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THE TRI-SUBSTITUTION METHOD FOR THE THREE-
DIMENSIONAL ASSIGNMENT PROBLEM*

WILLIAM P. PIERSKALLA
Case Institute of Technology, Cleveland, Ohio

ABSTRACT

A tri-substitution method is proposed for obtaining a close-to-optimal (if not the optimal)
solution to moderately large three-index assignment problems. The method inserts three new
variables, each at value one, into the current basic feasible solution and at the same time
assigns a value of zero to three of the old variables which previously had value one. In this way
integer feasibility is maintained at each step of the method. Some other advantages of the
method are that it is an additive method and it appears to work well on moderately large
three-index assignment problems.

REsuME

Un algorithme permettant de trouver la solution du problkme d'assignation dans un systéme 3
plusieurs dimensions est exposé. Cet algorithme suit la méthode du développement en faisceau
avec embranchements et nceuds. On fait usage de deux sous—problémes pour déterminer
facilement les limites du probléme principal d’assignation.

Toutefois, on peut se demander si I'algorithme proposé est vraiment une méthode efficace de
solution pour certains problémes complexes d’assignation dans plusieurs dimensions. On
présente en plus, une méthode qui offre dans le cas de problémes d’assignation tri-dimensionnelle
de grandeur moyenne, une solution assez rapide et quasi-optimum (si non optimum).

DESCRIPTION OF THE PROBLEM

In recent years much interest has concentrated on integer linear programing
problems, and in particular several papers have focused on the zero-one integer
LP problem. This paper is also concerned with the zero-one integer problem,
but in regard to the special case of an optimal assignment in three dimensions.
The three-dimensional assignment problem is the problem of assigning one
item to one job at one point or interval in time in such a way as to minimize the
total costs of the assignment. ’\Tathematxcally, if it is assumed that p < ¢ < 7,
then we want to:

minimize Z7_; 201 Zi o1 coirXask (1)
subject to .1 Zi_1x =1, fori=1,...,p (2)
S Ziaxip <1, forj=1,...,¢q (3)
a1, fork=1,...,r (4)
X = 0,1. forallg,j, k. (5)

41 1s the cost of assigning item ¢ to location j at time &. x,;; = 1 means the
i™® item is assigned to the j* location at time k. x;;, = 0 means the ¢® item is
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not assigned to location j at time k. Equality holds in the first set of constraints
since it is presumed that a total assignment of the p items is required.

Some examples of how this type of problem might arise are:

(1) Consider a rolling mill scheduling problem in a steel plant. Hot steel
ingots are formed in molds. If there is space available, the hot ingot can be
placed in one of p available soaking pits. If space is not available, the hot ingot
must wait (consequently it cools). Conversely, if no hot ingots are available for
an unoccupied soaking pit, it is always possible to fill the pit with a cold ingot
from an auxiliary pile. Thus we consider that there are  ingots of hot and cold
variety available. Now the purpose of the soaking pits is to bring the ingot to a
uniform temperature throughout. Any time after the ingot has reached the
uniform temperature it may then go to the rolling mill for final processing. The
problem is to find an optimal manner of scheduling the ingots into the soaking
pit in order that the rolling mill has a minimum down time while waiting for
ingots. ‘

(2) Another example is the minimum cost scheduling of new capital invest-
ment projects into different possible physical locations over some time horizon.
In particular a firm may wish to construct four new plants over the next six
years. If ten sites are available for these plants then we couldlet p = 4¢9 = 6
and r = 10 to find the optimal construction schedule.

(3) A third example of a three-dimensional assignment problem would be the -
following: The army wishes to move new battalions of troops into certain
strategic locations over the next six months. They want to deploy these troops
in such a way as to maximize the defensive and/or offensive capability. If the
number of months < number of battalions < number of possible locations,
then in this model, number of months = p, number of battalions = ¢, and
number of locations = r.

A more general formulation of this problem as a three dimensional trans-
portation type problem has been considered by E. Schell‘® and K. B. Haley,®
with the exception that they do not consider constraint (5), but rather x;,;, > 0.
Since the polyhedron defined by (2) —(4) and x;; > 0 has in general a great
number of non-integer extreme points, the approach taken by Schell and Haley
will most often yield a non-integer solution (for large p, ¢, and 7). A similar
comment applies to the simplex method when (3) is replaced by x;;;, > 0.

In two very interesting papers Balas® and Glover® solve this 0-1 programing
problem, as well as the general 0-1 integer programing problem, but because of
the general approach taken in these two papers, it is possible to find alternative
methods for highly structured problems such as we have here.

