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ABSTRACT

This paper considers a population (composed, for example, of people,
machines, or livestock) subject to a randomly occurring defect or disease.
If there exist testing proéedures capable of detecting the defect before
it would otherwise become known, and if such early detection provides bene-
fit, the periodic administration of such a test procedure to the members
of the population, i.e., a mass screening program, may be advisable. This
paper develops and analyzes two important cases of a general model of a
mass screening program. In both cases, the defect arrival process is
Poisson.

In the first case, the reliability of the test, i.e., the probability
that the test will detect the disease, is dependent only on the type of
test being administered and is constant over all values of elapsed time
since the incidence of the defect. The long-run expected disutility per
unit time is derived and variations of the disutility with regard to test
reliability and testing frequency are presented. In addition, explicit
solutions are provided for various special forms of the disutility func-
tion.

In the second case, the test will detect the defect if and only if
the elapsed time since incidence exceeds a critical threshold T which
characterizes the tegt. An expression for the long-run expected disutil-
ity per unit time is derived and decision rules to select between two al-

ternative test types and costs are presented.



OPTIMAL MASS SCREENING UNDER CONSTANT AND
THRESHOLD TEST RELIABILITIES

Mass screening is the process of inspecting a large population for
defects. This population may consist of many subpopulations each with
different numbers of members but more importantly each with different
levels of susceptibility to the defects. If the early detection of a
defect provides benefit, it may be advantageous to employ a test capable
of revealing the defect's existence in its earlier stages. (Throughout
this paper the words 'defect" and "unit" or "individual" will refer to
defect, disorder or disease and to a member of the population, respec-
tively.)

Defects may arrive in a seemingly random fashion such as many types
of machine failure, the incidence of certain types of cancer, diabetes,
glaucoma, heart disease, etc., or they may arrive as the result of some
contagion such as smallpox, polio, etc. It is the former type of arrival
process, random arrivals, which is studied in this paper.

Now continuous monitoring would provide the most immediate detection
of a defect. But considerations of expense and practicality will fre-
quently rule out continuous monitoring so that a schedule of periodic
testing--a screening program--may be the most practical means of achieving
early detection of the defect. 1In general terms, the question then be-
comes one of how best to trade off the expensé of testing which increases
both with the frequency of test applications and with the cost of the
type of test used against the benefits to be achieved from detecting the

defect in an earlier stage of development.



The benefits of early detection depend upon the application consi-
dered. For example, in a human population being screened for some chronic
disease the benefits of early detection might include an improved proba-
bility of ultimate cure, diminished time period of disability, discomfort,
and loss of earnings, and reduced treatment cost. If the population being
screened consists of machines engaged in some kind of production} the bene-
fits of early detection might include a less costly ultimate repair and a
reduction in the time period during which a faulty product is being un-
knowingly produced. If the population being screened consists of machines
held in readiness to meet some emergency situation, an early detection of
a defect would reduce the time the machine was not serving its protective
function.

The expense of testing includes easily quantifiable economic costs
such as those of the labor and materials needed to administer the testing.
However, there can also be other important cost components which are more
difficult to quantify. For example, in the case of a human population
subject to medical screening, the cost of testing includes the inconven-
jience and possible discomfort necessitated by the test; the cost of false
positives which entails both emotional distress and the need to do unnec-
essary follow-up testing; and even the risk of physical harm to the testee,
e.g., from the cumulative effect of X-ray exposure.

In an earlier paper by Pierskalla and Voelker [1976], a mathematical
model of a mass screening program over Q subpopulations was developed.

The model allows for various testing technologies, with different relia-
bility characteristics and costs, different arrival rates of the defect

for each subpopulation, and budget, personnel and facility constraints.



The objective is to minimize the long-run disutility per unit time for
the population. The decision variables are the testing frequencies for
each subpopulation including the consideration whether a mass screening
program is justified at all for any given subpopulation.

In this paper, this model is very bdbriefly presented and then used
to consider two important special cases of mass screening situat;ons.

The first case is that of a test or tests which have constant test relia-
bility. This case is often one in which the testing instrument (machine,
vaccine, etc.) has a relatively constant probability of false negatives
or is one where the test may be perfectly reliable but the machine or de-
vice randomly produces defective units with a relatively constant proba-
bility.

The second special case of the general model is that of a test or
tests which have a threshold reliability. 1In this case, there is an
elapsed time T 2 0 after the arrival of the defect such that the test is
not able to detect the defect up to time T but will certainly detect the
defect once the defect has matured beyond time T. This case is common in
practice where there is a threshold of the defect before the test can
recognize its existence. This threshold time T is, of course, a function
of the test being administered.

Before proceeding to the cases of constant and threshold test relia-
bilities, it is useful to briefly discuss some of the related literature
on mass screening models.

Some models of mass screening have used a multi-state approach. The
Shwartz énd Galliher [1975] model was concerned with mass screening for

breast cancer. They utilized the Bross-Blumenson model for the progressive
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evolution of the disease through a set of states specific to breast cancer.
Detection of the disease carries a certain associated increase in life ex-
pectancy which is determined by the state of the disease at the time of
detection. Moreover, both the probabilities of detecting the disease by
means of a screening test and of detecting it in some other way (e.g., the
woman noticing a lump) are a function of the disease state. Upon calibrating
the parameters of their model to empirical data, Shwartz and Galliher utilize
computer simulation to determine the payoff due to particular longitudinal
schedules, i.e., due to particular sequences of testing infervals for a
woman over her adult lifetime.

