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A TWO-PRODUCT PERISHABLE/NONPERISHABLE
INVENTORY PROBLEM*

STEVEN NAHMIASt anp WILLIAM P. PIERSKALLAZ

Abstract. We consider a situation in which two types of inventories are available to satisfy demands,
one having finite lifetime and one an infinite lifetime. It is assumed that demands form a sequence of
independent random variables which first deplete from the perishable inventory and then the non-
perishable. We show that there are exactly three ordering regions in each period which correspond to
the three alternatives : ordering in both periods, ordering only perishable inventory or not ordering. The
region boundaries and the optimal policies are characterized for both the single period and dynamic
problems. A unique property of the model is that even with inclusion of salvage values at the end of the
horizon, the region boundaries remain nonstationary.

1. Introduction. A problem which is beginning to receive attention in the
literature is that of describing optimal ordering policies for a commodity with a
fixed lifetime. The structure of the optimal policy becomes significantly more com-
plex when the inventory is perishable in nature. Analysis of the single product case
for a product with a lifetime of two periods was initiated by Van Zyl [8] and later
by Nahmias and Pierskalla [3]. Fries [2], Nahmias and Pierskalla [4] and Nahmias -
[5] have considered the extension of these models to a product with an arbitrary
but fixed lifetime. The purpose of this paper is to generalize the model considered.
by Nahmias [5] and consider a system consisting of one fixed life perishable pro-
duct and one nonperishable, where the nonperishable may be substituted for the
perishable.

Our intent is to develop a more realistic model of inventory management for
a central blood bank. As units of blood are drawn from donors they may be re-
frigerated, in which case the shelf life is twenty-one days, or frozen, in which case
shelf life is 365 days, which for all practical purposes is nonperishable. When
demands exceed the available supply of fresh blood, frozen blood may then be
thawed. Another possible application of this model is in the area of food manage-
ment : a military supply depot stocking both fresh and powdered milk would face
a similar problem.

2. The one-period model. We make the following assumptions:
(1) All orders are placed at the start of a period and received instantly.

(2) All stock arrives new.
(3) Demands in successive periods are independent identically distributed

random variables with distribution F and density f. In addition we assume
that f(t) > O whent > 0.

(4) Inventory of product 1 (the perishable product) is depleted according to
a FIFO policy, that is, first in first out.

(5) All costs are linear. They include
(a) Ordering in both products (at unit costs ¢, and c,) charged at the start

of the period
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(b) Holding in both products (at unit costs h, and h,) charged on what is
on hand at the end of the period ; '

(c) Shortage (at unit cost r) charged on the unsatisfied demand at the end
of the period ;

(d) Outdating (at unit cost 0) charged on what deteriorates at the end of
the period. i

(6) If product 1 has not been depleted by demand before reaching age m-
periods, it must be discarded at the unit cost given in 5(d).

(7) There is a single demand source. Demands first deplete from product 1
(the perishable product) and then product 2. Excess demand is backlogged
in the second product.

A number of our assumptions may be relaxed or altered ; generalizations will
be discussed in the final section. It should be noted that assumption (4) is quite
mild. The optimality of FIi7O for depletion of perishable inventory has been es-
tablished under far more general circumstances (Nahmias [6] and Pierskalla and
Roach [7]).

Our approach will be to charge the outdating cost against the expected out-
dating of the present order which will not occur for m periods. The motivation be-
hind this method is discussed in [5]. 1f x = (x,,_,., , X4)1s the vector of perishable
inventory on hand, x; = number of units on hand which will outdate in exactly

i periods, and y is the amount of new perishable inventory ordered, then it has been
shown in [5] that the expression [} G,(u: Xx) du represents the expected outdating
of v. m periods into the future, where

G(t:x(n — 1) = j G 1(Xoey + 02xX(n — 2/t = v)dt
: 8]

fort <n s m:ix(n)=(x,. .,x,)and

Gl {1 ift =0,
1) =
0 0 ifr<o0.