In this paper a method is presented which achieves a close-to-optimal (if not
the optimal) solution in a reasonable amount of time for moderately large
three-index assignment problems. This method is called the tri-substitution
method. '

- The tri-substitution method works on a principle similar to the simplex
method of linear programing. However, it differs from the simplex method in
that we insert three new variables and we remove three variables at each step.
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Furthermore, it is an additive method in the sense that at any step only
additions and subtractions are performed.

Some of the advantages of the tri-substitution method have already been
mentioned: it has solved some moderately large problems in a reasonable
amount of time (more will be said about this later); it is additive—thus
requiring simple programing steps; it always maintains primal feasibility, that
is, (2), (3), (4), and (5) are satisfied at each step—hence the program may be
stopped at any point, and the best current, feasible solution is at hand; and
it provides a very good initial feasible solution to any optimal algorithm for
(1) to (3). .

The main disadvantage of the method is that a good general stopping rule has
not been found. The method could find the optimal or near-optimal solution but
would not know whether a better solution exists or where to find it. Although
some particular stopping rules are available, they do not cover all possible
cases. One such rule is to compute a lower bound /; for ZZZ ¢, %,z Thus if
22T cix* i = lhiand if (2), (3), (4), and (5) are satisfied, then x* is optimal.
Another rule is the simple one that if all of thefwﬁave
z,— ¢, <0 for all £=1,...,pqr, then the current solution is optimal.
Unfortunately it need not be the case that the lower bound /, is tight, nor that
all z, — ¢, < 0 for the current solution to be optimal. A third rule is that if the
linear programing solution Z to (1), (2), (3), and (4) with x;;; > 0is known and
the ¢, are integers (if fractions we will scale them to integers first), then if x; is
the current feasible integer solution, and if ¢ - (x; — £) < 1, then x; is optimal
for (1)-(5). : . o

Before going further with a more explicit description of the method we will
state some interesting and pertinent results in lemma and theorem form.
Proofs of these results are available in the appendix.

Lemma 1 : co .

(1) Feasible integer solutions to (2), (3), (4), and (5) exist. :

(2) A vector x is a feasible integer solution if and only if (a) there are precisely
p co-ordinates of x with value one and the remaining co-ordinates have value
zero, and (b) the p elements with value one consist of x,;;’s with the property
that the 7 subscripts are a permutation of the integers 1, . . ., p, the j subscripts
are a permutation of p of the integers 1,...,¢, and the k subscripts are a
permutation of p of the integers 1, ..., 7.

For example, the solutionx;; = 1forallt = 1,..., pand x,;; = 0 otherwise
is a feasible integer solution.

Theorem 1

(1) An optimal solution to (1), (2), (3), (4), and (5) exists although not
necessarily uniquely.

(2) An upper bound on £XZ ¢, ;x4 isgiven by

Ml. = Ef,)_ mil;( (C‘jk). (6)

~
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(3) Alower bound on ZZ2 ¢ x4, is given by )

my = Zioymin (cz)-
Y

(4) Another lower bound on 222 CujxX4sx 18 given by

g = z:-l P — zigir Fur
where
Vo+err = max (0, —cpa1), fork=1,...,r
Yots = Taf , (0, =Cp.ptst = Forasr), forj=1,...,¢—1
Voire = 0,
i o= ,mil,n o Cunrt Fors F Forarn) fori=1,...,p.
=l...,q
k=l...,r1 .

In general, since we have not specified any conditions for the ¢;;, m; will
differ from o,. Furthermore, many lower bounds of the m; or a; variety can be
formed by considering other feasible solutions to the dual problem generated by
the primal problem where we do not consider the primal integer constraints.
However, if an optimal solution to the dual problem is found (denote this
optimal solution by d;), then clearly d; > m;and d, > oy. Thus d; provides the
best lower bound which can be achieved by considering the dual problem. For
large problems the calculation of d; can be rather time consuming, whereas the
calculation of m, or o, is very fast. Thus we let /; be the best available lower
bound which we have calculated, that is, /; = max(m,, oy, . . .). If d; has been
calculated then /; = d;.

THE TRrI-SuBsTiTUTION METHOD

In this method a simplex-like approach is used. However, at every change of
basis three new variables are introduced and three old variables removed, all of
which have value one. In this manner it is possible to maintain primal feasibi-
lity. As was shown above, the problem given by (1) to (5) has an optimal
solution, and any feasible solution must have precisely p of the x;;'s equal to
one. Furthermore, these x;;’s which equal one must have the ¢ subscripts a
permutation of the integers 1, ..., p, the j subscripts a permutation of p of the
integers 1,...,q, and the % subscripts a permutation of p of the integers
,...,r

Equations (2) to (5) can be written in more general form which will occasion-
ally be convenient for describing the steps of the method:

minimize ¢ - x 1)

subject to
Ax+Iv =1 8)
Xijx = 0, 1 (g)

w, > 0, (10)
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wherev = (0, ...,0,wy, ..., W) is a column vector whose first p elements
are zero, and the w; are slack variables. The elements of the matrix 4 will be
denoted @ma(m = 1,...,p+q+rin=1,...,pqr).

