
algorithm. Among the locations where the algorithm has been implemented are:

(1) Mount Zion Medical Center, San Francisco, California

(2) Pacific Medical Center, San Francisco, California

(3) Stanford University Medical Center, Stanford, California

(4) Kingston General Hospital, Kingston, Ontario

(5) Rush Presbyterian St. Luke Medical Center, Chicago, Illinois

2. Alternative Objectives in Nurse Scheduling

The nurse scheduling process may be viewed as one of generating a configuration of
nurse schedules that specify the number and identities of the nurses working each day of
the scheduling period. By specifying nurse identities, a pattern of scheduled days off and
on is created for the individual nurses. These patterns along with the hospital staffing
requirements define the nurse scheduling problem: How to generate a configuration of
nurse schedules that satisfy the hospital staffing requirements while simultaneously
satisfying the individual nurse’s preferences for various schedule pattern characteristics.

2.1. Cost, Effectiveness, Decision Levels

A number of mathematical programming applications to nurse staffing have
appeared in the literature beginning with Wolfe and Young[!],[2] who constructed
mathematical models which minimized the cost of assigning nurses to various classes to
do various tasks. Liebman[3],[4] also proceeded from a task orientation by assigning
nursing tasks in a manner which maximized the effectiveness of nurses performing tasks
on various patients. Warner and Prawda [5],[6] sought to minimize a “‘shortage cost” of
nursing care services for a period of three to four days subject to total personnel
capacity, integral assignment and other relevant constraints. Abernathy, Baloff,
Hershey and Wandel[7],[8] considered three different decision levels impinging on the
nurse staffing problem, and formulated an interactive model where the outputs of one
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level (e.g. staffing policies) are the inputs of another.

2.2. Cyclical and Noncyclical Scheduling

Much of the work relating to nurse scheduling has concerned cyclical scheduling
(Morrish and O’Conner,[9] Price,[10] Howell,[!1] and Maier-Rothe and Wolfe,[!2]
e.g., where each nurse works a cycle of n weeks, where 7 is the length of the scheduling
period. Cyclical schedules are easily generated but are characterized by excessive
rigidity vis-a-vis variations in the supply of and demand for nursing services. Two
noncyclical scheduling papers of note have been by Rothstein[!3] and Warner[!4].
Rothstein’s application was to hospital housekeeping operations. He sought to
maximize the number of day off pairs (e.g., Monday—Tuesday) subject to
constraints requiring two days off each week and integral assignments. Warner
presented a two phase algorithm to solve the nurse scheduling problem. Phase 1 is
involved with finding a feasible solution to various staffing constraints while Phase 11
seeks to improve the Phase I solution by maximizing individual preferences for various
schedule patterns while maintaining the Phase I solution.

| 3. The Mathematical Programming Model

The mathematical programming model developed here schedules days on and days
off for all nurses on a given unit or ward for a given shift for a two, four, six, or eight week
scheduling horizon subject to certain hospital policy and employee constraints.
Because of the large number of constraints, it is possible that no feasible solutions to the
nurse scheduling problem would exist if all the constraints were binding. For this reason
we divide the constraints into two classes: Feasibility set constraints, which define the
sets of feasible nurse schedules, and nonbinding constraints, whose violation incurs a
penalty cost which appears in the objective function. Each hospital has the discretion to
define which constraints go into each class.

3.1. Constraints: The Feasibility Set

Because of the possibility of special requests by nurses, no constraints are binding in
the sense that they hold under all circumstances except those constraints emanating
from the special requests. We do, however, distinguish between constraints we would
like to hold in the absence of special requests, and those which we shall always allow to
be violated while incurring a penalty cost.

The former constraints define what we call the feasibility set =;, i.e., n; = the set of
feasible schedule patterns for nurse i.

In the absence of special requests, this set might include all schedules satisfying:

(1) A nurse works ten days every pay period (i.e., 14 day scheduling period),

(2) No work stretches (i.e., stretches of consecutive days on) are allowed in excess of o
days (e.g., ¢ = 7)*, and -

(3) No work stretches of t or fewer days are allowed (e.g., T = 1)!