In Voelker [1976], multi-state models were considered in which there
are countably many defect states through which the disorder evolves accord-
ing to a semi-Markov process. (Zelen and Weiss [1965] have shown a semi-
Markov process to provide a good fit to the course of development of one
disease which they studied in detail.) The probability of a test detecting
an existing defect is a function of the state of the defect at the time the
test is applied. Certain defect states are regarded as '"self-detecting".
The reward for detecting a defect through the use of a screening test is
a function of the state of the defect at the time of the detection and how
long the defect has been in that state. The semi-Markov process of defect
evolution is independent of the time of incidence of the corresponding de-
fect which is a Poisson process.

The results include formulas for the long-run expected utility per
unit time of a screening program, and several relationships involving the
"steady-state" distribution of undetected defect states which will arise

in response to that screening program.



Most works in, and related to, the area of modeling mass screening
have not utilized a multi-state approach, but rather a time based approach.
Such models usually focus upon either the detection delay or the lead time
characteristics of a screening program. Detection delay is the time between
the incidence of the defect and its detection (whether that detection is
the result of a screening test or of the defect becoming self-evident).
Lead time is the time difference between the time of detection via a
screening test and the time detection would otherwise have occurred had
not a screening program been in existence. These time based models some-
times do make reference to defect states, but the number of states is con-
fined to two, the preclinical state and the clinical state. 1In the pre-
clinical state, the defect exists but has not been discovered. 1In the
clinical state, the defect has become self-evident--thus rendering a
screening test superfluous. When the defect occurs, it is first in the
preclinical state and then in the clinical state. Hence, both detection
delay and 1ead time are determined by the time of detection relative to
the sojourn interval of the preclinical state.

Some early papers on a time-based approach are Derman [1961], Roeloffs
[1963, 1967], Barlow, Hunter and Proschan [1963], McCall [1969], and Zelen
and Feinleib [1969]. 1In three later papers, Keller [1974], Kirch and Klein
[1974] and Pierskalla and Voelker [1976], models are presentéd which assume
perfect test reliability. In these papers, optimal mass screening sched-
ules are presented. Keller used the calculus of variations to characterize
the schedule. Kirch and Klein give an inspection schedule which will mini-
mize expected detection delay subject to a constraint on the expected number

of examinations an individual would incur over a lifetime. Pierskalla and



-6-

Voelker, as mentioned before, minimize the expected disutility per unit
time for the population.

The most closely related work to the results in this paper are the
works of Lincoln and Weiss [1964] and Prorock [1973, 1976]. Lincoln and
Weiss studied the statistical characteristics of detection delay under
the assumption that the times of examinations form a renewal process and
that the probability of detecting the defect, p(t), is a functioh of the
defect's age, t. They derive open form equations, similar to remewal type
equations, which relate the density functions for the following entities:
the probability of detection at a test application (p(t)), the time until
the defect becomes potentially detectable and from this time the forward
recurrence time to the first test, the probability éf the event that at a
particular time a test occurs and all prior tests had failed to detect
the defect, and the detection delay. For the two special cases where
p(t) is a constant and where p(t) is expomnential, the moments for the de-
tection delay are derived in closed form. For uniform testing intervals
(and general p(+)), the distribution and moments of the detection delay
are computed. They also studied the case of perfect test reliability.

Prorok has established properties for the lead time in the case of
n successive screening tests conducted at uniform intervals. He also de~
rives the proportion of preclinical cases detected, both at a given test
and over all n tests. The test is assumed to .have a constant reliability
not necessarily equal to one. In addition, he derives an estimator for
the mean lead time. This estimator utilizes a mix of both theoretical
quantities and quantities which would be empirically available. In the
case of a perfectly reliable test, his estimator requires only the latter

kind of input,

.



In this paper, as in the Pierskalla and Voelker [1976] paper, the
model does not seek to minimize the detection or inspection delay but
rather the objective function is (initially) an arbitrary increasing dis-
utility function. The reason for choosing a general function is that the
disutility experienced upon the delayed detection of a defect may well
vary in a highly nonlinear way with the length of the delay.

The disutility associated with a particular detection will depend
only on the elapsed time since the defect's incidence. The notation D(t)
will express the disutility incurred if detection occurs t units of time
after incidence. D(¢) is assumed throughout this paper to be a nonnega-
tive increasing function.

In those cases where sup D(s) < =, there is a natural relation be-
s20

tween the notion of a utility function and D(+); namely,

U(t) = sup D(s) - D(t) .
s20

U(t)vis a decreasing function expressing the disutility avoided by de-
tecting a defect t units of time after its incidence,.

In the next section, the general model is presented. Section 2 con-
tains the analysis of the case when the probability of detection is a
constant over all values of elapsed time since incidence. The long-run
expected disutility per unit time is derived; its differential qualities
(with respect to variations in the test reliability parameter and testing
frequency) are exhibited; and explicit solutions are provided for various
special forms of D(+). Also for speciai forms of D(+), decision rules
are presented to select between two different kinds of tests which differ

with respect to their reliabilities and cost per application.