Foreachn = 1, G(t:x(n — 1))is a C.D.F. in its first argument, and may possess a
discontinuity at t = 0.
Letting
x? = amount of product 2 on hand,
z = amount of product 2 on hand after ordering,

the total expected cost of ordering y of product 1 and z — x? of product 2 is

xX+y y
cyy + hy f (x +y—t)f(tydt + ()f G, (u:xX)du + c5(z — x*) + hyzF(x + y)
0 4]

XNty +o X
+l13f (X+_}'+:’~f)f(f)dt+l'f (t —x—y=—2)f(t)de,
Ny XNty+:z
where x = Y77 x, for convemence Collecting all terms independent of x?, we will
write this as L{x, y.z) — ¢,x*. A point which should be noted here is that the deci-
sion vartables for cach product have different interpretations: y represents the
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actual quantity of product | ordered, while z is the inventory level of product 2
after ordering. Our interest in the single period model is secondary to that of the
multidecision dynamic problem. The optimal ordering policy over the finite horizon
will satisfy the functional equations

v

0

x2

Cx.,x?) = inf {L(x, y.z) = cyx?

e
v

+ ocf Coo(sy{x, y, 1), S2(x + ¥, z,t))_/'(t)dt}
0 .

for 1 < n £ N (N is a fixed positive integer). The transfer functions are given by

Sl(x.'\‘. [) = (Sl.ln— 1(x. _\', f), ety S].X(X..\'. [)).

where

v i + 7]+
Syt = [xi+1_ (f— > xj) ] . I<ism-—1.
1

(we interpret x,, = y) and s,(x + y. z. t) =z — (t — (x + ')} 7. where g* = max(g. 0).
The discount factor is 2 € (0. 1).
Again collecting all terms independent of x2, we write
C,(x,x*) = inf {Byx,y,z) — ¢,x?}
y20

2
x2

v

which implies
B(x,y.z)=L(x,y,z) + ocf Cooi(si(x, ¥, 1), sa(x + y.z. ) f (1) dr.
0

The functions C,(x, x?) have the usual interpretation as the minimum expected
discounted cost for an n period problem when (x, x?) is on hand. As is customary
with dynamic programming models, the periods are numbered backwards. The
goal of our analysis will be to answer the two questions: when should an order
be placed and how much of each product should be ordered?

3. The ordering regions. It becomes convenient to introduce the assumption
that inventory remaining at the end of the horizon can be salvaged: inventory of
product 1 remaining may be salvaged at a return ¢, x and of product 2 at a return
¢,x%. Backlogged demand in product 2 may be made up by an emergency crder
at a cost of —c¢,x2 That is.

Colx.x%) = —c¢yx — X2,

The assumption is identical to that made by Veinott [9] in the analysis of non-
perishable multiproduct problems.
In addition we make the following four assumptions regarding the cost
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parameters:
(i) 05 h; <hy,
(1) 0<cy <cy,
(iii) r> (1 —a)c,,
(iv) 0= (1 —a)c, —c;)+ (hy — hy) < 0.

Since perishable inventory must often be stored under special conditions,
assumption (1) is not unreasonable. Assumption (ii) is necessary to insure that it is
economical to stock product I. Assumption (iii) is a usual one made for nonperish-
able inventory [1]. The expression of assumption (iv) is precisely the cost of pro-
curing one unit of product 2, holding it for one period and salvaging it the following
period, minus the cost of procuring one unit of product 1, holding it for one period
and salvaging it the following period. If this term were negative, then it would
never be optimal to order in product 1, while if it exceeded the unit cost of out-
dating, it would never be optimal to order to a positive level in product 2.

We shall need to refer to the following constants in the analysis of the ordering
regions in the first period: '

W = F1 r—ocy(1 —a)
r+ h, ’

W*._—_-F’_l r—~C1(1*—0()+(i12—hl)
r+h2 '

The constant u* corresponds to the optimal critical number for a single product
nonperishable problem [9]. Both constants, «* and w*, will be needed to describe
the ordering regions.

When F is strictly increasing, assumptions (iii) and (iv) guarantee that u*
and w* both exist and are strictly positive. If the additional condition ac, — h, < ¢,
is satisfied (although we will not require it to be), then we may also define the

constant
p* = Fo! r—ocy + ac, '
r+ h,

With the inclusion of the salvage value assumption, it follows from the definition
of the transfer function that

i=2

m-1
Bi(x,y,z) = L(x,y,2) + OLF(Xx)["Cx(y + Z xi) - ('23]

— oc, f )(x + y — 0f({t)dt — ac,[F(x + v) — F(x,))z

— occzf (x+y+z=1f)de.
Xty

We adopt the following notational convention: If h:R" — R' and he C*.
then A" is the first partial derivative of h with respect to its ith argument and h'*/
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is the second cross partial derivative with respect to the ith and jth arguments
respectively.