Lemma 2

If the variables are Ordered X111y X112y - - -y X117y X121, X122y o o o 3 X127y ¢+«
Xigly » =+ 9 Xigry X211y X212y « - + X21ry » « + 3 Xpily Xp12y + « + » Xplry Xp21y -+« y Xpgry then
there is exactly one basic x4 variable with value one in each group of successive
columns 1 to g7, gr + 1to 2gr, 2gr + 1to3gr, ..., (p — 1)gr + 1to pgrinany
basic feasible solution to (8) to (10).

In addition to the detailed description of the method below, a flow-chart of
the main aspects of the method is presented on the following page.

Tri-Substitution Method:
(1) Start with the initial basic feasible solution, x5, given by x4; = 1 for

i=1,...,pand x;% = 0 otherwise. Furthermore, we will pivot on the first 1 Y ‘Cé\
we come to in each of the columns for the initial basic solution starting with %111 B Al i
and continuing to the right in the tableau 4. [Actually tableau 4 need never be . ¥ ‘&'&,
changed in the entire method. It is only necessary to compute B~! which can be g eSS e
done easily. In fact it is never necessary to have A4 stored in the computer at any WVY ot
time.] Thus we have a basic variable at the one level in each of the first p rows. “(,’n‘.;(_ .
In addition, the elements an, of 4 form =1,...,p — 1land n = mgr + 1, A %/H
., pgr are all zero and remain zero in the tableau after the initial basis is Ay 4 -t
formed. If ¢z - x3 = l; or if any of the other stopping conditions given pre- /aby e "’é ¢
viously are met then go to step S. gt MJ(IN’C 2 .
(2) Use the standard LP simplex method to determine the incoming %y ok Qo B
that is, since the problem is to minimize ¢ - x, we choose the xyjox, to come in »B_l Y
which has 32y jk0 — Cioioro > 0, Where z = CBB"A.H all 2, — ¢ <0, go to 2= Q’B FA 7

step 8.

(3) The %, 0, chosen in step 2 affects at most three x,;’s in the current basic
solution which have the value one. Denote the current basic solution by x3,
that is, the x4 jor, coming in affects

Xpnu = 1 for some j; and ki, where X4, € x5
Xysr = 1 for some 7; and k,, where ®;, . € X5
Xk = 1 for some 7 and js, where X451, € X5

It is possible that two or three of these x;:'s could be the same. For example:

Three affected Two affected One affected
%345 affects X345 affects x345 affects
Xaz =1 Xz =1 X318 = 1
x¢s1 = 1 } in current x31 = 1

X215 = IJ *z
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Start with feasible x5
(see step (1)).

Terminate: if ¢ - x5 = 1y, or if
all 2.5, — ¢,5¥Pthen x, optimal;
Compute z;;; — ¢, for if cpxp # 1y, or notall 2,5, < €4y,
current basis then the solution can only be
(see step (2)). said to be near-optimal
(see steps (S) and (9)).
| A
A ). reml:ilxll' Yes
ing
/ Zir < Cugng
No

Let x4 502, be the x,;; associated
with a 21k > Cijky Xigjoko
affects at most three x; ;s in
current basic solution xg

(see step (3)).

Enter x4t into basis Yes
and remove the affected
X1k in Xpg.

affects only one x,

Since x4, jo10 affects fwo or three x,;'s in xp, if only two
pick a third arbitrarytfrom x5, calculate cost K,(¢t = 1,2, 3, 4)
of bringing in x4, ;,x, and two other feasible x,; and the cost
K, of keeping the current three x,,;’s in basis (see steps (),
(5), and (6)).

Enter x4 51, and its two feasible companion
points into basis and remove the three
affected x,,;'s from basis.

for some
1,2,3,4

F1G. 1. Flow chart of the tri-substitution method.
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In the above example where two of the variables are affected we are saying that
there is no variable in the current basic solution with its k index position value
bk = 5. In the “one affected” case there are no basic variables in the current
basic solution with the jand k index position valuesj = 4and 2 = 5.