1 These are calculated within a scheduling period and also at the interface of a scheduling period with past
and future periods.
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Hence one schedule in a &; satisfying these might be (with ¢ = 7, t = 1)
11111110011100

Now suppose a nurse has special requests. For example, suppose the nurse requests
theschedule:1 11111110100 0 B,wherethe Bindicates a birthday. In this
case all of the above constraints would be violated and =; would consist of only the
schedule just given. Thus in the general case =; is the set of schedules which:

(1) Satisfies a nurse’s special requests, and

(2) Satisfies as many of the constraints we would like to see binding as possible, given
the nurse’s special requests.

The constraints we would like to hold are a function of the hospital in which the model
is applied. Thus, for example, we could as easily specify five out of seven days as ten out
of fourteen or specify additional constraints we would like to see satisfied such as one
weekend off each pay period.

3.2. Constraints: Nonbinding

Each schedule pattern x'en; may violate a number of nonbinding schedule pattern
constraints while incurring a penalty cost. Define

N, = the index set of the nonbinding schedule pattern constraints for nurse i.

For example, if the hospital in which the model was being implemented deemed them
as nonbinding, the following constraints might define N;:

No work stretches longer than S; days (where S; < o);*

No work stretches shorter than 7; days (where T; = ©);*

No day on, day off, day on patterns (1 0 1 pattern);*

No more than k consecutive 1 0 1 patterns;*

Q; weekends off every scheduling period (4 or 6 weeks);*

No more than W, consecutive weekends working each scheduling period;*

No patterns containing four consecutive days off;*

No patterns containing split weekends on (i.e., a Saturday on—Sunday off—pattern,
or vice versa).

In addition to nonbinding schedule pattern constraints, we also have nonbinding
staffing level constraints. Define: d, = the desired staffing level for day k; and m, = the
minimum staffing level for day k. Then we have:

(a) the number of nurses scheduled to work on day k is greater than or equal to m,
and

(b) the number of nurses scheduled to work on day k is equal to 4,.

3.3. Objective Function

As was mentioned, the objective function is composed of the sum of two classes of

* These are calculated within a scheduling period and also at the interface of a scheduling period with past
and future scheduling periods.
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penalty costs; penalty costs due to violation of nonbinding staffing level constraints and
penalty costs due to violation of nonbinding schedule pattern constraints.

3.4. Staffing Level Costs

Define the group to be scheduled as the set of all the nurses in the unit who are to be
scheduled by one application of the solution algorithm. Further define a subgroup as a
subset of the group specified by the hospital. For example, the group to be scheduled
may be all those nurses assigned to a nursing unit and the subgroups may be Registered
Nurses (RNs) and Licensed Practical Nurses (LPNs) and Nursing Aides. Alternatively,
the group may be defined as all RNs and a subgroup might be those capable of
performing as head nurses.

Then, for each day k=1, . . ., 14 (where there are I nurses), the group staffing level

costs are given by:

1 ,
ﬁ,( Y x,';), where x' = (X}, ..., x\,).
1

i=1
For example, this function might appear as in Fig. 1. Now define

N

Staffing
Level
Cost

~>
- Total Nurses

d Working on
"k k Day k

Fig. 1 Group Staffing Level Costs

B, = the index set of nursing subgroups j.
J = the index set of all subgroups.
If mj and dj are the minimum and desired number of nurses required on day & for

subgroup j, we define the staffing cost for violating those constraints on day k for
subgroup j as:
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where hg(.) is defined similarly as f, (.).
Then the total staffing level costs for all 14 days of the pay period are:

124 ﬁ«( i x,‘;>+§ Zhjk( sz';)

k=1 i=1 k=1,jeJ ieBj

3.5. Schedule Pattern Costs

For each nurse i = 1, .. ., I the schedule pattern costs for a particular pattern x
measure:

(1) The costs inherent in that pattern in relation to which constraints in N, are
violated;

(2) How nurse i perceives these costs in the light of nurse i’s schedule preferences;

(3) How this cost is weighed in the light of nurse i’s schedule history.