In section 3, it is assumed that the test will detect the defect if
and only if the elapsed time since incidence exceeds (or equals) a criti-
cal threshold T which characterizes the test. An expression for the long-
run expected disutility per unit time is derived, and decision rules are
developed to select between two alternative test types which differ with
respect to their critical threshold T and their cost per application.

Some examples for linear and quadratic disutility are given in the final
section.

The proofs of all results are given in the Appendix.

1. A General Model for Time-Based Mass Screening

This model was developed in Pierskalla and Voelker [1976] and a rela-
tively simple expression for the objective function was established. The
model is now briefly presented (full details may be found in the above
paper).

It is assumed that the jth subpopulation is of a fixed size, Nj’ and
that the defects arrive according to a stationary Poisson process with
rate Njkj (Nj could be and usually is a large but finite number). It may
be somewhat more realistic to set the defect arrival rate proportional to
the number of defect-free units, rather than to the total number of units
in the population. However, it is also assumed that no defect can remain
undetected longer than T* after its arrival, even without any screening
tests being given. Hence, T*ijj is an upper bound on the expected num-
ber of undetected defects in the jth subpopulation. If it is the case
that once a defect is detected, the afflicted unit is replaced in the

population with a healthy unit, then T*Nﬁkj represents a bound on the
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expected difference between the number of healthy units and the total
number of units in the subpopulation. For xj small, as would be the

case for a relatively infrequently occurring disorder, this should repre-
sent no difficulty. In this paper, therefore, Xj is considered to be
small, which is consistent with the examples of potential applications
which are mentioned.

The times of incidence for the defect in the jth subpopulation are
designated by the sequence {S?} for k =1, 2,... The screening test is
assumed to be administered to the jth subpopulation at the times 1/rj,
2/rj, 3/rj,... The testing frequency rj is a control variable. The
function pz(-) describes the reliability characteristics of the type £
screening test, i.e., how likely such a test is to detect a defect as a
fuﬁction of the defect's age. Note that pz(t) = 0 for t < O.

The random variable gk,j denotes the time at which the kth defect

r,4
gk J

is detected. 1 depends on the arrival time of the defect (S?), the

type of test used (L), and the testing frequency (rj).

Given the application of test type 4 at the times {1/rj, 2/rj,...},
the disutility incurred by the kth defect is D<§§’i -S?), where D(+) is
’

a strictly increasing function. The total disutility incurred due to

those defects which occurred in the interval [i/rj, (ii—l)/rj), is

k

= . SHed gk
B, . ig p(8%>J Sj>1i/rj( Do

r,f,i

where 1i/r(t) is an indicator function defined by

1 ifi/frst< (i+1)/r

Lie(® = /e a1y/e] (0 =
0 otherwise .
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The following theorem, which was proved in the previous paper, pro-

vides an expression for E[Br i] in terms only of the disutility due to

£
3 3
detection delay (as expressed by D(+)) and of the reliability of test type

L (as expressed by pﬂ(.))' In addition, the theorem shows that E[Br P i] =
E[Br’z’o] for i =0, 1, 2,..
Theorem A
n
j ;_0‘ rj n-1 n
E = - - —
[Br,Z,i] Nkn.:l j\ D(u)pz(u)ml;ll[l pl(u r.)]du
n-1 J
T,
]

for i =0, 1, 2,...

By defining Ei‘ g as the long-run expected disutility per unit time, then
>

by Theorem A

=5 R S
Br’z= lim — - E[Br,z,i]
m= @ i=0
o
j il rj n-1 n
= ryElsy y o) < Epy D | Dpy() T [1-py(u-7Hldu.
n-1
o
j

(The factor rj enters the definition to convert disutility per unit testing-
interval into per unit time.)

Now it is possible to formulate a mathematical program for the problem
of selecting testing frequencies and test-types for each of Q different
susceptibility classes which together comprise the whole population. These
classes may differ from one another in the number of units they contain,

in their defect incidence intemnsity, and/or in the cost per test application
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to an individual for a particular type of test. The subpopulations, how-
ever, are assumed to share a common D(+) function. Also it should be noted
that the test used may be a function of the jth subpopulation, i.e.,
L= 4(3).

The multi-subpopulation mass screening problem subject to a budget

constraint is:

(1) Minimize 2% Ei 25
(rl,rz,..,,rQ,f,(l),...,L(Q)) j=1 ’
such that
2 N <
(2) Pl I NICPRS °
(3) rj>0 i=1...,Q
(4) L(XeL 3=1,...,Q

where

cj 2(3) = cost per application of a test of type 4(j) to an
b

individual of subpopulation j,

=2
Il

number of units (or individuals) in subpopulation j,

o’
|

budget per unit time.

In order to make this mathematical program even more comprehensive,
it is possible to add constraints on the amount of testing labor available
and on the capacity of the testing facilities in terms of the number of
arrivals, the frequency of testing and the tybe of tests used. In addi-
tion, the cost of false positives can be included as a part of the test

costs in inequality (2).
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For example, a constraint on the total labor available is:

(5) 3

j=1

N.& <= L
NI R

and on the total testing facilities available is:

6 ;2 N, £, L. S F
© At I 16 DR
J
for each type of test 4(°) used over the subpopulations being tested,

where

6j L) " amount of labor needed to administer test type £(j)
b

to an individual of subpopulation j,

fj 233) = amount of testing facility time needed to administer
b

test type £(j) to an individual of subpopulation j,

LL = total amount of labor available to administer test

type £(*) per unit time,

FZ = total amount of facility time available to administer

test type £(¢) per unit time.

