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This paper formulates the nurse-scheduling problem as one of se-
lecting a configuration of nurse schedules that minimize an objective
function that balances the trade-off between staffing coverage and
schedule preferences of individual nurses, subject to certain feasi-
bility constraints on the nurse schedules. The problem is solved by a
cyclic coordinate descent. algorithm. We present results pertaining
to a six-month application to a particular hospital unit and draw

"~ . comparisons between the algorithm and hospital-generated sched-
vles. -

HE NURSE-SCHEDULING process may be viewed as one of gen-
- erating a configuration of nurse schedules that specify the number
and identities of the nurses working each day of the scheduling period.
By specifying nurse identities, one creates a pattern of scheduled days off
and on for the individual nurses. These patterns, along with the hospital
staffing requirements, define the nurse scheduling problem: how to gen-
érate a configuration of nurse schedules fulfilling the hospital staffing
requirements while simultaneously satisfying the individual nurse’s pref-
erences for various schedule pattern characteristics.

This paper formulates the problem and solves it in a mathematical
programming format, where we would like to find a configuration of feasible
_schedules that minimize an objective function trading off staffing costs
- incurred by the hospital and nurse dissatisfaction costs incurred by the
individual nurses.

A number of mathematical programming applications to nurse staffing
has appeared in the literature, beginning with Wolfe and Young,m'm
who constructed mathematical models that minimized the cost of assigning
nurses of various classes to do various tasks. Liebman'® also proceeded
from a task orientation by assigning nursing tasks in a manner that maxi-
mized the effectiveness of nurses performing tasks on various patients.
Warner and Prawda™ sought to minimize a ‘shortage cost’ of nursing
care services for a period of three to four days subject to total personnel
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capacity, integral assignment, and other relevant constraints. Aber-
nathy, Baloff, Hershey, and Wandel™” considered three different de-
cision levels impinging upon the nurse staffing problem and formulated an
interactive model where the outputs of one level (e.g., staffing policies)
are the inputs of ‘another.

Much of the work. relating to nurse scheduling has concerned cyclical
scheduling (see Morrish and O’Conner,"” Price,”” Howell,”’ and Maier-
Rothe and Wolfe!®), in which each nurse works a cycle of n weeks, where
n is the length of the scheduling period. Cyclical schedules are easily
generated but are characterized by excessive. rigiditv vis-A-vis variations
" in the supply of and demand for nursing services. Two noncyclical
scheduling papers of note have been by Rothstein'® and Warner."
Rothstein’s application was to hospital housekeeping. operations. He
sought to maximize the number of day-off pairs (e.g., Monday—Tuesday)
" subject to constraints requiring two-days off each week and integral as-
signments. Warner presented a two-phase algorithm to solve the nurse-
scheduling problem. Phase I is involved with finding a feasible solution
© to various staffing constraints, and Phase II seeks to improve the Phase
I solution by maximizing individual preferences for various schedule
patterns while maintaining the Phase I solution.

1. THE MATHEMATICAL PROGRAMMING MODEL

The mathematical programming model developed here schedules days on
and days off for all nurses on a given unit or ward for a given shift for a
two-, four-, six-, or eight-week scheduling horizon, subject to certain
hospital policy and employee constraints. Because of the large number of
constraints, it is possible that no feasible solutions to the nurse-scheduling
problem would exist if all the constraints were binding. For this reason
we divide the constraints into two. classes: feasibility set constraints,
which define- the sets Qf feasible nurse schedules, and nonbinding con-
straints, whose violation incurs a penalty cost that appears in the objective -
function. Each hospital has the discretion to define which constraints
- go into each class.

Constraints: The Feasibility Set

Because of the possibility of special requests by nurses, no constraints
are binding in the sense that they hold under all circumstances except those -
constraints emanating from the special requests. We do, however, dis-
tinguish between constraints we would like to hold in the absence of special
requests and those that we shall. always allow to be violated while in-
curring a penalty cost.