For example, for (1) the pattern

11111001110011

may incur a cost for a nurse whose minimum desired work stretch is 4 days. This is a cost
inherent in the pattern. Considering (2), we next ask how nurse i perceives violations of
the minimum desired stretch constraint, i.e., how severely are violations of this
nonbinding constraint viewed vis-a-vis others in N;. Finally (3) gives us some indication
of how we should weigh this revised schedule pattern cost in the light of the schedules
nurse i has received in the past. Intuitively, if nurse i has been receiving poor schedules,
we would want the cost of a given schedule to be relatively higher than the costs for
schedules of other nurses in order to cause a good schedule to be accepted when the
solution algorithm is applied and vice versa. Thus, we define:

gin(x’) = the cost of violating nonbinding constraint ne N, of schedule x'.

®;,, = the “weight” nurse i gives a violation of nonbinding constraint ne N,, which
. we shall call the aversion coefficient.
A; = the aversion index of nurse i; i.e., a measure of how good or bad nurse i’s

‘schedules have been historically vis-a-vis nurse i’s preferences.
Then the total schedule pattern cost to nurse i for a schedule pattern x' is:

A; Z aingin(x,i)a
neN:

and the sum of these costs for all nurses
i=1,...,11is the total schedule pattern cost.

3.6. Problem Formulation

Let A ¢ (0, 1) be a parameter that weighs staffing level and schedule pattern costs. It is
chosen such that the weighted staffing and schedule pattern costs are of approximately
equal magnitude. Experience has shown a trial-and-error procedure to be effective in
arriving at satisfactory values of A.
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Given 4, the problem is to find x!, x2, . . ., x! which minimize:
A| Sa( L)+ L sm( £x)
k=1 = k=1 jeJ ieBi

+(1—'A) Z A Z mgm(x

i=1 neNi
subject to x'en;, i=1,..., L

4. The Solution Procedure: Cyclic Descent Algorithm

The solution procedure used is a near-optimal algorithm. It starts with an initial
configuration of nurse schedules, one for each nurse. Fixing the schedules of all nurses
but one, say nurse i, it searches m;. The lowest present cost and best schedule
configuration are updated if, when searching 7;, a schedule is found which results in a
lower schedule configuration cost than the lowest cost to date. When all the schedules in
n; have been tested, either 1) a lower cost configuration has been found, or 2) no lower
cost configuration has been found. The process cycles among the I nurses and
terminates when no lower cost configuration has been found in I consecutive tests.

Each set m; will always contain at least one feasible schedule, due to the manner in
which the feasibility sets are constructed. To arrive at an initial solution one may select
one schedule from each =; in an appropriate manner (e.g., select the schedule with the
lowest dissatisfaction cost).

If we view the feasibility region as the cartesian product of the feasibility regions =,
T,, ..., %, the algorithm is simply a cyclic coordinate descent algorithm along the
coordinate directions ;. Each x; contains all feasible schedules for nurse i. When 4 days
are given off every 14 day pay period, n; contains at most 14) " = 1001 schedules. This
number is reduced considerably when previous schedules, special requests, and other
feasibility set constraints are considered. The convergence of the algorithm is assured

I
since the cartesian product contains a finite number of points, namely, II ||=;||,
i=1

where ||7;|| is the number of schedules in the set n;.

The following steps describe the algorithm in detail:

1. Determine the set of feasible schedules for each employee’s, ;. Let ||n;|| denote
the number of schedules in =;.

2. Calculate the schedule pattern costs for each schedule x‘en,, fori=1,..., I

3. Choose an initial schedule mix (i.e., a schedule foreachnursei=1,...,1I ) and let
BEST = its cost (e.g., choose the lowest cost schedule from each =;).
4. Leti=1,K=||n||, k=1and CYCLE = 0.

5. Try the kth candidate schedule, x*, in the schedule mix by temporarily removing
the present schedule for nurse i from the current schedule mix and inserting schedule x*.
Let TEST = the cost of this new schedule mix.
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6. If TEST < BEST go to Step 8.

7. Let k =k+1. If k = K+ 1 go to Step 9. Otherwise go to Step 5.

8. Let CYCLE = 0and BEST = TEST. Insert x* in place of the current schedule for
nurse i in the schedule mix. The schedule mix now contains the “best schedules found so
far.” Go to Step 7.