This mathematical program may be solved by any of several nonlinear
programming methods. However, in certain special, quite important, cases,
more explicit formulations of the objective function are possible. The
previous paper by Pierskalla and Voelker [1976] extensively considered
the case when Pz(t) = 1 for all t> 0. The following sections are con-
cerned with the cases of constant test reliability and with threshold

test reliability.
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2. Constant 'fest Reliability

The mass screening model yields interesting results for a test which
has a fixed probability p of detecting the disorder if it is present in
an individual. Such a model would arise if the unreliability of the test
is intrinsic to the test procedure rather than partially dependent upon
the state or age of the defect. An example of this is the administration
of a Mantoux test for tuberculosis in, say, a population of gra&e school
children. The test has a small but relatively constant level of false
negatives. There are other medical tests with similar characteristics
(such as electrocardial analysis).

To see how another type of situation with constant test reliability
could arise, consider a production process which is subject to a randomly
occurring defect which degrades its performance. Once the defect occurs,
the level of degradation of the process remains constant, until the de-
fect is discovered. Suppose the defect is such that each item produced
has probability &6 of being defective, and that the system without the de-
fect never produces defective items.

The only way to discover the existence of the defect in the produc-
tion system is to examine an item produced which is itself defective.
Now, if the examination of an item is expensive (e.g., the item is de-
stroyed as a result of the inspection) and if the capacity to examine a
sequence of items involves a setup cost (say a), the following strategy
might be called for: At specified times 1/r, 2/r,..., set up the capacity
to examine a sequence of items and examine, say, 4 items at each of those
times. The times 1/r, 2/r,... are then the times of testing and the sam-

ple size £ € = {1, 2, 3,...} specifies the test type.
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Assume that if a defective item is examined, the defect is always
observed, and the production process is thereby discovered to be in the
degraded state. Hence, a degraded state of the production process will
go undetected at the testing occasion k/r if and only if each of the £
items sampled at time k/r is, by chance, not defective. But the proba-
bility of that event is (1 -6)2. Note that the elapsed time t between
the entry of the production process into the degraded state and £he test

time k/r does not affect this probability. Hence,
L
pz = Pz(t) =1-(1-6)

which represents the probability that a test (the inspection of £ items)
will detect a degraded production process.

If the inspection of a single item has cost c, then to set up and
test a sample of 4 items has cost ¢, = a+Ac. To do this with frequency

L

r, a budget of at least rc, would be required.

L
The decision maker decides how large a sample of parts to test on
each testing occasion, and how frequently to schedule those occasions.
If there are a large number of production processes involved, they may be
partitioned according to their likelihood of becoming defective--thereby
forming suscebtibility classes. The decision as to sample size and fre-
quency would then have to be made for each class so as to stay within an
overall budget constraint.
This latter problem, several susceptibility classes in a population
of production processes, could then be formulated as the program at the

end of the previous section. For present purposes, the feature of inter-

est in this example is that pz(t) does not depend on t.
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Returning to the more general development, recall that gi repre-

54
sented the long-run expected disutility per unit time if test type £ is
applied with frequency rj. Exploiting the fact that pz(t) is a constant
(i.e., pz(t) =P, for all t =2 0) and, for ease of analysis, temporarily
suppressing the subscript j,

n+l

= °° nf r.
%) B, , = NArp, nzzo (1-p,) j D(u)du .

n

r
In order to avoid confusion with the general case of Br ) given in the
b
preceding section, it is convenient to use a new notation for (7). Conse-

quently, let Py be denoted by p and let
nt+l

(8) C(r, p) = NArp & (1 - p>“j T D(u)du .
=0 .
T

Therefore, (7) and (8) represent the long-run expected disutility per
unit time 1f a test, of a type which 1s characterized by a reliability
which does not vary with time since the defect's incidence, is adminis-
tered with frequency r.
A question which is examined next is how do changes in r and p
affect C(r, p). After that explicit solutions are given for C(r, p)
when D(+) takes certain simple forms. And lastly, some general rules are
indicated for selecting between a particular kind of test and a more ex-
pensive but more reliable alternative test when D(e) takes certain forms.
The following lemma indicates that C(r, p) behaves consistently with

one's expectations as r or p varies.
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Lemma 1: If D(+) is a strictly increasing function,

(9) a—C%’)—Pl<o , and
(10) -B-C—(g”;—P-l< 0

Note that for D(¢) nondecreasing, the inequalities in (9) and (10)
still hold but not strictly.

From this lemma, as anticipated, when p increases, the expected dis-
utility decreases. Similarly as r increases, the interval 1/r between
tests decreases and the expected disutility decreases. Consequently, as
better test types are used or the tests are more frequently applied, the
value of such changes in terms of reduced disutility versus the costs of
the changes can be assessed and the tradeoffs evaluated.