“The former constraints define what we call the feaszbzlzty set m;, ie.,

x;=the set of feasible schedule patterns for nurse 7.
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In the absence of special requests, this set might include all schedules
satisfying:

® A nurse works ten days every pay period (i.e., 14-day scheduling
period) ; '

® No work stretches (i.e., stretches of consecutive days on) are allowed
in excess of ¢ days (e.g., o= 7),

® No work stretches of 7 or fewer days are allowed (e.g., 7= 1) (The
lower and upper bounds on work stretches are calculated within a schedul-
- ing period and also at the interface of a scheduling period with past and
future periods. ) '

- Hence one schedule in a #; satisfying these might be (with ¢=7, r=1)
11111110011100.

Now suppose a nurse has special requests. For example, suppose the
nurse requests the schedule: 1111111101000 B, where the B in-
dicates a birthday. In this case all of the above constraints would be
violated and =; would consist of only the schedule just given. Thus in
the general case w; is the set of schedules that

(1) Satisfy a nurse’s special requests;

(2) Satisfy as many as possible of the constraints we would like to see
binding, given the nurse’s special requests.
~ The constraints we would like to satisfy are a function of the hospital
in which the model is applied. Thus, for example, we could as easily
~ specify five out of seven days as ten out of fourteen or specify additional
constraints we would like to see satisfied, such as one weekend off each

| . pay period.

Constraints: Nonbinding

Each schedule pattern ’ex; may violate a number of nonbinding schedule
pattern constraints while incurring a penalty cost.

Define N;=the index set of the nonbinding schedule pattern constraints
for nurse 7. For example, if the hospital in which the model was being
implemented deemed them as nonbinding, the following constraints might

define N,:
‘ @ No work stretches longer than S; days (where S;<¢);
@ No work stretches shorter than T; days (where T;=7);
e No day on, day off, day on patterns (1 0 1 pattern);
® No more than « consecutive 10 1 patterns;
e Q; weekends off every scheduling period (4 or 6 weeks);
® No more than W, consecutive weekends working each scheduling
period;
‘ e No patterns containing four consecutive days off;
e No patterns containing split weekends on (i.e., a Saturday on-Sunday
off-pattern, or vice versa).
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(These constraints are evaluated within a scheduling period and also at
the interface of a scheduling period with past and future scheduling
periods. )

In addition to nonbinding schedule pattern constraints, we also have
~nonbinding staffing level constraints. Define d; as the desired staffing
level for day k and m; as the minimum staffing level for day k. Then we
have: (a) the number of nurses scheduled to work on day k is greater
than or equal to m, and (b) the number of nurses scheduled to work on

~day k is equal to di.

- Staffing .
Level
Cost

) Total Nurses.
Working on
Day k

-Fig. 1. An example of a daily staffing level cost function for a nursing
group.. ’

' Ob|echve Function ,
As was mentioned, the ob]ectlve funetion is composed of the sum of
two classes of penalty costs: penalty costs caused by violation of nonbind-
ing staffing level constraints and penalty costs caused by violation of non-
binding schedule pattern constraints.

Staffing Level Costs

Define the group to be scheduled as the set of all the nurses in the unit
who are to be scheduled by one application of the solution algonthm
Further define a subgroup as a subset of the group specified by the hospital.
For example, the group to be scheduled may be all those nurses assigned
to a nursing unit and the subgroups may be RN’s, LPN’s, and Nursing
Aides. Alternatively, the group may be defined as all RN’s and a sub-
group might be those capable of performing as head nurses.

Then, for each day k=1, , 14 (where there are I nurses), the group
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staffing level costs are given by: fi( D iZ] zx'), where z'= (', - - -, zl1).
For example, this function might appear as:

Now define B;=the index set of nursing subgroups j; JJ =the index set
of all subgroups. If m’ and d,’ are the minimum and desired number of
nurses required on day k for subgroup j, we define the staffing cost for
violating those constraints on day k for subgroup j as hj( Z.-esj '),
where A ;(-) is defined similarly to fi(-).