9. If CYCLE = I stop. Otherwise let i = i+ 1 (if i> I, let i = 1) and let K = ||=;]
k=1, and CYCLE = CYCLE + 1. Go to Step 5.

b

5. A Major Medical Center Nurse Schedules

The Medical Center is a 40 unit, 800 bed hospital with approximately 900 full-and
part-time nursing personnel. The hospital had collected historical data regarding nurse
schedule preferences and minimum and desired staffinglevels. Since the same data base
were used to develop both the hospital schedule and the computer schedule, it is
possible to compare them directly.

5.1. Computer Generated Schedules

Fig .2 presents some schedules generated by an early version of the algorithm for four
weeks of the six month trial period: October 22 to November 18. It should be noted that
in 14 of the 28 days the actual staffing levels were identical with the desired staffing
levels. The unit is understaffed by one nurse on two days and overstaffed by one nurse on
twelve days.

Table 1 presents data relating to the per cent of the schedules in ; having employee
dissatisfaction costs greater than or equal to that of the chosen schedule.

Note that in all cases except one, the nurses were given a schedule better than 90
per cent or more of those in the feasible pattern set. Moreover, we see that in most
instances the number of schedules in the set of feasible patterns, i.e., 7!,-| |, was well over
100; so there were many schedules to choose from.

We also note how the algorithm schedules equitably over time. In all cases except
one, a nurse received the lowest cost schedule pattern in the feasible set during one of the
two pay periods, and in that one instance the nurse received a schedule in the 99th
percentile in each of the two periods. The effect of the aversion index 1s evident when we
note the general pattern of nurses who receive their best schedules during the first two
weeks receiving a slightly worse schedule in the second two weeks and vice versa.

More extensive results will now be given for the entire six month scheduling test. Fig.
3 presents a histogram of deviations from desired staffing levels.

On 90 per cent of the days, the deviation from the desired staffing level was either 0 or
+ 1. Moreover, we do not include measures of under or overstaffing of the units in
question. Hence, if a unit was understaffed for a pay period, we would expect a number
of negative deviations. Similar results would hold for overstaffed units. In the light of
this we see how well the algorithm works in meeting staffing criteria.

In Fig. 4 a histogram presents data taken over the six months relating to the
percentile of a nurse’s feasible schedule pattern set in which the schedule pattern chosen
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Table 1
Ranking of schedules chosen by computer algorithm as judged by employee dissatisfaction cost criteria

Nurse Al Pay Period 1 |7l Pay Period 2
Percentile : Percentile
1A 15 100 167 92
‘1B 331 100 233 93
1C 331 100 370 94
1D 302 99 128 99
1E 331 93 166 100
1F 390 94 331 100
1G 156 100 349 100
2A 235 80 1 100
2B 202 100 331 95
2C 163 100 182 92
2D 52 98 331 100
2E 390 100 390 100

Legend: ||=;|| = Number of Schedules in Feasible Schedule Set of Nurse i.
Percentile = Per cent of Schedules in Feasible Schedule Set with Employee Dissatisfaction Cost Greater than
or Equal to Schedule Selected by the Solution Algorithm.

fell (where percentile is defined as in Table 1 and where Hn,l] = 10 were the only sets
considered).

Note that the algorithm chose the lowest cost schedule from a nurse’s feasible
schedule pattern set almost 44 9/ of the time and the algorithm chose a schedule that was
in the 90th percentile or better of the feasible pattern set almost 88 per cent of the time.
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Fig. 3 Distribution of Deviations from Desired Staffing Levels by Schedules Chosen by the Algorithm
During the Six Month Test Period
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Fig. 4 Distribution of the Number of Schedules in the Feasibility Sets with Employee Dissatisfaction Costs
Greater than that of the Schedules Chosen by the Algorithm (Over a Six Month Period)

5.2. Computer Running Time

The Central Processing Unit (CPU) time for the solution algorithm ranges from
about 25 seconds to 8 seconds (on a CDC 6400), depending on the number of nurses and
the number of schedules in their feasibility sets. In one run on a 4 nurse, 20 schedule
problem, the cost of the algorithm generated schedule was 12.3 while the optimal cost
was 7.55 (the initial cost of the algorithm solution was 239.45).The average solution time
was around 5 seconds. In most instances the groups consisted of from five to seven
nurses with an average of about 200 schedules in their feasible schedule sets. The current
algorithm is coded for the IBM 360 and 370.

