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MATHEMATICAL PROGRAMMING WITH INCREASING
CONSTRAINT FUNCTIONS*

Wirriam P. PIERSKALLA
Southern Methodist University

The mathematical programming problem—find a non-negative n-vector z which
maximizes f(z) subject to the constraints gi(z) =2 0,7 = 1, --- , m—is investigated
where f(z) is assumed to be concave or pseudo-concave and the g¥(z) are increasing
functions. It is shown that under certain conditions on g*(z), the Xuhn-Tucker-
Lagrange conditions are necessary and sufficient for the optimality of z*. It is also
shown that the g#(z) are a useful class of functions since, among other properties,
they are closed under non-negative addition, under the addition of any scalar, and
under multiplication of non-negative members of the class.

Examples of the above programming problem with increasing constraint func-
tions are found in many chance-constrained programming problems.

The mathematical programming problem can be briefly described as follows: we
seek a non-negative vector £ = (21, ---, Zn), ¢ £ E", which
(1.1) maximizes f(x)
subject to the constraints
(1.2) g'(z) 20 i=1---,m
(1.3) z; >0 j=1,--,n

where f and ¢° are real-valued differentiable functions. It was well established by Kuhn
and Tucker [6] that if the constraint functions satisfy a constraint qualification,’ then
the Kuhn-Tucker Lagrange conditions (KTL)

(14) Vi(z*) + Avg(z*) +p =0
(1.5) pzr* = 0
(1.6) M) =0
(1.7) ANu=0

are necessary conditions for z* to maximize f(x) subject to g°(z) > 0, z; > 0, where
vg(z*) = (Vg'(a*), Vg'(z*), .-+, Vg"(z¥)) and g(z*) = (¢'(z¥), ---, ¢g"(=¥)).
They also showed that if f and ¢g* are concave functions, then the KTL are also suffi-
cient conditions for the optimality of z*. At a later date Arrow and Enthoven (2] ex-
tended these results under certain conditions to quasi-concave functions f and g°.

In this paper we will show that certain increasing functions g*(x) have the property
that the KTL are necessary and sufficient conditions to maximize a concave or pseudo-
concave function f(z). It should be emphasized at this point that the results of this
paper broaden the class of constraint functions for which the KTL are necessary and

* Received May 1967 and revised July 1968.
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1 The Kuhn-Tucker constraint qualification states: for any feasible point # on the boundary
of the constraint set and for every direction h such that Vgi(z)-h = 0 for all 7 with gi(Z) = 0
and h; = 0 for all § with z; = 0 there exists a differentiable vector-valued function ¥ (§) such that
¢(0) = £,¢(6) = z belongs to the constraint set for all¢ > 0 and 6 sufficiently small and ¢'(0) = k.
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sufficient. No attempt, at the present time, has been made to broaden the class of
objective functions.
The following notational conventions [5] will be used throughout this paper: If

z = (21, ", %) in E", then
z is non-negative, written z >0, if z; >0 forall ¢
x 18 positive, written >0, if z; >0 forall <,

z i8 semipositive, written z >0, if z; >0 forall ¢,
and z; > 0 for some <.
Furthermore, if " and z° ¢ E", then we write z° = «', 2* > &', or 2* > 2", according
as ° — 2 is non-negative, positive, or semi-positive, respectively.
A scalar function k(z) defined on a set C C E" is increasing if

(1.8) k() < k(%), whenever z' < o’

k(z) is strictly increasing if k(z') < k(2’) whenever z! < 2°.
If it is assumed that k(=) is differentiable on an open set C then an equivalent defi-
nition of an increasing function can be given by the lemma.:
Lemma 1.1: If k(z) is a differentiable scalar function on an open set C < E" the follow-
ing are equivalent:
(1) k(x) is an increasing function on C
(2) the directional derivative of k at z in the direction &, Dyk(z), is non-negative
forallh > Oforallz e C
(8) Vk(z) = 0,forallz e C.