Then the total staffing level costs for all 14 days of the pay period are

::i‘ifk(Zznl Xy )+ i;i‘i Z]eJh]k(ZuBJ xlc

Schedule Pattern Costs

For each nurse ¢=1, ---, I the schedule pattern costs for a particular
pattern x* measure:

(1) the costs inherent in that pattern in relation to which constraints
in N; are violated;

(2) how nurse < perceives these costs in light of nurse i’s schedule
preferences;

(3) how this cost is weighed in light of nurse 7’s schedule history. For
example, for (1) the pattern 1111100111001 1 may incur a cost
for a nurse whose minimum desired work stretch is 4 days. This is a
cost inherent in the pattern. Considering (2), we next ask how nurse ¢
perceives violations of the minimum desired stretch constraint, i.e., how
severely does she view violations of this nonbinding constraint vis-a-vis
others in N,;. Finally, (3) gives us some indication of how we should
weigh this revised schedule pattern cost in light of the schedules nurse 7
“has received in the past. Intuitively, if nurse 7 has been receiving poor
- schedules, we would want the cost of a given schedule to be relatively
‘ higher than the costs for schedules of other nurses in order to cause a
- good schedule to be accepted when the solution algorlthm is applied, and
“vice versa. Thus, we define: .

g (z’) =the cost of violating nonbinding constraint neN; of schedule z°;

a;,=the ‘weight’ nurse 7 gives a violation of nonbinding constraint
neN ;, which we shall call the aversion coefficient;

A ;=the aversion inder of nurse %, i.e., a measure of how good or
bad nurse 7’s schedules have been historically vis-a-vis nurse
¢’s preferences.

Thcn the total schedule pattern cost to nurse ¢ for a schedule pattern
z'is A, an aimgin(2'), and the sum of these costs for all nurses t=1, - -+, I
is the total schedule pattern cost.

Problem Formulation

Let >\e(0 1) be a parameter that weights staffing level and schedule
pattern costs. It is chosen such that the weighted staffing and schedule
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pattern costs are of approximately equal magnitude. Experience has
shown a trial-and-error procedure to be effective in arriving at satisfactory
values of \. '

~Given ), the problem is to find z*, 2°, - - -, 2 that minimize:

Mt fe( 2000 @) + 2oimt D e hin( D ien; ')
(1 —}\) Z:zi A; ZneN,; aingin(zi)

subject to z'er;, =1, -- -, I.

2. DESCRIPTION OF THE SOLUTION PROCEDURE

We use an algorithm that finds near-optimal solutions. It starts with
an initial configuration of nurse schedules, one for each nurse. Fixing
~the schedules of all nurses but one, say nurse 1, it searches =;. The lowest
present cost and best schedule configuration are updated if, when search-
ing =, one finds a schedule that results in a lower schedule configuration
cost than the lowest cost to date. When all the schedules in ; have been
tested either a lower cost configuration has been found or no lower cost
configuration has been found. The process cycles among the I nurses
and: terminates when no lower cost configuration has been found in I
consecutive tests. o

‘Each set =; will always contain at least one feasible schedule, because of
_the manner in which the feasibility sets are constructed. To arrive at an
initial solution one may select one schedule from each w; in an appropriate
manner (e.g., select the schedule with the lowest dissatisfaction ‘cost).

If we view the feasibility region as the cartesian product of the feasibility
regions my, M, - - -, w1, the algorithm is simply a cyclic coordinate descent
algorithm along the coordinate directions ;. Each =; contains all feasible
schedules for nurse 2. When 4 days off are given every 14-day pay period,

T contains at most <]f>=1001 schedules. This number is reduced

considerably when previous schedules, special requests, and other feasi-
~ bility set constraints are considered. The convergence of the algorithm
is assured since the cartesian product contains a finite number of points,
namely, TI;Z] |||, where [x;] is the number of schedules in the set ;.
The following steps describe the algorithm in detail.
1. Determine the set of feasible schedules for each employee, 7. Let
||lw:|| denote the number of schedules i in ;.

- 2. Calculate the schedule pattern costs for each schedule z'em;, for

1=1, ---, 1.
3. Choose an initial schedule mix (i.e., a schedule for each nurse 7=
1, ---, I) and let BEsT=1its cost (e.g., choose the lowest cost schedule

from each ). :
4. Let =1, K==, k=1, and cYcLE=0.
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5. Try the kth candidate schedule, ™, in the schedule mix by tem-
porarily removing the present schedule for nurse ¢ from the current
schedule mix and inserting schedule *. Let TEsT=the cost of
this new schedule mix.
. If TEST <BEST, go to Step 8.
Let k=k+1. If k=K+1 go to Step 9. Othermse go to Step 5.
8. Let cycLe=0 and BEsT=TEsT. Insert z™ in place of the current
schedule for nurse 7 in the schedule mix. The schedule mix now
contains the ‘best schedules found so far.” Go to Step 7.
9. If cycLe=1, stop. Otherwise, let t=7+4+1 (if ¢>1, let 7=1) and
let K==, k=1, and cycLe=cycLE+1. Go to Step 5.