We have the following. -

THEOREM 3.1. B (X, y, z) is convex in (y, z) for all nonnegative x. The functions
y1(X), 2,(x) solving Bi(x. y(x). z,(x)) = min,, {By(x, y.2)} satisfy B{(x. y,(x),
z,(x)) = B ¢x, y,(x), z,(x)) = 0 and are unique for all x.

Proof.

By mM(x, v, z) = afc; — ) f(x + ) + 0GL(y:x) + (hy — hy)f(x + ¥)
+(r+h)fx+y+2=0

(note: Gy, x) is a p.d.f) and Bt im+(x, y,z) = B™™*(x,y,z) = (r + h,)
f(x+ y+ z) 2 0 and convexity follows since B{"™(x,y,z) = B{™™* (x,y,z).
The minimizing point (y,(x), (z,(x)) satisfies the two equations

B(l'n)(x’Y1(x)s21(x)) =0,
B (x, y,(x), z,(x)) = O,

which will be consistent by assumption (iii). Combining the results of these equa-
tions, we obtain

el = aF(x + yy(x))) — c;(1 = aF(x + y,(x))) + 0G,(y(x):X)
+ (hy = ha)F(x + y,(x)) = 0.

Assumption (iii) now guarantees that 0 < y,(x) < +oc forall 0 £ x < +x so
that x + y,(x) > 0 and B,(x, y, z) is strictly convex at the point (y,(x). z,(x)). from
which uniqueness follows. [

Since y,(x) > Oforall x, a necessary and sufficient condition that it be possible
to order to the global minimum of B,(x, y, z)is x* < z,(x). Because of the convexity
of By(x, y, z) in (y, z) (and hence the convexity in z), when x? = z,(x) it will be opti-
mal not to order product 2. However, since y represents an order quantity (rather
than an order up to the point), it may still be optimal to order product 1 when
x? 2 z,(x). In this case we define the function p,(x, x?) to satisfy

Bl(xa pl(xs xz)’ xZ) = inf(Bl(x’ Y, xz))'
-~ y

If pi(x, x*) > 0, then it is optimal to order this amount of product 1. Hence the
following characterization holds.

THEOREM 3.2. A necessary and sufficient condition that it is optimal to order a
positive amount of product 1 is B{"(x, 0, x?) < 0.

Proof. If x? < z,(x), then from the proof of Theorem 3.1, y,(x) > 0 so that
0 = B(x, y,(x), z,(x)) > B{(x, 0, x?).

If x2 = z,(x), then a necessary and sufficient condition that it be optimal to
order a positive amount in product 1 is that p,(x, x*) > 0, which is true if and only
if B{"(x,0.x%) < 0. 0O

If one reasons analogously to Theorem 3.2, then it is tempting to assume that
B (x, 0, x*) < 0 implies it is optimal to order in product 2. However, this is
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not the case. To see why. let t(x. ) satisfy B{"* 1’(x y, t{x. y)) = 0. Differentiating
implicitly with respect to y, we obtain » :
__B(1m+ I'M)(X. v, I(X. }))
B(1m+ 1.m+ U(X, V. f(x. }))

’

< 0.

!(m)(x ) },) —_

Since 1(x. v((x)) = z,(x) and y,(x) > 0, it follows that ¢(x.0) > z,(x). If x? satisfies
Six) £ ¥ < 1(x,0). then BY""V(x,0,x%) < 0 and it is optimal not to order in
product 2.

Hence there are exactly three distinct ordering regions:

Region [-—Optimal to order in both products: x? < z(x),

Region II-——Optimal to order in product 1 only: x? 2 z,(x) and

B(lnl)(x’()’ xz) <0 (pl(x. .YZ) > O)a

Region 111-——Optimal not to order: B{"(x.0, x?) = 0, (p,(x, x?) £ 0).

Note from the proof of Theorem 3.2 that if it is optimal to order in product 2,
then it is optimal to order in product 1. The boundary between regions I and II is
quite complex, as it depends on the entire vector (x, x?). However, the boundary
between regions II and III depends on the vector x only through the sum of its
components, x.

Define g(x) = (1/(r + hy))- {r + ac; — ¢; — F(x)[(h; — hy) + oy — )]}
Then we have the following,

THEOREM 3.3. A necessary and sufficient condition that (x, x?) is in Region |
or Il is that

F(x + x?) < g{x).