Proof:

(1) — (2) Consider #* > z' or ® —z' = h > 0 and 7 > 0. Then

(k(z' + 7h) — k(z))/7 >0 forall = > 0.
Thus lim,.o (k(z" + 7h) ~ k(z"))/7 = Dik(z') > 0
(2) — (8) Let h = h/|h|; hence h >0
Then Dik(z) = Vk(z)h > 0 for all & > 0. In particular pick & = ¢', the 7 unit
vector for each 2 = 1, - -+, n, then

ok(z)/dz; 2 0

for all 1=1,---,n and Vk(z) = 0.

(3) = (1) Given Vk(z) = O for all z ¢ C. By Taylor’s Theoerm if 2* > z' then
forsome 6,0 < 6 <1

k(z?) = k(z') + VE(62" + (1 — 8)2)(&® — 21)

But 2® — z' > 0 and Vk(6z* + (1 — 6)z') = 0 thus k(z’) > k(a). Q.E.D.
In general we will be most interested in k(z) an increasing differentiable function
defined for all z £ E™; in this case the results of Lemma, 1.1 will be used interchangeably
with the definition of an increasing function.
For completeness we include the following definitions. A scalar function f(z) defined
on a convex subset C C E" is concave if

flaz' + (1 — @)2®) > af(z) + (1 — a)f(z?)
for all @ such that 0 < @ < 1 and z* and z* ¢ C.



418 WILLIAM P. PIERSKALLA

A scalar function f(z) defined on a convex subset C C E" is pseudo-concave if for
every ' and z* ¢ C, (2 — z')Vf(a') < 0 implies f(z*) < f(z'). (See [9])

A function f(z) defined on a convex subset C' & E” is quasi-concave if for ' ¢ C and
e C and all @ with 0 < & < 1, flaz' + (1 — @)2’) > min [f(z'), f(z*)]. If f(z)
is an increasing, concave, pseudo-concave or quasi-concave function, —f(z) is a de-
creasing, convex, pseudo-convex or quasi-convex function, respectively.

It should be noted that not all increasing (or decreasing) functions are monotonic
quasi-concave or quasi-convex functions as the following example shows:

Let X = {z|z= 0,z ¢ E}

k(z) =22 — % for 0<m<1,n<a
=nprn—t for 0L <1,nmn
=(z— 1) —1Y4+5—% for 1<z, 1<n,u<n
=(n -1 (@m—-1)4+2—21 for 1<z, 1< m,m<m

Now k(z) is increasing and continuous on X but k(x) is neither quasi-concave nor
quasi-convex. Consider z = (%, ) then k(x) = 0; now let ' = (3, 1) and 2 =
1 %) then k(z') = —v, k(z’) = —F% and k(z) € max [k(z'), k()] where
z = iz' + 32°. Thus k(z) is not quasi-convex. Now consider z = (%, 2), k(z) =
88/64 and let z' = (%, ), 2° = (£, %) then k(z') = 105/64 = k(z’) and k(z) =
min [k(z'), k(z*)] where z = iz' + 3z°. Thus k(x) is not quasi-concave.

It is true, however, that if the domain of k is a convex subset C < E', then the defi-
nition of an increasing (or decreasing) function coincides with the definition of a
monotonic quasi-concave function.

2. Some Further Properties of Increasing Functions

Increasing functions have some properties which make them useful. Although most
of these properties are self-evident we state them in the form of a lemma in order to
refer to them more easily.

Lemma 2.1: Let 0(-) and ¢(-) be two continuous increasing functions defined for all
z ¢ C = E" where C is a given set.
(1) w(z) = M6(z) + Ay(z) is an increasing function for Ay > 0 and . > 0.
(2) w(z) = M6(z) + s is an increasing function for A1y > 0 and a decreasing
funetion for A; £ 0.
(8) if in addition 6(-) and ¢(-) are non-negative for all z ¢ C, then w(z) =
6(z)¢(z) is an increasing function.
(4) w(z) = min {6(z), ¢(x)} is an increasing function.
(5) w(z) = max {6(x), ¢(x)} is an increasing function.
(6) if in addition 8(z) > O for all z ¢ C, then (i) w(z) = 1/6(x) is a decreasing
function, and (ii) w(z) = In 6(x) is an increasing function.
(7) if D C E'is the range of ¢, if 6 maps D into F C E" and if 6 is an increasing
function, then w(z) = 6(y¥(x)) is an increasing function. (This part includes,
e.g., 6(ii) above.)