N o

3. RESULTS

Preliminary tests were conducted on a small sample problem comparing
the algorithm presented above with a branch-and-bound algorithm that
yielded the optimal solution. These tests showed that our algorithm
generated schedules almost as good as the optimal ones in far less computer
time. For example, in one run on a 4-nurse, 20-schedule problem the
cost of the algorithm-generated schedule was 12.3, while the optimal cost
was 7.55 (the initial cost of the algorithm solution was 239.45). The
CPU time for the algorithm was 0.367 sec vs. 10.509 for the branch-and-
bound. Moreover, this time occurred when the initial upper bound in
the branch-and-bound was the final solution generated by the algorithm.
Arbitrarily large upper bounds yielded running times on the order of
30 sec. These times are for a CDC 6400.

More extensive tests were run for the day shift of a unit in alarge 800-
bed hospital. The hospital had collected historical data regarding nurse
schedule preferences and minimum and desired staffing levels. This
information was used in the application of the algorithm. We could
compare the algorithm schedules and the hospital schedules, since both
were generated from the same base data.

Algorithm-Generated Schedules

Figure 2 presents some schedules generated by the algorithm for four
weeks of the six-month trial period, October 22 to November 18. Note
-that on fourteen of the twenty-eight days the actual staffing levels were
identical with the desired staffing levels. The unit is understaffed by
one nurse on two days and overstaffed by one nurse on twelve days.

Table I presents data relating to what percent of the schedules in
have employee dissatisfaction costs greater than or equal to that of the
chosen schedule.

Note that in all cases except one the nurses were given a schedule better
than 90 percent or more of those in the feasible pattern set. Moreover,
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we see that in most instances the number of schedules in the set, of feasible
patterns was well over 100; thus there were many schedules to choose
from. ' : \

Group 1 -

" RN's MTWTFSSMT WTFSSM T W TFSS M T WTFSS
1A VVRL1j11|rRM 111f00{f0 1 M 1 {110 M 111l00
1B 1111100/11 111/00fz 1 1 01j11{1 M 11000
"1C 11110f00{11 110111 1 0 11j11]1 0 111{00
1D 10011l00ft1 111f11j0 1 1 11jool1 1 101f11

11111{11f00 111fooft 1 1 10{BOf1 1 100]11

1F 11101{t1ft1 11000t 1 1 10f00|1 1 01111
1G: vviii1loojit1r oo0o1f11f1 0.1 11/00]1 1 01111
Groﬁp 2
LEN
24 11100f11}21 100f12j1 1 1 11|RR/R 1 11Rfl1
28 110811110 111fo0fr 1 1 o01]11/1 1 11000
2¢ l111coloofi1 oc1if11j1 1 0 c1ft1f1 0 1c1f00
2D or111f11lvv 110f00/1 1 1 10[00}1 1 10111
2E 01111(00{11 101f11j0 0 1 1t1foo0}1 1 11111
Total

. 99999/56/99 988/65/9 9 9 99|56/ 9 9 98876
Desired
Total 89999|66/99109 86 6|9 101010 9(55{10 10109 8|7 7
Actual v .

Legend:
1 = Day Scheduled On R = Requesﬁed Day Off
0 = Day Scheduled Off = Birthday Off |
.M = Day On for Meeting = Day On for Class
V = Vacation Day Off

Fig. 2. A four-week set of nurse schedules generated by the solution
- algorithm. ’ '

We also note how the algorithm schedules equitably over time. In all

" cases except one a nurse received the lowest cost schedule pattern in the
feasible set during one of the two pay periods, and in that one instance the
nurse received a schedule in the 99th percentile in each of the two periods.
The effect of the aversion index is evident when we note the general pattern
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of nurses who receive their best schedules during the first two weeks re-
celving a slightly worse schedule in the second two weeks and vice versa.