Proof. From Theorem 3.2 and the definitions above, it must be true that
B{M(x., 0, x?%) < 0. -

Bi™(x,0,x%) = c,(1 — aF(x)) + (h, — hy)F(x) — r
+ (r + hy)F(x + x?) — acy(1 — F(x))
= (r + h)(F(x + x?) — g(x)).

The result then follows. [

The function g(x) is strictly decreasing in x with g(+ o) = F(w*). If the
condition ac, — h, < ¢, is satisfied, then F(w*) < g(x) < 1 for all x = 0, and
v* = F~1(g(0)) will exist. However, if ac, — h, = ¢,. then g(0) = 1. In this case,
there exists a unique number p* > 0 which solves g(p*) = 1. The boundary between
Regions I and III may be pictured in the (x, x?)-plane independent of m. Figure 1
pictures this boundary for each of the two cases above. The boundary between
Regions I and II may be pictured in the (x, x?)-plane only if m = 2. The arrows
indicate the inventory position after ordering. Notice that (x, x*)e Region I
guarantees that x 4+ v,(x) + z,(x) = u* (which follows from B{"* '(x, y,(x), z,(x))
= 0). while (x. x?) € Region I will yield F(x + x? 4+ p;(x, x?)) < g(x + p,(x,x?))
as will be demonstrated.

In the next section we extend these results to the multiperiod dynamic problem.
A thorough investigation of the structure of the optimal policics is undertaken.
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Lx+x2=u"‘——y,(x) X+ =u* o~y (x)
[a) acy — h, < ¢ [b] acy, — hy 2 ¢,
FiG. 1. The optimal ordering regions for the one-period problem when m = 2
Even with the inclusion of the salvage value assumption, neither the ordering
regions nor the ordering policies is stationary in time.

4. The dynamic problem. Recall that the functional equations defining an
optimal policy are
Cx,x?) = inf {Bx,y,2) — ¢c,x%},

. yz0
z2x2

where
B(x.y,z) = L(x,y,z) + ocf Coorsy(x. y, Dsax + y oz, 0)) f0) dr.
0

We will denote by y,(x) the optimal quantity of product 1 to be ordered when
x is on hand and n periods remain and by z,(x) the optimal quantity of product 2
to be ordered when (x. x?) € Region 1. Extending the notation introduced in the
previous section in a similar fashion, we denote by p,(x. x?) the optimal quantity of
product 1 to be ordered when (x, x?) € Region Il and n periods remain.

As in the single-period case, z,(x) will determine the boundary between
Regions I and II. However, to characterize the boundary between Regions IT and
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11 when n periods remain, we will define

gux, x?) = (1/r + hy)){r — ¢y — F(x)[(h, — h;) — 2c,]

— af C™ (0. x + x> — t)f(t)dr!

Note that g,(x, x?) = g(x) independent of xZ.

The preliminary results which are needed for the proof of Theorem 4.1 are -

listed in Appendix A. The proof of the theorem is presented in Appendix B, but
for those sections of the proof that are similar to Theorem 2.2 of [5]. only an outline
of the methodology is included. A complete statement of the twenty-six results
required for a rigorous induction argument will be given.

TueorReM 4.1. Given assumptions (1}7) and (1}1v). the following hold for
1<n<N:

(1} B,(x,y.z)is convex in (y, z) for all x.

(2) (@) There exist unique continuously differentiable functions y,(X), z,(x)
which minimize B,(X, y, z) and solve :

B{M(x, v,(X). z,(x)) = 0,
B V(x, y,(x), z,(x)) =

(b) There exists a unique continuously differentiable function p,(x, x*) which
solves

BUM(x, px, x?), x?) = 0.

(3) ( a) If x? < z,(x), then it is optimal to order y,(x)> 0 of pr oduct 1 and
z,(x) — x? of product 2; (Region I)
(b) If x* = z,(x) and F(x + x?) < g,(x, x?), it is optimal to order p,,(x, x?%)
>0 of product 1 and none of product 2. (Region II)
(¢) If F(x + x?) = g,(x, x?), then it is optimal not to order. (Region III)
@4) @) If (x,x )e Region 1, then F(x + y,(x) + z (x)) < g (x + yux), z,(x));
(b) If(x, x?) € Regionl], thenF(x + p(x, x2) + x3) < gx + pax, x7), x?);
©) g,(x,x?) < g,-(x,x?) for n = 2 and all (x, x?).