Since the results of this lemma follow directly from the definition of an increasing
function, the proof will not be given.

There are many other properties of increasing functions in addition to those stated
above. Furthermore, most of the foregoing properties generalize in the appropriate
way to a sequence (finite or infinite) of increasing functions, {6°(x)}. For example,
part (1) can be stated: if w(z) = D _jmi Mif*(z) exists, and if all A; > 0, then w(x)
is an increasing function.
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The objective of this paper is to give necessary and sufficient conditions for =0
to maximize f(x) when the g*(z) are increasing functions. Before doing this, it should
be pointed out that the g*(x) arise naturally from some constraints to the joint chance-
constrained programming problem as defined by Symonds {13, 14] and by Wagner
and Miller [15]. The constraints have the property that they are products of cumula-
tive distribution functions and in many cases are merely increasing functions of the
decision variables. We present this example directly.

3. A Chance-Constrained and a Joint Chance-Constrained Example

It was mentioned that an example of the type of mathematical programming prob-
lem given by (1.1), (1.2) and (1.3) could be obtained from chance-constrained pro-
gramming. We quote the formulation and notation given in [15].

We seek an n-dimensional vector £ = (21, -+, Z,) to
(3.1) maximize cz
subject to
(3.2) Az =0
(3.3) z=0
(34) Probability {ax — 8: = vi} = 24, 1e8

where ¢ is an n vector, b is a k vector, 4 is a k X n matrix, a; is an n vector (which
may contain random elements), 8: is a random variable, v: is a known constant,
7: is a specified probability level 0 < %; < 1, and S is the set of chance constraints.

The above model represents a chance-constrained programming problem with linear
objective function. For a joint chance-constrained programming model we substi-
tute

(3.5) I1::s Probability {ax — 8: = vd = 2> 0

for the set of chance constraints (3.4). In this latter case it will be assumed (as shown
in (8.5)) that the random variables £; given by

(3.6) E,‘ = o — B;’ N 1e8

are independent for all < ¢ S.

We now prove a lemma concerning the chance-constraints (3.4) or (3.5). First de-
note the sample space of a random vector & = (a1, -+, am) by 1 = (Z,Q, p) where
Z ¢ E™ is the space of outcomes of an experiment, 2 is a parameter space and p is a
function on Z X Q such that for fixed weQ, P, is a probability distribution on Z.
Lemma 3.1: Let 2%, 2* ¢ E® such that 2' < #°. Let ¢(a; z) be a real-valued function
of « and z. If for any a £ Z, g(a; z) is an increasing function of z, then

P{g(e;a") > v} = Plg(e;2") 2 ).
Proof: Let F, be the cumulative distribution function of the vector random variable

a = (aa, ", anm). Thus

Plg(a;e) <2t = [ -+ [ dFapmaal@r, -+ » am)

{a:g(a;z2)<v}

<[ [aFurcalan, -+ ) = Plales #) <)

{a:g(a;z1)<y}
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since g(a; z*) > g(a; ') for all a implies

{a:g(a; 2") < v} C{ag(a;2") <) Q.E.D.
Corollary 8.1 Let « = (en, **+, an, B), ai(¢ = 1, -+, ») are nonnegative random
variables, 8 is a random variable and g¢(a; ) = o + o2 + -+ + anln — B

in Lemma 3.1, then P{oyTi + a2 + -+ + aa%s — B = v} is an increasing
function of z. :
Thus we see that if the a; are nonnegative random variables, the chance-constraints
given by (3.4) are merely increasing functions of z. Note that in lemma 2.1 we showed
that adding or subtracting a constant from an increasing function yields an increasing
function. Furthermore, the product of nonnegative increasing functions is a nonnega-
tive increasing function. Thus using Corollary 3.1 we are able to state:
Corollary 3.2 If A is a matrix of nonnegative random variables, if 8 is a vector of ran-
dom variables, if £&; = a;xz — B; are independent for ¢ ¢ S, then

arrt — =M
k(z) = P : -7

ar — B 2 Vr.
= IIi« [l = Feu(ysiz)] =2 20 forl >4>0

is an increasing function of x.