More extensive results will now be given for the entire six-month schedul-
ing test. Figure 3 presents a histogram of deviations from desired staffing
levels.

On 90 percent of the days the deviation from the desired staffing level
was either 0 or =4=1. Moreover, we do not include measures of under-
or overstaffing on the units in question. Hence, if a unit was understaffed
for a pay period, we would expect a number of negative deviations. Simi-

TABLE 1

RANKING OF SCHEDULES CHOSEN BY SOLUTION ALGORITHM AS JUDGED BY EMPLOYEE
DissatisracrioN Cost CRITERIA

ay peri : P eriod 2

Nurse e Pp}érl():e;ltoi?el’ ‘ [ |] ag;xgentil‘e. ’
1A 15 100 , 167 92
1B 331 100 233 93
1C 331 100 370 94
1D 302 99 128 99
1E 331 93 : 166 100
1F 390 94 331 100
1G 156 100 ’ 349 100
2A. 235 80 1 100
2B 202 100 331 95
2C T 163 100 182 92
2D 52 98 331 100
2E 390 100 390 100

Legend: || m || = Number of schedules in feasible schedule set of nurse 7; per-

centile = percent of schedules in feasible schedule set with employee dissatisfaction
cost greater than or equal to schedule selected by the solution algorithm.

lar results would hold for overstaffed units. In light of these results we
see how well the algorithm works in meeting staffing criteria.

In Fig. 4 a histogram presents data, taken over the six months, that
” show what percentile of a nurse’s feasible schedule set the chosen schedule
pattern fell in (where percentile is defined as in Table I and where =;
such that ||m;|| = 10 were the only sets considered).

Note that the algorithm chose the lowest cost schedule from a nurse’s
feasible schedule pattern set almost 44 percent of the time and chose a
schedule that was in the 90th percentile or better almost 88 percent of the
time.

The CPU times for the solution algorithm range from about 21% sec
to 8 sec, depending on the number of nurses and the number of schedules
in 7, (on a CDC 6400). The average solution.time was around 5 sec.
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In most instances the groups consisted of from five to seven nurses with an
average of about 200 schedules in their feasible schedule sets.

Comparison Between Schedules Generated by the Algorithm cmd Those Used

by the Hospital

As we mentioned, the actual schedules used by the hospltal in which the
test was made were on record. Table II presents data relating to various
schedule characteristics.

‘Weekends of four or more days off were nearly the same in both cases.
This is not surprising since most of these resulted from special requests by
the individual nurses. The algorithm, however, generated 13 more three-

704 _ - (67)

604 o ' (58)
504 ‘
40.]

304

Frequency

Q7)
204 .

10, 1)

__CL)__J—Ql—' ' |
| LD ) (o

¥ r

-4 -3 =2 -1 0 +1 +2 +3 +4

Deviations from desired staffing levels

Fig. 3. Distribution of deviations from desired staffing levels by schedules
chosen by solution algorithm during the six month test period.

and two-day weekends, than the hospital did. This is a favorable feature
since most nurses desire as many weekends off as possible. Moreover, the
algorithm generated far fewer split weekends. Again this is favorable
since the hospital often does not desire to have such patterns. - Both the
algorithm and the hospital performed equally well in generating stretches
under the individual nurse’s minima, but the hospital generated far more
stretches over the nurse’s maxima. In considering consecutive split
days, the algorithm generated more in all instances, although the only
significant difference occurred in the generation of two consecutive split
days.

We now define D =|X,—dx|, where X,= D i=1 z,". This gives us some
measure of the deviation between actual and desired staffing levels. These
deviations are highlighted in Table III. ,

In every pay period of every schedule the average daily deviation D
of the actual staffing level from the desired staffing level was as small as or
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Per cent of Schedules with Greater Dissatisfaction Costs than that of
the Schedule Chosen

Fig. 4. Distribution of the number of schedules in the feasibility sets
with employee dissatisfaction costs greater than that of the schedule
chosen by the algorithm (over a six-month period).

smaller for the schedules generated by the algorithm than those generated
by the hospital. Moreover, in all cases but two the variance of D was
smaller for the algorithm-generated schedules. One of these two occa-
sions occurred in the pay period containing New Year’s Day, and in the
second occasion the variances differed by only 0.04.