(5) (@ -1 yPx) < - £y D(x) < 0in Regionl;

(b) —1 2" 1’(x) < < z{(x) < 0 in Region1;

) —1 < px, x?) £ --- < pi™(x,x?) < 0in Region IL
(6) (a) CH(x, x*) — CH™(x, x?)

> -0 Z GYTk*x(m — k))

: l:l - Z Hq(xm—k+qs T xm—k+1)}
qg=1

Jor 1 i <j<m—1,(x,x?) e Regions 1 and 1l and (x, x*) e Region 111 such that
(X(m — i),0,x%) e Regions I or 1. (For i = 1, the inequality is valid for all (x, x?)).
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The following inequalities hold for (x, x*) &€ Regions I or I1:

(b) Cﬁ,"*j(x, '\,2) - C(ni— 1‘”()(, ,\‘2) _ C(i.m) X ,\'2) + C(i‘l.m)(x‘ ,\'2)

é _BGi.'l;:::"*'l){x(’" - 1)) [:1 - Z H m i+ko - '\‘m-i—l)}'

Isigjgm—1,

©) Cix, x?) = G Vx, x?) £ 0[GRZV(X) — GYL(x)].
2

IIA

ism—=1:

(d) C:,i'j)(x XZ) . C(i—l.j)(x1x2) _ C“"j'”(x,xz) + C;i—l.j—l)(x.xl)
S O[GHZ(x(m — i) — GYZi* V(x(m — )]

i—1
[1_ Z Hk(xm-i+k*"'sxm—-i+1):,a 2§i<j§’n_l:

k=1

_ - 2 ; .
(e) Comp. 1) {_O _/‘or (x.x*)e Regions L or 11,
>0 for (x,x%) e Region I11.

and C{"™(x, x2) = C™™(x, x?) for all (x, x?).

j—1

(N (@) —c; =03 G, (x(m —j)- l:l — Y HlXpe g _\',,,_j,])]
K=1

i=1
< Ciix.x3) <0
for all (x, x*)e Regions 1 and 11 for 1 < i < m — 1. In addition, the lower hound is
valid for all (x, x*) wheni = 1:
(b) CHx, x?) ~ CUx.x?)
e, +0 IZ G, _(x(m — k)

= k=j+1
k-1
[ Z Hq(xln—k—#q*"' *'\,m-—k+l)J
g=k—j ‘
for (x,x*)e RegionsTand U only for | Sj <i<m—1:

(¢) CP(x, x?) ~ C‘”(x xHz= -0 Z G, (x(m — k)

k=j+1

k-1
: [1 - Z Hq(xm—k+q" T -\'m—k-1):l

g=1

for (x, x*)e Regions 1 or 11 and (x, x?) e Region 111 such that (X(m — i). 0. x*) € Re-
gions 1 or IL
(8) (a) hm ‘Cﬁf’(x.xz) - CFU(x.x?)! =0,

2<i<m—1.al(x.x%;

(by tim {C™(x.x?) — CV(x. X)) = ¢, — ¢, forall (x.x?)
=0

Xm
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with equality holding if and only if (x. x*) € Region 1:

1 { = —¢, if(x.x*) e RegionsIorll.
lim  CM(x. x2)

Xm-1—0

> —¢, If(x.x?)e Regionlll;

(d) . o (=—c; if (x.x?)e Region 1,
C:}m)(x. X") . ,
> —¢, If (x,x~)e Regions 11 or I11:
(e) C'9%0.:z) — C"™0,2) = 0. I1<i€m—1 andall z.
(f) Clmix, x?) =2 C™ (x.x?) forall(x,x*) andn = 1.

The theorem reveals a number of structural properties of the optimal policy.
From (5) we see that all three ordering functions decrease in each variable. Both
(5)(a) and (5)(c) show that the optimal quantity of perishable inventory ordered
will decrease more significantly if the stocks of newer inventory are increased than
if stocks of older inventory are increased. Since z, represents the quantity of
nonperishable stock after ordering, it is not surprising that the ordering of the
partial derivatives should go in the opposite direction. That the total system
policy exhibits a critical number property is shown in the following Corollary.

CoROLLARY 4.2. If (x,x*)e Region 1 and n periods remain, then x + y,(x)

+ z,(x) = u* independent of (x,x?). Furthermore, u*,, < u*, n=1,2,---, N.
Proof. The n = 1 case has been established in the previous section, where
uf = u*.