It is easy to compute the Hessian for C(r, p) when D(+) is differ-

entiable.
e = 3 2 +1 2
— = NAp 2 an- [(n+ 1) D‘(n——) -n D'(E)]
r r
or n=0
3¢ > 2
— = NAr > n(a- l)qn' [Wen, r) -W(n-1, )]
op -n=2
3%c = 1
3o3r = VA 2 [1-(+1)p]ld™ ' [W(n, 1) -A(m+1, r)+A(n, )]

n=0

n+l
T n. . .n
where q = 1-p; W(n, r) = jn D(s)ds; A(n, 1) =-;D(;).

r
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a%c e
Note that if D'(+) is increasing, then = 2 0 and — 2 0. Hence,

or op

along coordinate directions C(r, p) is convex.

Simple expressions for C(r, p) can be given when D(¢) is specialized
to a geometric and an exponential function, respectively. Since these two
types of functions are reasonably general and are intuitively appealing
for disutility functions (in the sense of an increasing rate of disutility
the longer the defect is undetected), they can be quite useful as realistic

approximations in applications.

Lemma 2: If D(t) = at" for a> 0 and m > 1, then

[+o]
NKE mt+1 -1
C(r, p) = a - 2; n pqn .
(m+1)r n=1

In the case that m is a'positive integer, then the summation in
Lemma 2 above is just the moment generating function of a geometric ran-

dom variable with parameter p and C(r, p) can be expressed by

aNAp W(mﬂ)(o :p)

) C(x, p) = >
(m+ Dr
where
t m
y(t:p) ="Ee_"‘t‘ and 4™ (0:p) '-'gl%ﬂl :
1-qe dt t=20

For m = 1, C(r, P) = a2Nr>\ (—2_1_;-2)’ and for m = 2: C(r: P) = aNZ)\ fl + : -26 :l :
3rm -

Lemma 3: If D(t) = Be°" for a, > 0, then

/ /x

C(r, p) = BNApr (¥ T -1)/a(1 - qe®' ")

-a
for r> Tog(q) °
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Lemmas 2 and 3 can provide a means to select between two alternative
kinds of tests which differ with respect to reliability of detection and
cost per application. Let test #1 have cost per application ¢y and relia-
bility P;- The corresponding parameters for test #2 are <, and p,. If
test #1 is administered with frequency rc2/c1, and test #2 administered

with frequency r, both testing regimes will consume equal quantities of

the budgeted resource; viz, Nrc,. If C(rc2/c

9 ) = C(r, p,) for all

1’ Pq
r 2 0, then the expected disutility per unit time will be less with test

#1 at all levels of budget Nrc That is, if test #2 is being used with

9
frequency r, the expected disutility can be decreased without any addi-
tional allotment of budget, simply by switching to test #1 and testing

as frequently as the budget permits.

Suppose, for example, that D(t) = at" form a positive integer. Then
=
C(rey/eys py) = C(x, py)

if and only if

pZW(O: pz)

m
(12) (cl/cz) < SIWTB—;SET

If the inequality in (12) is reversed, then test #2 is preferred to test
#1. Notice that this rule does not depend on r, and hence does not depend

on the budget contribution Nrcz.
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3. Threshold Test Reliability

In the previous section the reliability of the test depended only on
factors intrinsic to the test itself and did not depend at all on the
elapsed time since incidence at the time of the test. In this section a
special form for p(t) is considered which is very different from the case
of constant test reliability. Here the test reliability is zero, if the
elapsed time since the defect's incidence is less than T, and that at
elapsed time T, the reliability jumps to one. That is, p(t) = 1[T,m)(t)
where the number T is a characteristic of the type of test chosen.

The primary results in this section are a simple characterization of
§r,£ when pz(-) = 1[Tz’“)(.)’ and rules which, in some cases, will permit
selection between two tests which differ in their reliability (i.e., in
their detection threshold T) and in their cost per application.

Since the number TL completely specifies the function pz(t) = l[Tz,w)(t)’
the long-run expected disutility per unit time is expressed in terms of
r and T rather than in terms of r and the test type index 4. Suppressing

the subpopulation index j and the test index £, define

(13) A, T =B, when py () = 1rp oy() .

When T = 0, this definition is equivalent to perfect test reliability
or pz(t) =1 for t> 0 and

1
A(r, 0) = rNKJ‘rD(u)du.
0

The next theorem evaluates A(r, T) for all values of T = 0. Of

course, the "blind period" of the test from 0 to T does not delay the
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detection of each arriving defect exactly T units of time. The amount of
delay depends on the interplay among the time of arrival of the defect,

the testing schedule {1/r, 2/r,...}, and the magnitude of T.

Theorem 1: If p(+) =1

[T m)(') for some T 2 0, then
1
(14) A(r, T) = N)\rJrD(T+u)du.
0

Suppose the decision maker has two kinds of tests available, and he
must choose one of them for implementation in a mass screening program.
Suppose the first kind of test--call it test #l--has sensitivity charac-
1 That is, this

test will detect a disorder if and only if the disorder has been present

terized by the "time-until-detectability" threshold T

for a length of time T Let ¢, > 0 be the cost per application (to an

1° 1
individual unit) of this kind of test. TFor the second kind of test under

consideration, test #2, let T, and <, be the corresponding parameters.

2

Assume test #1 is better in the sense that T1 < TZ' if e, S ¢y,

there is no decision to make; test #1 should be used. ‘Therefore, assume
c1?> c,.