Now if x4, affects only one x4, ; in the current basic solution, then replace
that x4 = 1 by %4, = 1 and we obtain a strict decrease in the objective
function. Make the pivot for this replacement on the first one in the 74joko
column/. If three x,;;’s are affected go to step 4; if only two are affected go to
step 6. )

(4) x49j0x0 and Xy jix1y Xigjorr, @and Xy, 0, determine a cube of 27 variables of the
original pgr variables. This cube is all of the 27 different orderings of the
indices o, %1, %2, jo, J1, j2» Ro, k1, k2, for example, the cube associated with
Xigjoko = X345 and X324, X641, X275 1S

X324, X321, X325, X344, X341, X345, X374, X371, X375
Xe24, X621, X625, X644y X641, X645, X674, X671y X675

X224y X221, X223, X214, X241, X243, X274, X271, X275~
Go to step 5.
(5) Now consider all possible paths through this cube such that x; o, is
included in each path (a path consists of any three non-coplaner x,;’s). There
are exactly four such paths:

path 1 = (X j0k0s Xtrsikrr X2 12k0)
path 2 = (X4 jokor Xissnker Xiziokr)s
path 3 = (X4 joxer Xt1 sok1s X2 112
path 4 = (xiojokor X iy jakes Xtz jiky) -

Calculate ¢y jore + Cirjvis + Crsars = Ky t = 1, 2, 3, 4 for each path ¢ above.
If for any K, we have
Kt < Ctohkl + Ciljokz + Ctzjgko = KO;

then introduce all the variables in path ¢ for the three variables x5, X4 jok2r
X4, 0k However, introduce the triple by pivoting on the first 1 we come to in
each of the columns for the triple. Go to step 8. If none of the K, < K,, then go
to step 7.

Lemma 3

A basic variable at the one level will always appear in each of the first p rows
of the tableau. Furthermore, the g, of 4 form = 1,...,p — 1land n = mgr
+1,...,pgrandform = 2,...,pandn = 1,..., (m — 1)gr remain zero in
each tableau after each pivot operation above.

In addition we can state:

Lemma 4

If a triple is replaced as above, (1) the new variables will each have value one
and (2) the objective function will change in value by an amount which is the
sum of the relative cost factors for the new variables.
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(6) Since only two x;;'s determined by x4, are affected, then choose any
other x,;; € xp such that x,; = 1 and form the cube of 27 variables formed by
these four x;;’s. As in step 5, calculate K and determine whether K, < K,. If
yes, then remove the three old x;;’s and insert the new x;,’s in the manner
described in step 5 and go to step 8. If no, then choose a different x,j; € xz with
% = 1 and test the new cube for an improved path. Continue this process
until an improved path (i.e., K; < K,) is found oruntilall of the p — 2x,;’s exs
with 245 = 1 have been exhausted. iy S

NortEe: In this step the x; ;% and its two x;;'s belong to each cube tested. If
an improved path has been found, remove the three old variables and insert the
three new variables in the manner described in step 5 and go to step 8. If not,
thengo tostep 7. ,

(7) Now choose the next x,; which satisfies 2, —~ ¢,z > 0 and go to step 3.
If all z;;’s with 2,5, — ¢4 > 0 have been exhausted and no improvement in the
objective function has been found, then go to step 9.

Lemma 5

If there exists a change of variables which leads to an improvement in the
objective function at any iteration based on steps (3), (5), or (6) above, then
this set of variables making the improvement may be found by considering only
thezm — Cisnx > 0.

(8) Let x5 now denote the new basic feasible solution. If ¢p - x5 = /4, then
the new basic feasible solution is optimal. If all 2, — ¢ < 0, then the new
basic feasible solution is optimal. If ¢z - x5 >/, and if some 2z, — x50 > O
then go to step 2.

(9) By entering step 9, we are saying that there does not exist any path of
triples which will lead to a strict improvement in the objective function. At this
stage it is obvious that if we examined all quadruple, quintuple, . . ., p-tuple
replacements that we would find a replacement which would lead to the
optimal solution. However, examining all such replacements would defeat the
purpose of rapid computation, and in fact the computations would go up at
least factorially with p.

It should be mentioned that it is not a sufficient condition for the optimality
of x that all K, > K, for all possible triples which may enter at the one level at
the current solution point. A simple counter example exhibits the property that
all K, > K, for these triples and x is not optimal. Let p = ¢ = = 4 and let
ci1 =0, €123 = Co3a = Caa1 = 1, €333 = €141 = 2, €320 = €312 = Cag2 = Cyp2 = 3,
¢i1 = Cijz = 2 otherwise and ¢;;3 = ¢;;; = 3 otherwise. Then starting with the
initial feasible solution x13; = X200 = X333 = X454 = 1, 2453 = 0 otherwise, we
obtain ¢ - x = 6 and all K, found by the above algorithm has K, > K, however,
the optimal solution x* is given by x*123 = x*s3s = ¥*35u =a* 2 = 1, x*;, = 0
otherwiseand ¢ - x* = 5.