In this case we see that the constraint given by (8.5) is an increasing function of
the decision variable z.

Thus the chance-constrained problem given by (3.1), (3.2), (3.3) and (3.4) and the
joint chance-constrained problem (3.1), (3.2), (3.3) and (3.5) are merely examples of
the more general problem given by (1.1), (1.2) and (1.3), provided of course the «;;’s
are nonnegative random variables.

4. Necessary Conditions

Before proceeding it will be convenient to introduce the following additional nota-
tion:
(1) Let C be any subset of E™.
(2) Let H; = {z | g*(z) > 0,z C} fori =1, ---,m,
(3) Let Y = MinH;.
(4) LetI(x)_{ilg‘(m)=0; =1,-.-,m,zeC}.
(5) LetJ(a;) {jlxi"—'o’ J 1,"',1&,1280}.
(6) Let D(z) = {h|Vg'(x)h 20, h; 20, iel(z), jeJ(z)}

Thus if C = X = {z|2 = 0, z ¢ E"} then Y is the set of feasible points to the
mathematical programming problem defined at the beginning of this paper; (%)
and J(£) are the set of indices 7 and j of binding constraints when the point Z is given;
and D(Z) is the set of locally constrained directions from Z.

We say that the function g*(z) has property T if for all z £ C, g'(z) is an increasing
continuous function and if for any z &€ C, y £ C such that y > z and y, > 7, then
g'(y) > ¢'(x). It should be mentioned that if ¢°(z) is a strictly increasing continuous
function then g*(x) possesses property I' automatically

Let S = {s|g'(s, y) = 0, for some y with (s, ) £¢C, s e E™™, y ¢ E'}

Lemma 4.1: If C — E™is an open set and n > 1 and if forsome z £ Cg(x) = 0 where
g(+) has property T, then every open neighborhood of 2, N(z), contains a point
2¢eC, z = z such that g(z) = 0.

Proof: Without loss of generality, consider N(z) < C.

.



MATHEMATICAL PROGRAMMING WITH INCREASING CONSTRAINT FUNCTIONS 421

Let W = {w|w = z, w e N(z)} and
V = IvSa:veN(x)}

' It is clear that W and V have the same dimensionality as N(z). Now N (m) is a
convex set. Consider any v & V and w & W then for all \, 0 < A < 1 the point
z e N(z) where z = M\ + (1 — N)w. Since V and W have the full dimensional-
ity of N(x) we can choose vy ¢ V and wp ¢ W such that for all A (0 < A <L 1)
we have zo # .z, where 20 = Mo + (1 — M)wo . Now from property T, g(wo) =
0 > g(w). If g(wy) = 0 org(w) = 0 the lemma is proved; if not, then g(wo) >0
and g(v) < 0 and by a theorem of Bolzano [1], there exists a point Z = Av +
(1 = XN)wp such that g(Z) = Q.E.D.

Lemma 4.2: If ¢°(x) has property I‘ then the level curve glven by ¢'(z) = 0, if it
exists, defines a decreasing continuous function z, = ¢ (21, +++ , Tn-1) Where
9(131,"’,%1,?(%1,“',33,...1))=0 . .

Proof: The fact that ¢'(y) is uniquely defined as a scalar function of y follows imme-
diately from property I'; since if x = (21, *++, Zaa, T») and 2= (3, ---,
x?_l , £,) are two points. of C differing only in their last coordinate then g°(z)
g'(£). Thus if the first n — 1 coordinates z;, -+ - , Zn—1 of & point z & C are fixed
there is only one choice of the last coordinate . such that g*(x) ='0.