If the exact shape of the function D(¢) is known, Theorem 1 can be
used to decide which test to use for each possible level of budget. Let
b be the budget per individual in the (homogeneous) population. Then the
use of test #1 will permit a testing frequency of b/cl, and the use of
test #2 permits frequency b/c2. To decide which test to use, compare the
expected disutilities per unit time assuming a fully allocated budget,
i.e., compare A(b/c

Tl) and A(b/cz, T With D(¢) known, these quanti-

i 2

ties can be evaluated explicitly by Theorem 1 and compared.
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Note that it was assumed that the entire budget should be allocated.
This assumption was unnecessary because when D(¢) is an increasing function

) : !
2 A(r, p) = N2 [_f D(T+u) - D(T+Dyau] < 0.
0
Therefore, the greater the testing frequency, the lower the expected dis-
utility per'unit time. For this reason, the budget should be enfirely al-
located.
When the exact form of the disutility function is not known, Theorem
1 does not directly differentiate between test #1 and test #2. However,
the two following theorems will permit such a determination, at least for
certain relative configurations of the budget (per unit population), and
the relative sensitivity Tl- T2 and cost differential ¢y ¢ of the tests.
Specifically, Theorem 2 will show that for any (increasing) disutil-
ity function test #1 is indicated, if the budget (per unit population)

exceeds (c1 -cz)/(Tz-T ). On the other hand, Theorem 3 shows that for

1

a convex increasing disutility function, test #2 is better if the budget

)
is less than H77—==< .
2(T2- Tl)
¢ -
A decision rule for the case where the budget falls between T o7
¢, - ¢, 2 1
and —————— has not been found for general disutility functions.
2(T2- Tl)

Just how the statements of Theorems 2 and 3 are translated into the
above decision rules is explained after the statements of the respective

theorems.
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Theorem 2: Given D(») a strictly increasing function, T1'< T2 and

c12> Cys then T2-T12> (cl -cz)/rc2 provides a sufficient condition for
(15) A(rc2/c1, Tl) < A(r, T2)

and hence for test #1 to be preferable at the per unit population budget

level of rcz.

The hypothesis of Theorem 2 is equivalent to

c, -C

cy(Ty-Ty)

If test #1 is used with frequency rc2/c1 (as on the left side of
(15)), the budget required would be re, which is the same budget required
to execute test #2 with frequency r (as on the right side of (15)).

Hence, translating (16) into its equivalent form in terms of budget

(per unit population), designated by b,

b = rc2> (cl-cz)/(Tz-T ) .

1

With its hypothesis in this form, the theorem provides a lower bound on
the budget which is a sufficient condition for test #1 to entail lower
expected disutility per unit time vis-a-vis test #2, were the two tests
scheduled at their respective maximal frequencies rc2/c1 and r consistent
with the budget re,. The following lemma is needed for the proof of

Theorem 3 and is recorded here for general interest.

Lemma 4: I1f f is a convex function, then

1 t+y 1
17 ;I f(s)ds = 5[f(t)+f(t+y)] .

t
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This Figure illustrates Theorems 2 and 3. Each point on the

sloping line corresponds to a level of budget. Regions where

each test is preferable are indicated.
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Theorem 3: If D(*) is convex and increasing, c >~c2, T, < T,, and

1 1 2?

-T < -
T2 T1 (c1 cz)/2rcl, then

(18) A(clr/cz, Tz) < A(x, Tl) .

The hypothesis of Theorem 3 is equivalent to

€17 %

(19) rs Ezﬁ;jja;sz; .

If test #2 is used with frequency clr/c2 (as on the left side of
(18)), a budget (per unit population) of ¢, would be required. The
same budget is required to use test #1 with frequency r (as on the right
side of (18)).

Letting b represent the budget per unit population, (19) is equiva-

lent to the following constraint on the budget:

c, -¢C

b=c,rS 5757 -
1 2(T2- Tl)

Theorem 3 then indicates the superiority of test #2 at such levels

of budget.

4, Some Examples of Disutility Functions

Suppose a production process is subject to a randomly occurring de-.
fect. Although production appears to proceed normally after the incidence
of the defect, the product produced is thereafter defective to an extent
which remains constant until the production process is returned to its
proper mode of operation. The only way to learn if the production process
is in this degraded state is to perform a costly test. Now, if a test de-

tects the existence of the degraded mode of production t units of time
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after its incidence, the harm done will be proportional to the amount of
defective product (unknowingly) produced which, in turn, is proportional
to t. Hence D(t) = at for some a> 0.

Another example where a linear D(+) function may be appropriate would
be for the periodic inspection of an inactive device (such as a missile)
stored for possible use in an emergency. If t is the time between the in-
cidence of the disorder and its detection, the disutility incurr;d may be
proportional to the probability that the device would be needed in that
time interval. If such "emergencies' arise according to a Poisson process
with rate p, then the probability of an emergency in a time interval of
length t is 1 - eﬂlt, which for p small is approximately pt. Hence, if b
is the cost incurred should there be an emergency while the device is de-
fective, and if p is the (small) arrival rate of emergencies, then
D(t) = but.

A quadratic disutility could arise in the following situation. Sup-
pose the magnitude of a randomly occurring defect increases linearly with
time since the occurrence of the defect. For example, the magnitude of
the defect might be the size of a small leak in a storage container for
a fluid, and as fluid escapes the leak gets larger. Further suppose that
the harm done accumulates at a rate proportional to the magnitude of the
defect. Hence, the quantity of fluid lost (at least initially) increases
the longer the defect exists, and the rate of fluid loss is proportional
to the size of the leak.