From the proof of (5)(b) of Theorem 4.1, y{'(x) + z{(x) = — 1 in Region I,
from which it follows that x + y,(x) + z,(x) = u}. The fact that the numbers u}} are
nonincreasing in n follows directly from the second defining equation for y, and
z, in section (2)(a) and the inequality of section (8)(f). 0O

The relationship between the functions y, and p, is now shown.

COROLLARY 4.3. Suppose that (x, x*) € Region 11 and n periods remain. Then
Pa%, x%) = yufx). O

Proof. By construction, p (x.z,(x)) = v,(x). If (x, x?*) e Region II, then x* =
z,(x) and the result follows from (5)(c). U

It is somewhat surprising that the boundaries separating the ordering regions
should change with time. In both the multiproduct nonperishable inventory prob-
lem and the single product perishable inventory problem, when costs and demands
are stationary, the salvage value assumption guarantees that the ordering regions
are stationary as well. The nonstationarity in our case results from the fact that
when (x, x?) € Region I, one orders not to the boundary of Regions I and II, but
into the interior of Region II (see Fig. 1). The salvage value assumption is still
necessary to insure that the function defining the boundary between Regions II
and III depends on the vector x only through the sum x.

The result of (4) in some circumstances provides an upper bound on the total
quantity of perishable inventory in stock. Suppose (x,x?)e Region II when n
periods remain and g(x) < 1. Then from (4)(b), (4)(c) and the fact that g,(x, x?) is
nonincreasing in both arguments, it follows that x + p.(x, x?) < F~'(g,(x, x?))
~ X, £ F 7 (glv) - ¥
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Another significant result can be inferred from (4)(a), (b) and (c). If (x, x2) e
Regions I or II in any period, then it must be true that (x. x?) € Regions I or II for
all subsequent periods. That is, if it is optimal to order in product 1 in any period,
it is optimal to order in product 1 for each subsequent period.

5. Generalizations. For the sake of convenience. we have assumed that excess
demand is backlogged in product 2. However, since ¢,.< ¢, it is far more realistic
to assume that excess demand is backlogged in the first product. In that case, the
first component of s,(X, y, z, t) becomes

- —x")" fx<rZx+y,
Symo1(X.y.2.0) =40 fx+y<t<x+y+z,
X+ yv+z—t ifx+4+v4+z<t,
and the remaining components are unchanged. Also
sx +y, 2. =(—-(t~x=y")".

In this case we obtain
X+ y

BM(x,y,z) = L"™(x,y, z) + ocf D (s (X, v, z,0), 2) f(1) dt
(o]

X+y+z
+ ocf CM0,x +y+z—1)f(t)de

x+y

o+ ozf Criix+y+z—1t,00/f@)dt

X+y+z
and
B U(x, p,z) = L™ V(x, y, 2)

xX+y+z
+ ocf Ci™ sy (X, y,2,0), 85(x + y,z, 1) f(t) dt
0

+ocf Cix+y+2z—1,0,0f()dt,

x+y+z

from which it follows that

o o F—cy + 0,
F4+hy + alc; —cy) |

The constant w* does not change. However, the function defining the boundary
between Regions 11 and III becomes

g.(x, x?)

= (1/(r + hy)) {” —cy(1 — o) = F(x)[(hy — hy)] — acy(F(x + x?) — F(x))

- cxf O™ (0, x 4 P - t)j'(z)dt}.



494 STEVEN NAHMIAS AND WILLIAM P. PIERSKALLA

All of the results of Theorem 4.1 will now follow with the changes above.
We may also assume that demand is not backlogged, but lost. The only change
required for lost sales from backlogging in product 1 is that

sl.m—l(xﬁ_)‘- t) = (}’ - (t - ,\')+)+ N

which results in obvious changes in the various constants and region boundaries.

Another assumption which can be relaxed is that all costs are linear. The analy-
sis remains essentially identical if we assume that the holding and shortage costs
are convex nondecreasing functions vanishing at the origin.

Our methods of analysis may be applied to the case of nonstationary demands
only when the demand distribution is stochastically increasing over time. Although
Theorem A.l remains valid for general nonstationary demands [5]. Theorem 4.1
will not. The problem that arises is that (4)(a), (b) and (¢) will not necessarily
imply that (s;(x.y.1),s,(x + y,z, 1)) is in Regions 1 or II when n — | periods
remain if (x, x?) € Regions I or II when n periods remain unless demands increase
stochastically. A similar phenomenon occurs in the single product case.

Appendix A. Preliminary results.