Another measure of the variability of the actual vs. desired staffing

TABLE. I1

COMPARISON OF ScHEDULE PATTERN CHARACTERISTICS BETWEEN HOSPITAL AND
ALGORITHEM GENERATED SCHEDULES

Working Consecutive split days

Weekends off stretches off (101 pattern)
=4 3 2 o.:. | Under Over
Day | Day | Day Split min desired | - 1 2 3
Hospital 11 17 43 25 19 57 26 13 5 -
schedules ,
Algorithm , 9 21 52 10 21 4 | 27 21 6
schedules »
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levels is given in the last two columns of Table III. This is the sum of
- the squares of the deviations. In all cases the sum. of the squared devi-
ations arising from the algorithm- generated schedules is less than those
from the hospltal generated schedules.

Extensions ) _ _

The model may be extended to include shift rotation and part-time
employees by redefining the feasibility sets =; in an approprla.te manner.
For example if we consider shift rotation,

TABLE I1II

COMPARISON oF SoME STaFFING LEVEL StatisTics FROM HOSPITAL AND
AvcoriTiM GENERATED SCHEDULES

Schedule | Pay | Average D . Variance of D =t (X — di)?
‘period - | period | - Alg . Hos Alg . Hos . Alg Hos
9/24 1 0.786 0.929 0.169 0.352 11 17
. 2 1.071 1.0 | 0.209 0.495 19 23
10/22 1 0.357 0.786 0.220  0.45¢ | 5 15
: 2 0.643  0.786 0.230  0.454 9 15
/19 |1 0.357  0.786 0.229  0.312° 5 13
2 0.429 0.571 0.245 0.387 6 10
12/17 1 1.000 1.286 0.714 1.061 24 38
S 2 1.143 1.429 1.604 . 1.673 42 52
/14 | 1 0.214 0.786 0.168 0.454 3 15
2 1.000 1.143 | 0.429 0.551 | 20 26
2/11 | |1 1.071 1.214 0.495 0.455 23 27
2 | 06438  0.786 0.230  0.454 9 15

Leg nd: D = | Xp — dx | Hos = ho.;pltal generated schedule; Alg = Algorithm
Generated Schedule.

1. We schedule mght and evening shifts first.
o 2. If the staffing level patterns require shift rotation to reduce staffing costs
and if the day shift has nurses available to be rotated, we select nurses from those
available to rotate and have them rotate to the night and evening shifts. The
. exact rotation patterns selected must conform with various rotation constraints
and must result in reduction of staffing costs on the shifts rotated to.
-3. We schedule the day shift treating these rotation patterns as fixed conditions.

The problem of part-time employees is handled in a way analogous to
full-time employees. Feasibility sets = are constructed for part-time
employees depending on appropriately defined constraints (e.g., a nurse .
must work four days out of every fourteen). Then the schedules are
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listed aecording to how they meet a set of appropriately defined nonbind-
ing constraints. We then proceed in the same manner as with full-time
employees, choosing schedules from the sets m; where now some of these
sets contain part-time nurses’ schedules and some contain full-time nurses’
schedules. '

4. SUMMARY AND CONCLUSIONS

We have presented a mathematical programming model formulating
the nurse-scheduling problem as one where we find a set of feasible nurse
schedules that seek to minimize the sum of schedule pattern aversion |
costs incurred by the nurses and staffing level pattern.costs incurred by the
~ hospital. The model is realistic, in the sense that it can handle any num-
ber of any type of schedule pattern and staffing level constraints, and is
general enough to be applied in a number of different hospital settings
with differing operating policies.

The solution algorithm given is a cyclic coordinate descent method
that generates-a solution specifying which days are on and off for each
individual nurse being scheduled. The algorithm runs relatively quickly
‘on the computer and generates solutions in a number of ways superior to
those presently used in the hospital with which it was compared. More-
over, the algorithm-generated solutions compared favorably with the opti-
mal solution for a test problem.

A nurse-scheduling algorithm based on the ideas presented in this paper
has been implemented in a number of hospitals in the United States and
Canada. The results from these implementation sites have been most
favorable.
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