Let the size of the leak (as measured by rate of fluid loss), at
time s since the leak's incidence, be cs. Then, if the defect is detected

at time t since incidence, the disutility incurred (fluid lost) is

t
D(t), = I csds = T ct

0
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Examples of nonlinear disutility functions for a few animal and human
diseases are already known. Although data may not be available currently
to support the utilization of particular models, that should not deter the
development of such modéls. It is reasonable to expect that in many ap-
plication areas in the future much additional data will become available;
for example, data concerning the stochastic pattern of a particular dis-
ease's development. Furthermore, these models can serve as a guide to
the kinds of data which should be gathered.

It is also reasonable to expect the future development of improved
testing technologies capable of detecting a disorder in a much earlier
stage of development than is now the case. Such innovations will make
screening programs more attractive and, consequently, make more impor-

tant the analytical tools to design such programs intelligently.
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Appendix

Proof of Lemma 1: Letting q =1-p,

_B% C(n, p) = NAr qnW(n) - NArp 2 nqn-]'W(n)

n=0 n=0
n+l
where W(n) =J‘ r D(s)ds .
o
r
Now let
V0 = WO
Vn—wn-wn-l’ n=1, 2,
a
Then, W = 2 V, and
j=0
55 C(r, p) = Nar Z q" V.-NAarp 2 nd™ " TV
P n=0  j=0 n=0 j=0
o [>2] (>} l
= NAr 2 V.[ % ¢"-p T nqd™ :\
j=0 1 n=j n=j
(s8] . 1
= -NAr 2 qu- I
j=0 ]
o i I+
(A1) = N\r qu-l [ J' r_D(s)ds - I r D(s)ds] s
j=1 : .
-1 i
r r
since

o
n n-1 ji-1 . . j-1
Z q"-p © o™ = ¢ asp-5-alpl = -3
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Because D(+) is strictly increasing, the right-hand side of (Al) is nega-

tive, and 2 C(r, p) < 0.

op
o o+l
_B_r C(r, p) = NAp & an’ T D(s)ds
n=0
T
- NXp = qn n+ 1 (n+1)___D( oy
Z )
[ .I_H-_L
—Nap D q“\:jrn(s)ds-%( @il p @)1 pEt] <o,
n=0

—

r

This inequality follows from D(¢) increasing, through the relations

pEEh - > 0
and ol
j D(s)ds-—D(n+1 J' pEtlygs -Lpatly - o,
r r
n n
r r

Proof of Lemma 2:

n+1l
C(r, p) = aNArp L an T Mae
=0
h
r
[+ o] o
- aNAp - [_ 23 qn(n+1)m+1 - qnnm+1]
(m+1)r =0 =0
[+ o]
_ aN Ap - > qn-lnm-i-l - qnnm-i'l]
(m+1)r “ n=l n=1
[« ]
aN\ m+l n-1
=2=0P _ 3 4 Pq .

(m+1)r™ n=1
Q.E.D.
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Proof of Lemma 3:

o«

NAp 5 qk _E_ eak/r(ea/r_ 1)

=0

C(r, p)

©o

Nkagr (ea/r_l) 5 (qea/r)k -

k=0
The geometric series 2J (qe*'*)* converges if and only if <1,
k=0
i.e., if and only if
-a
r> Tog q
~ Therefore, for r> —
log q
c(r, p) = Nipr (ea/r -1) 1
a a/r
1 -qe

Q.E.D.

Proof of Theorem 1l: The following conventions are used below:

I x, =1 forn<l and [x] is the largest integer not exceeding x.

From the definition of B s
r,h

(A2) A(r, T) = NAr i j%D(u)l (u)nI-Il‘l-l (u—m)] du
’ n=1 [T’w) m=1 “ {T:m) r
n-1
r
Let
[xu] .
(43) hw = T RSP

Note that for u€[(n-1)/r, n/r), n-1 = [ru].
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Therefore, (A2) becomes

n
© fled
(a4) A, D =WMAr D [ TD@1py @) A (w)du .
n=1 ool ?
T
Now it will be shown that
(AS) A= 1[0 T+‘l) .
? r
Select x 2 T+%_— . Then [rx] 2 1 and by (A3)
[rx]
m 1
noo = L SISICE 2] ERELTPYRICEEPE

But x-% 2 T, therefore the above relation shows
(A6). Alx) =0 for x 2 Tﬂv%.
Now select y €0, Tiﬂ%) . If [ry] = 0, (A3) and the convention on de-
generate products gives A(y) = 1. On the other hand, if [ry] > 0, then
the relation y-%s y-?];-< T form=1, 2,..., [ry] is not vacuous (i.e.,
the set of allowable indices m is not empty) and neither is the consequent
relation
m

1[T,m)(y- r) =0 form=1, 2,..., [ry].

And, hence by (A3)

(A7) A(y) =1 for y€[oO, T+%).

(A5) now follows from (A6) and (A7). Substituting (A5) into (A4),
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o
T
A, T =W T I D[y @[, g4 Ly W
n-1
r
= Nkrj‘ D(u)l[T’T_*_l)(u)du
0 r
1
= Nkrj‘rD(T+s)ds.
0

Q.E.D.