THEOREM A.1. Define s(x(n), 1) = (x; 4, —(t =Y. x)") for 1 Sigsm—1,
where x(n) = (x,.---.x,). Letting s(x(n),t) = (s,_,(x(n), )., s,(x(n), 1), we
have that

Gytxim) = | Y G ). ) SO dt, 10 < m,
0

where w, = 2’;:1 xjand Go(-) = L.
The analysis requires an exhaustive enumeration of various properties of the
G, functions and their derivatives. It becomes convenient to introduce another
class of functions H, which exhibit a type of duality relationship with G,.
Definefor2 £j<n2<n<m,

H}{i(n _j + ])) = f Hj—l(v + Xpo1:Xp—247""" % xn—j+1)f.(xn - U)dU
0
- F(xn)Hj—l(Xn—l* : ." * anj+l)a

where X(n — j + 1) = (x,, -+, X, ;+) (a vector of dimension j formed from the
first j coordinates of x(n)). The following lemmas are required in the proof of
Theorem 4.1. o '

Lemma AL

C [J-\'m G, (12 X) du] = G,(x) — 5‘_: G- {x(m — j)H (X(m — j))
0

axm——i i=1
fort £igm-—1.

LEMMA A.2.
HOXG) = GP(x(j) for 1 £ Z m.
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LEMMA A.3.
i1
1 - Z Hk(xm—j+kv"'*Xm—j+l) fbrl éj§’”-

=1

x
i

HXm—j+ 1) =
(i) Gux(k) £ Gy (xps -+ 5 Xa).
(i) Hyx(k)) £ Hy-1(x. » X2),
(ii1) G(x(k)) = H,(x(k)) fm 1k m.
Appendix B. Proof of Theorem 4.1. Many of the results have already been es-

tablished for the n = 1 case. The remainder follow in a similar fashion to the general
1 — | < N. We prove them true

LEMMA A 4.

argument. _
Assume all results hold for periods 1

for n.
— h) f(x + y) + 0GLy:ixX) + (r + h)f(x + vy + 2)

BI™(x, v, 2) = (h,

+ ocf Cilo (s (x, y. 1), 2) (1) dr
0

+ af (x + Y[C,(0,2) — C (0. 2)]

+ ocf Cmm0,x + y +z — t)f(6)dr
x+y

(1)
2(hy — ) f(x+ W+ 0G0 X))+ (r+ h)f(x + v + 2)

- a()J\\. ‘Gsn 1(s (X V. [) f(f)df

0
by the inductive assumption on (6)(a), (6)(e) and (8)(e),
(hy — h)f(x + y) + 01 = )G (y:x) + (r + h)f(x + y+2)20
by Theorem A.1 and assumption (i) of § 3
RSy | Oy S0 d
0

B(nm-i—l.m+l)(x’y’2) —
+ af Clb0,x +y+z—10)f(t)ydt =0

x+y

by (6)(e).

Also since B™™*1(x, y, z) tm+ Lm+ by y, z) everywhere (by the inductive
assumption on (6)(e)), a necessary and sufficient condition for convexity is that
Bmm*ixx vy, z) = 0. Forming the difference. we obtain

Bi.m'm‘(x’ V. :) —
.\'+)
ClL(sy(x,y.1),2)

(hy — hy) f(x + y) + OGNy x) + ocf
0
2)— CM(0.2)] =0

~ CLPsi(x p, 0,2} () de + of (x + p)[C (0.

from the inductive assumption on (6)(a) and (8)(e) and Theorem A.1 (as above)
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(2) (a). The minimizing point (y,(x). z,(x)) will now satisfy the equations
Bil"”(x 1 y"(x)’ zn(x)) = Bilm_f_ 1)(x9 Yn(x‘)* zn(x)) = O‘

For the sake of convenience, we will write y.and z,. It is understood that these
are both functions on R™~'. The equations defining y, and z, are

¢y + (hl - hZ)F(X + ,“n) + ()Gm(yn; x) - r+ (r + hZ)F(Y + Y + :n)

+ :xf T W s v 0, 2 (O dE F f O (Oux 1y 4 2y~ Of(0)dE =0

0 X+,

and
CZ —r+ (r + hZ)F(x + yn -+ :n) + af C(nm—)l(sl(xhyn’[)ﬁSZ(x + yn'z-[))_f(t)d[ = 0
. (4]