" We will now show that ¢*(y) is a decreasing function by showing if y = (1,

v, Yna) S (a1, oo+, 2a) then ¢°(y) > ¢°(2). If y = 2 then ¢'(y) = ¢'(2)
trivially; so assume y < 2. By the definition of () ¢*(y, ¢'(¥)) = 0 and ¢°(z,
) (z)) = 0, where (y, ¢ (y)) € C and (2, ¢°(2)) £ C. Consider the pomt (y,
#'(2)). If (y, ¢ (2)) £ C then consider any & > 0 and the extended increasing
function §*(z) defined on E™ given by

g‘(x) = g‘(:c) , if zeC. ,
= infimum g(w) — & if z2C and {w|w 2 z} N C = empty set
fwjw=az NC
= gupremum g(u) if z2C and {w|w = z} N C = empty set
ueC :
Then
7'y, ¢°(2)) = infimum . g'(w) < 7'z, ¢'(2))
fwlw= (y,6'(2))} NC o
= g'(2,¢'(2))
=0

= g*(y, ¢'(¥))
=7y o' )

Now §'(y, ¢°(2)) and '(y, ¢'(y)) have arguments differing only in their last
coordinate and since § *(-) is an increasing function we must have ¢°(2) < ¢'(y).
If (y, '(2)) € C then

(4.1) g'(y, ¢'(2)) < 9'(2,6°(2)) = 0 = ¢'(y, 6'(¥)).

If $°(z) > ¢°(y) then from property T, ¢*(y, ¢'(2)) > g *(y, ¢'(y)) which con-
tradicts (4.1). Thus ¢ (z) < ¢*(y) in both cases. Thus ¢*(-) is a decreasing func-
tion. We now show ¢*(-) is continuous on S.
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From the preceding lemma 4.1, for any point (2, ¢'(2)) & S there exists a se-
quence of points {(y’, ¢ Hyh) )},_1 e 8 such that this sequence converges to the
pomt (2,¢'(2)). Thus lim,i., ¢'(y’) = ¢°(z) and ¢ (+) is continuous on 8. Q.E.D.

It is possible that there does not exist an z & C such that g (z) = 0. In this case
we have either g ‘() > 0 for all z ¢ C and ¢*(z) is not a binding constraint over C
or g*(z) < O for all z ¢ C and the set H; is empty. We are not interested in either of
these cases. Therefore it will a.lwa,ys be assumed that for all t=1, .-, mthe H; are
not empty and for some %, the g* are binding.

Corollary 4.1 If g *(z) defined on an open set C is an increasing function, g *(z) has
continuous first partial derivatives (that is g ‘() e C*) and if oy (:c) /0z, > 0 for
all z ¢ C, then ¢ ( ), if it exists, is a decreasing function and ¢ eC' on 8.

Proof: The fact that ¢ is decreasing follows from lemma 4.2 since g* satisfies property
I'. Thus it is only necessary to show ¢' £ C" on 8. We know that ¢’ is umquely
defined by the set of points g°(x) = 0. Consider any point # ¢ C such that g*(z) =
0. By the implicit function theorem, there exists a unique function y(-) £ C*

such that g"(21, -+, Zuy, ¥(21, *++, Tn1)) = O for every (21, -+, Taa) €
N(&, -+, &n-1) where N(Z;, -+, To1) is a neighborhood of (&, -+, &)
contained in C.

But the function ¢' also satisfies g*(21, -+ , w1, ¢ (21, -+ , Tnoa)) = 0 for
(1, +*+ , Tn1) € N(£1, -+, Tna); therefore ¢' = ¢ in N(Z) since y is unique.
Thus ¢* ¢ (_11 on N(&;, - -+ , Zu-1). But  was an arbitrary point such that ¢*(z) =
0; hence ¢* £ C* on S. Q.E.D.

Theorem 4.1 Let g*(z) have property I' on a convex set C. Then the set H; is a convex
set if and only if ¢°( - ) is a convex function on S.