As was mentioned, the actual schedules used by the hospital in which the test was
made were on record. Table 2 presents data relating to various schedule characteristics.

Four-or-more-days-off weekends were nearly the same in both cases. This is not
surprising since most of these were due to special requests by the individual nurses. The
algorithm, however, generated 13 more three- and two-day weekends than the hospital
did. This is a favorable feature since most nurses desire as many weekends off as
possible. Moreover the algorithm generated far fewer split weekends. Again this is
favorable since the hospital often does not desire to have such patterns. Both the
algorithm and the hospital performed equally well in generating stretches under the
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Table 2
Comparison of schedule pattern characteristics between hospital and the algorithm generated schedules

Working Consecutive Split Days
Weekend Days Off Stretches Off (101 pattern)
Under Over
>4Day 3Day 2Day Split min  Desired 1 2 3
Hospital
Schedules 11 17 43 25 19 57 26 13 5
Algorithm
Schedules 9 21 52 10 21 44 27 21 6

individual nurse’s minima but the hospital generated far more stretches over the nurse’s
maxima. In considering consecutive split days, the algorithm generated more in all
instances although the only significant difference occurred in the generation of two
consecutive split days.

We now define X, as the number of personnel in a group scheduled for day k, d, as the
desired number of personnel needed on day k, and D = | X, —d,| as the absolute
deviation of actual from desired. This gives us some measure of the deviation of the
actual staffing levels from the desired staffing levels. Table 3 gives more data relating to
these deviations over the schedule periods in question.

Table 3
Comparison of some staffing level statistics from hospital and the NSS generated schedules

14
Average D Variance of D Y (X,—d)
k=1
Schedule Pay
Period Period ALG HOS ALG HOS ALG HOS
1 .786 929 .169 352 11 17
9/24 2 1.071 1.071 .209 495 19 23
1 357 .786 229 454 5 15
10/22 2 .643 786 230 454 9 15
1 357 .786 229 312 5 13
119 429 571 245 .387 6 10
1 1.000 1.286 714 1.061 24 38
12/17 2 1.143 1.429 1.694 1.673 42 52
1 214 786 .168 454 3 15
1/14 1.000 1.143 429 551 20 26
1 1.071 1.214 495 455 23 27
2/ 2 .643 186 230 454 9 15
Legend: D = |X,—d|

HOS = Hospital Generated Schedule
ALG = Algorithm Generated Schedule by NSS
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In every pay period of every schedule period, the average deviation D of the actual
staffing level from the desired staffing level was as small as or smaller for the schedules
generated by the algorithm than those generated for the hospital. Moreover in all cases
but two, the variance of D was smaller for the algorithm generated schedules. One of
these two occasions occurred in the pay period containing New Year’s Day and on the
second occasion, the variances differed by only .04.

Another measure of the variability of the actual vs. desired staffing levels is given in
the last two columns of Table 3. This is the sum of the squares of the deviations. In all
cases the sum of the squared deviations arising from the algorithm generated schedules
is less than those from the hospital generated schedules.

6. The Implementation Process

Once the hospital’s top administrators have decided to install the computerized
algorithm, the implementation process begins. It proceeds through a series of steps over
several months. The initial step is to meet with the Director of Nursing to explain the
system, gather data on hospital scheduling policies such as the number of weekends
off-on, maximum and minimum stretches, beginning day and length of pay periods,
schedule horizon (usually four or six weeks), rotation, use of part-time and/or float
personnel, etc.

Next there is a group meeting with the head nurses to explain the operations of the
system, what it can and cannot do for them, the types of reports and schedules they will
receive, the time savings to them, the problems which it eliminates for them, and the
need for timely data on special requests. Emphasis is placed on the importance of
cooperation on both sides and that the computerized schedules do not take away any of
the authority of the head nurse in approving special requests of changing the schedules to
meet unanticipated needs. The computerized algorithm is a tool which removes some
onerous tasks so that they may have more time for more important tasks related to
health care delivery.