SoME CoMPUTATIONAL RESULTS

In applying this method to various problems using a Univac 1107, we obtained
the following results:
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We are currently in the process of testing this method on large problems
where p, ¢, and 7 are not equal. In addition we have formulated an algorithm
for achieving the optimal solution to (1) to (5) and even for the more general
multi-index assignment problem. Since this algorithm is still untested computa-
tionally, it will be presented at a later date.

APPENDIX
Proofs
Lemma 1 part (1) is obvious: part (2) (=2). Let x be a feasible solution to
(2) to (5). Since Z;Z;xyn = 1Vi=1,...,p, then upon adding these p

equality constraints 27 Zj_1 Zi o1 % = p. Butxiu = 0,1V 4, 4, &, thus there
are exactly px,;’s equal to one. Now assume that the x;;’s which equal one do
not satisfy part (b). Thus there is at least one x;; = 1 with at least one
common index element with another x;;; = 1, say Xg k0 = Xnnre = 1. But by
(2) we must have 2., Z{_; x5, < 1 since x is feasible; thus we havea contra-

diction since X7_; Zf_1 x5, > 2. Clearly (5) is satisfied, and since each in-
equality of (2) to (4) can contain at most one x;; = 1 and each equality must
contain one x;; = 1 because of the permuting of the indices, then (2) to (4)

hold. Hence by definition x is feasible.

Theorem 1 We first prove part (3).
Part (3) Zf=1 2?,1 2;;=1 CiixX 15k Z 21?:1 min {Cijk} 2§=1 2{;=1 Xijp = 2?,1 min

{Ctjk} = m

Part (1) This part follows immediately from part (3) above and lemma 1.

Part (2) This proof is mutatis mutandis the same as part (3) above.

Part (4) The dual of the primal problem where we omit the integer con-
straints and use instead x;; > 0 is given by: max 27, y, — 2?37 y,subject to
Vi— Vpri — Yprats SCpforalle=1,...,p,7=1,...,¢;k=1,...,7
unconstrained fori = 1,...,p,y. > 0fori =p+1,...,p4+qg+r.

Now the solution {7} given in part (4) of theorem 1 satisfies these dual con-
straints since §; — Fp4; — Fororr < Cist + Fors + Forarr — Fors = Fovarr = Cie
Hence this solution is feasible for this dual problem. Now from linear program-
ing if Z is optimal for the primal LP problem and if x* is optimal for (1) to (5)
thencx* > ¢ > o1

Lemma 2

This result follows directly from the fact that a basic feasible solution has the
property that for all x,;’s with value one, the ¢ position index numbers are a
permutation of the integers 1, . .., p.

Lemma 3
This result is obvious from equation (2) and the statement given in the proof
of lemma 1 above.
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Lemma 4

Part (1) follows immediately from lemma 3 since there are no replacement
pivot operations in the first p rows of A because thea,, ed form =1,...,p
—landn = mgr +1,...,pgrandform =2,...,pandn =1,...,(m

— 1)gr are all zero. Therefore the first p co-ordinates of the resource vector
remain at the 1 level at all times in the tri-substitution method, and the new
variables are brought into the first p rows.

Part (2) follows from the fact that the slack variables w, have zero cost in the
objective function, and since all of the slacks remain in every feasible basis,
the relative cost factors for a given feasible basic solution x4 jx,, - « + » X1,7,x, aT€
merely 2,0 — Cix = Cirjere — Cisee NOW il X4 jypys X1z jore a0 X4g 5514 are replaced by
Xtyu1 o1 X2 22 A0 X303 03 then the change in the objective function is ¢y 511% 4 sn

+ CuprXante T Copr¥uin: — CaimoaXnun — CouwnXiouon Ci3us v3%13u3 13

= Cuntr — Cmm + Ciasks — Cauzor + Cigsks — Cizug 03y Which is just the sum of
the relative cost factors for X u o01s Xizuz 020 30 X303 03+

Lemma 5

From lemma 4 above we merely add the relative cost factors. Thus, if none
of them in a change of basis being considered are >0, then the change of basis
could not lead to an improvement. Therefore, at least one of them must be >0,
but then that change of basis would have been considered when that factor >0
was considered ; hence it is not necessary to consider all possible changes of
basis for relative cost factors <0.
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