Proof: (Necessity) We are given that H; is convex and nonempty. Assume to the con-
trary that ¢* is not convex. Then there exists two points z = (21, -+ , T,

(s @), ¥ = (W1, o, Yna, 6 (U1, -+, Yaaa)) € C [let us denote
the first n — 1 components of these vectors by £ and 4, respectively] such that

for some A with 0 < A < 1
(42) 02+ (1 =N > M@ + 1 = Ne9).
Let £ = M + (1 — \)9. Then the points (2, ¢°(3)) and
(2, 2°(2) + (1 = Ne'(®)) e C
by the existence of ¢* a.nd the convexity of C. Furthermore, from (4.2) (3,¢'(2)) >
(2, )\¢ '(4) + (1 — \)¢'(9)). Therefore using property T' and (4.2) we obtain
(4.3) g'(2,6'(2)) > g'(2, M'(8) + (1 — N)$'(9)).
Now from the definition of ¢° we have g°(3, ¢°(3)) = 0. Thus (4.3) can be
written as:
(4.4) -0 =g'(5,6'(8) > g'(5 2" (&) + (1 — N)¢'(9)).
Hence the point: «
| (2, M'(#) + (1 — N¢'(9)) £ Hs..

But the points (£, ¢°(#)) and (9, ¢*(¢)) ¢ H; and since H, is convex, (4.4) yields
the contradiction. '

(Sufficiency) We are given that ¢° is convex. Let z, y ¢ H;, we will show for
any A such that 0 K A< 1, z= 4 (1 — Ny eH;. Let 4, 4§ and 2 denote
the first n — 1 elements of z, ¥ and z respectively.
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Since g is an increasing function, then g (x) >0 = g'(4, ¢°(£)) and ¢°(y) >
0 = ¢°(9, ¢'(9)) imply

z z (4,4'(2)) andy (9, ¢ ().

This last result follows from that fact that z differs from (£, ¢'(#)) only in its
last component and ¢*(-) is strictly increasing in its last component by property
I' (similarly for y). Therefore

(45) 2 2 M2, 6(8)) + (1 — ) (8 ¢'(9)).

From (4.5) and since ¢° is an increasing function
9'2) Z g0+ (1= N7, M@+ (1 =Ne'@)
2 g+ (1 —=Ng, ¢+ (1—=Ng) =

The last inequality follows from the convexity of ¢'. Therefore z ¢ H;. Q.E.D.
Arrow and Enthoven show that a sufficient condition for ¢* to be convex is that g*(z)
be quasi-concave. Thus for the case of increasing functions we only need ¢*(z) quasi-
concave in a neighborhood of all z satisfying g*(z) = 0. In our previous example of
an increasing function which is neither quasi-concave nor quasi-convex, the function
¢(z,) is convex for z; > 0. That is, g(z) = 0 is given by g(z) = zx2 — = 0, and
T2 = ¢(m1) = 1/4;. _

Now from Theorem 4.1 it follows if the ¢ are convex, then Y is a convex set. Fur-
thermore we can state: _
Lemma 4.3: If Y is convex and has an interior and if for each 7 = 1, .- -, m, ¢*(z)

are increasing differentiable functions for x ¢ Y and for any & ¢ boundary of Y,
8g*(F)/dz; > O for some j and all 7, then the KT Constraint Qualification holds.

Proof: Consider the points z, ¥ ¢ ¥ such that # # y and the point £ ¢ ¥ such that
% is a boundary point of Y. Then the set I(£) U J(&) is not empty. Let h' =
¢ — % and ¥ = y — & be two directions. Then k', h* ¢ D(&). Furthermore for

2=+ (1 — Ay forall \suchthat 0 < A < 1,
h=2z—%=N+ (1 -

belongs to D(%). Then D(%) has the same dimension as Y. Furthermore D(%)

is a closed convex cone.

Case 1: Let h £ D(&) be an interior point of D(&). Then since Y is a convex set
there exists a 6(h) > 0 such that the set of points {y |y = & + 6h, for all
# such that 0 < < 6(h)} C Y.
Let ¢(6) = & 4+ 6h for 0 < 6 < 8(h).

Then (1) ¢(0) = &
(i) ¢(8) = £+ 6h e Y for0 < 6 < 6(h)
(iii) Lme.o+ (¥(6) — ¥(0))/6 = h.

Thus if & is an interior point of D(&) then there exists a contained path y(6}.