Following the group meeting, individual meetings are scheduled with each head
nurse. The purposes of the individual meetings are to answer any system questions and,
more importantly, to gather data needed by the algorithm. The data comprise such
items as who are the charge nurses, what groups and subgroups must be scheduled
together, minimum and desired group and subgroup staffing levels, what specific
scheduling problems are on the unit such as parallel people, part-time restrictions,
rotation restrictions, fixed patterns, team vs. primary care groups, etc. Another
important purpose of this meeting is to explain the limitations of the scheduler. For
example, any group on a unit may specify which two days, Friday—Saturday or
Saturday-Sunday, constitute a weekend; however, all of the nurses in that group must
use the same definition for their weekend.

The next step is an orientation meeting with groups of nurses on the units. The main
purpose here is to remove the fear of impersonalization by the computer and emphasize
that the head nurse still controls the schedules and that the computer gives them fairer
and more individualized schedules that meet their particular requests and preferences.
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After the general orientation meetings each individual is interviewed (with more time
devoted to nurses’ aides, orderlies, and medical technicians) to obtain rankings of her
(or his) preferences for weekends, stretches, split days off, etc. and to explain to her the
interactions of such preferences on her schedules. They are also informed that all
schedule changes or requests must be approved by the head nurse just as in the past.

Following each of the interviews, data are prepared and stored in the Master File of
the algorithm. After all of the above data have been stored, trial schedules are run to
adjust the various hospital and individual parameters. These trial schedules are
reviewed by the respective head nurses to catch any items missed in prior interviews.

The nurse scheduling is now in operating condition and periodic schedules are
produced. Even in this production phase, however, the schedules are reviewed every
time and adjustments are made for new hires, terminations, changes in workload
requirements and/or nurse preferences, etc. On a continuing basis it usually requires the

full-time work of one trained high school graduate, who works well with people and
enjoys the challenge of producing the best schedule for each head nurse, to operate the
algorithm for a 40-unit hospital with 900 full and part-time nursing personnel. If the
hospital is one-half this size, then only one-half the work is needed since the effort in
running and maintaining the algorithm is essentially linear with respect to the number
of units and people being scheduled.

The savings in head nurse time alone has been pointed out in other studies but at a
minimum it is one day per month per head nurse and usually two to four days per month.
Of course, head nurse’s time is not the only advantage of the algorithm. Other
advantages are: fairer schedules which meet nurse preferences, more even staffing of
units and a flexibility which allows the nursing administration to examine the effects of
changes in policies prior to the implementation of such changes.

7. The Model Extensions

The model may be extended to include shift rotation and part-time employees by
redefining the feasibility sets n; in an appropriate manner. For example, if we consider
shift rotation, we:

(1) Schedule night and evening shifts first.

(2) If the staffing level patterns require shift rotation to reduce staffing costs, and if the day shift has
nurses available to be rotated, select nurses from those available to rotate and have them rotate to the
night and evening shifts. The exact rotation patterns selected must conform to various rotation
constraints and must result in reduction of staffing costs on the shifts rotated to.

(3) Schedule the day-shift treating these rotation patterns as fixed conditions.

The problem of part-time employees is handled in a way analogous to full-time
employees. Feasibility sets n; are constructed for part-time employees depending on
appropriately defined constraints (e.g., a nurse must work four days out of every
fourteen). Then the schedules are listed according to how they meet a set of
appropriately defined nonbinding constraints. Then we proceed in the same manner as
with full-time employees, choosing schedules from the sets n; where now some of these
sets contain part-time nurses’ schedules and some contain full-time nurses’ schedules.
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8. Summary and Conclusions

We have presented a mathematical programming model formulating the nurse
scheduling problem as one where we find a set of feasible nurse schedules which seek to
minimize the sum of schedule pattern aversion costs incurred by the nurses and staffing
level pattern costs incurred by the hospital. The model is realistic in the sense that it can
handle any number of any type of schedule pattern and staffing level constraints, and is
general enough to be able to be applied in a number of different hospital settings with
differing operating policies.

The solution algorithm given is a cyclic coordinate descent method which generates a
solution specifying which days are on and off for each individual nurse being scheduled.
The algorithm runs relatively quickly on the computer and generates solutions in a
number of ways superior to those presently used in the hospital with which it was
compared. Moreover, the algorithm generated solutions compared favorably with the
optimal solution for a test problem.

A nurse scheduling algorithm based on the ideas presented in this paper has been
implemented in a number of hospitals in the United States and Canada. The results
from these implementation sites have been most favorable.
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