Proof of Theorem 2:

Suppose t—D(t) is the underlying disutility function. Then, by
Theorem 1, (15) is equivalent to showing
1l
D(T1+ s)ds< r j\ r D<T1+ (T2 - Tl) +s)ds .
0

re c./re
(A8) ———zf 12
€1
0

Let

D*(t)=D(T1+t) and T=T. -T, ,

then (A8) becomes

(A9) D*(s)ds <r er*(T+ s)ds .

rc, Jcl/rc2
C
L 0

Since D(¢) is an arbitrary increasing function, so is D*(+); consequently,
e
the asterisk on D () may be dropped.

To prove the theorem, it suffices to verify (A9). By hypothesis,
T> '(cl - c2)/rc2

which implies

1
T> u(e; -¢,)/e,  for u€ [0, =]



-32-

which implies

‘ 1
(A10) T+u> ucl/c2 for u€fo, r] .
Now,
re, pcy/re, % %
—c—-J D(s)ds = r J‘ D(cls/cz)ds <r I D(T+s)ds .
Lo 0 0

The inequality follows from (A10) and the fact that D(+) is increasing.

Q.E.D.

Proof of Lemma 4:

Let

h(t+s) = f(t)+§};[f(t+y)- £(r)] , s€fo, yl.
Since f is convex,
f(t+s) < h(t+s), s€fo0, v].

Hence,

A

<=
< =

t+y t+y 1 y
J £(s)ds J h(s)ds = ;j h(t+s)ds
" ¢ 0

%Iy \;f(t) +§(f(t+y) - f(t)ﬂ ds
0

£(t) + 5 [£(t+y) - £(D] 7/2)
y

%[f(t+y)+f(t)] .

Q.E.D.
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Proof of Theorem 3:

Theorem 1 renders the inequality (18) equivalent to

clr CZ/clr %
(A11) - f D(T24-s)ds Sr J D(Tli-s)ds.
20 0

As in the proof of Theorem 3.6, let

%

D' (t) = D(Tld-t) and T = T2— Tl'
(All) then becomes

1
c,/e.r "

clr 2" %
(A12) ——j D*(T+s)ds < r | T D*(s)ds .
0

c
2 0

Note that D(*) being an arbitrary convex increasing function implies D*(-)
is an arbitrary function of the same class. Hence, the asterisk may be

dropped. Also, let a = c2/c1 and x = % . Then, (Al12) can be written

13X 1%
(A13) o j D(T+s)ds s - I D(s)ds .
0 0

Using Lemma &4

1 ax T+ax

aj D(T+s)ds =aixj D(s)ds

0 T

< (1/2)[D(T) +D(T+ ax)]

T
(1/2T) J" [D(T) + D(T + ax)] ds
0

(Al4)

T
(/2m | c(oyds
0
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D(t)

X-a
T x-ax X - ax T+ ax 2T+ ax X

Figure 3.1

This Figure illustrates the regions of integration used in the

proof of Theorem 3.
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where G(s) = D(T-s)+D(T+ax+s). Now D(+) convex and increasing implies
G(+) is convex and increasing in s. Therefore, when s = 0, G(0) £ G(s)

which, along with (Al4), implies

1 ax 1 T 1 T
;};J D(T+s)ds s _ZE_[ G(0)ds s -Z_fj G(s)ds

0 0 0
1 1T .
(415) = _2—'1“[ [D(T-s)+D(T+ax+s)]ds .
0
Now,
1 2T+ax 1 T+ax T 2T+ax
2T + ax f D(s)ds = 2T+ax[ j D(s)ds + J D(s)ds + J D(s)ds]
0 T 0 T+ax
1 THax T
= **-—"2T+ax[_ I D(s)ds + f D(T - s)ds
T 0
T
+J D(T+ax+s)ds:\
0
1 TH+ax
T 2T+ axj D(s)ds
T
1 T
* 5T+ ax j‘ [D(T-s)+D(T+ax+s)]ds
0
ax 1 T+ax
= 2'I'+ax> gj' D(s)ds
T
2T 1 ¢t
+ <2T+ax> 5T ‘[ [D(T-s)+D(T+ax+s)]ds
0
1 T+ax
(A16) > P I D(s)ds .

T
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This last inequality follows from

1 T+ax 1 T
E—xj D(s)ds = 37 [D(T -s)+D(T+ax+s)]ds

T ’ 0

which follows from (Al5). By hypothesis, T < x(cl- c2)/2c1 which implies

(A17) 2T+ ax < x.
1 0% 1 2T+ax 1 X
;J D(s)ds = ;j D(s)ds + j D(s)ds
0 0 2T+ax
~ (2T+ ax\ _ 1 jZT"*axD( ya
- X 2T + ax sJ)ds
0]
X
x - 2T - ax 1
+< b )x-ZT—ax I D(s)ds
2T+ax
1 2T+ax
(A18) 2 m J‘ D(s)ds .
0
The last inequality follows from
1 2T+ax 1 X
2T+axI D(s)ds < x - 2T - ax I D(s)ds
0 2T+ax

which follows from (Al7) since D(+) is increasing. The proof is completed

by using, in turn, (A16) and (A18) to obtain

L JaXD(T+ s)ds = L ‘[T+axD(s)ds
ax ax
0 T
< 1l _ I2T+axD(s)ds < L j‘XD(s)ds
2T + ax A X ! )
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