Case 2: Let h ¢ D(£) be a boundary point of D(E). Since D(Z) has an interior
there exists a sequence of interior points {A%} A* ¢ D(Z) such that lim.« i’ = k.
Furthermore for each h’, there exists a 6; > 0 such that

W

y =2+ 6h'eY forall g with0 < 6 < 6
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Without loss of generality assume 6; < 6;—; and define
¥(8) = z + 6k for ;. < 0 < 6;,
= I for 6 = 0.

Then (i) ¢(0) =
(1) ¢(8) =+ b e YV for0 < 6 < 6;
(i) Lime.or (W(8) — ¥(0))/0 = limegt iuw (£ + OB — £)/6

= h.

Thus, if 4 is a boundary point of D(&), then ¥(8) is a contained path. Therefore

the KT Constraint Qualification holds. Q.E.D.

In addition we can say that the Arrow, Hurwicz and Uzawa (AHU) Constraint

Qualification W holds.? This latter condition follows from the fact that the KT Con-

straint Qualification implies the AHU Constraint Qualification W. In any event,

however, the important result which follows from the preceding lemma is that the

KTL (given by (1.4) — (1.7)) are a necessary condition for the optimality of z*,

i.e., if z¥ = 0 maximizes f(z) subject to g*(z) = O forallz = 1, --- , m, then there
exists a A such that \ and z* satisfy (1.4)-(1.7).

5. Sufficient Conditions

In this section we will show that if g°(z) is differentiable and has property I' for

i =1, ---,m, if the H, form convex sets, if f is a differentiable pseudo-concave fune-

tion, and if A* and z* are a solution to the K'TL conditions, then z* is optimal. Thus

under these assumptions on f and ¢*, the KTL are sufficient conditions for the opti-
mality of z*. We state this result as a theorem.

Theorem 5.1 If f is a differentiable pseudo-concave function for all z ¢ C, if ¢ (:c) is
differentiable and has property T’ for allz = 1, , m and all z £ C, if the ¢*(-)
are convex functions forallz = 1, --- ,m, a.nd 1f z* xs a feasible pomt which satis-
fies the KTL (or equivalently D;J(a: ) < Oforallhe D(:v )), then z* is optlmal

Proof: The fact that the KTL and the condition that Dif(z*) < Oforallhe D(x )
are equivalent follows directly from the application of Farkas’ lemma to Dxf (%)<
0 for all & eD_(a: ).

Since the ¢* are convex functions then the feasible set of points ¥ = NjuH,
is convex. It is only necessary to show that if Dif(z*) < 0 for all h & D(z*)
then z* maximizes f(z) on Y.
Forallz ¢ Y, h = z — z* belongs to D(z*) and Dif(z*) < 0 implies
F(z* 4+ h) = f(z) < f(z"). , Q-E.D.
Unfortunately the restriction that the ¢*’s be convex for all 7 or equivalently that
the H; be convex sets is a strong requirement on the constraint functions. Actually in

Theorem 5.1 and Lemma 4.3 it was only necessary that ¥ be a convex set, however,

as was noted previously a sufficient condition for the latter to hold is that H,; be convex

for all <.

t Tn order to state constraint qualification W it is necessary to give the following definitions:
A vector k is an atfainable direction with origin at Z and direction h if there is a vector valued
function ¢ (0) of a real variable ¢ where ¥(6) belongs to the constraint set for all ¢ > -0 and suffi-
ciently small, ¢(0) = %, limg,o (¥ (@) — ¢(0)/0 = h. A vector h is a locally constrained direction
with origin £, if k is the limit of a sequence of non-negative linear combinations of attainable
directions. Then Constraint Qualification W states: Every locally constrained direction is

weakly attainable, [3].
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As noted before the class of increasing functions has many useful properties, par-
ticularly for chance-constrained programming. The class is closed under non-negative
addition of the functions, under the addition of any scalar, and under the product of
non-negative functions. If in addition, the ¢"'s are convezx, then the KTL are necessary
and sufficient conditions for the existence of the solution to the maximization problem
when the objective function is pseudo-concave.
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