The principal minors of the Hessian will be strictly positive in a neighborhood
of (y,,z,) if ¥, > O since the definition of G,, and assumption (3) guarantee that
y, > 0 implies G\P(y,:x) > 0. Now y, > 0 if and only if BY(x, 0, z,) < 0. Solving
for F(x + v, + z,) in the second equation and substituting into the first, we obtain

B;"')(X’O,zn(x)) = ¢y + (h‘ — hz)F(X) —C¢; + o f (CEII—:l{SI(x’ 0, t). Zp)
0

= C2y(s(x, 0, 0)z,)) f (1) dt
< (1 — aF(x)) — ¢c5(1 — aF(x)) + (h; — hy)F(x) <0
by the inductive assumption on (8)(b). The negativity follows from assumptions
(i) and (iv) pf § 3.

(b) As above, if p,(x, x?) satisfies B,(X, p,(X, x*), x?) = min, {B,(x, y,x?)},
thenitisthesolutiontotheequation BI™(x, p,(x, x2), x?) = 0. Again,forconvenience,
we will write p,, which is understood to be a function on R™. Uniqueness will
follow if B™™(x, p,.x?) > 0, which will hold if either of the conditions x + p,
+ X5 > 0 or p, > 0. Suppose that p, < 0. From the definition of p, we obtain

(r + h))F(x + p, + x*) = —¢; + (hy — hy)F(x + p,) — 0G,(p,:x) + r

X+ pn
-a.[ Cl((s4(x, p,. 1), x2) [ (1) dt

0

- ocf C™0,x + p, + x2 —1)f(t)dt

X+ pn
= —c(l — aF(x + p,)) + (h, — h)F(x + p,)
+ r +acy(l — F(x + p,)) — 0(1 — 2)G,(p,:x)
by (7)(a) and (8)(d).
> (¢ — )1 — aF(x + p) + (hy — hy)F(x + p,)
>0

by assumption (iii) and the fact that p, < 0 implies G,(p,: x) = 0. The positivity



A TWO-PRODUCT INVENTORY PROBLEM 497

follows from assumptions (i) and (iti).

The fact that the functions y,, z, and p, are continuously differentiable follows
from the implicit function theorem because of strict convexity in a neighborhood
of these points (see [5], for example).

(3) (a) In this case, the global minimum of B,(x, y, z) can be attained so it

is clearly optimal to do so.
(b) In this case, it is not possible to order to the global minimum. How-

ever, if BU(x, 0, x?) < 0, then it is optimal to order p, (where p, > 0). Since
BM(x,0,x%) = (r + hy)(F(x + x%) — g,(x., x?)).

the characterization follows.
(c) From (b), p, < 0 if and only if F(x + x?) = g,.(x, x*).
(4) The proofs of cases (a) and (b) are essentially identical with the notation
adjusted appropriately. We prove (b). (For (a) one substitutes y, for p, and z, for
x2.) If (x, x?) € Region II, then

0= fom’(xs pnvxz) =€ + (hl - hZ)F(\' + pn) + HGm(pnﬁx) - r
+ (r + h))F(x + x* + p,)

X+ pn
ta f CL(51(x, po- 1), X7 £ (1) dt

0

+ aJ C™ (0. x + x* + p, — )/ () dt

X+pn
2 Cy + (hl - hz)F(x + pn) + 0(1 - a)Gm(pnv X) —r
4 (r + hy)F(x + X2 + p,) — ac,F(x + p,)

+aJ Cy(0.x + x* + p, — 1)f(t)dt

X+ pn

from the inductive assumption on (7)(a) and Theorem A.1.
Dropping the term 6(1 — 2)G,(p,: X), which is positive, we obtain

F(x + x* + p,) < gux + p,, x?),

as required. (4)(c) follows directly from the inductive assumption on (8)(f).

Taken together, (4)(a), (b) and (c) imply that if (x, x*) € Regions I or 11 when n
periods remain, then the inventory on hand for the next period, (s,(x,),,1).
$3(x + Yoy 2, 1) (OT (84(X, p,. 1), So(x + p,.x%, 1)) will also lie in Regions I or II.
This follows since, for the second case, the sum of the components of (s,(x, p,. t).
Sp{x + po.x?. 1) is x + x* + p, — t. for some ¢ = 0. It is easily verified that
g,(x. x?) is nonincreasing in both of its arguments so that

F('\’ + xz + Py [) < gn(x + Pn— ’sxz) § gn—!(x + Py L. \2)

A similar argument applies when (x, x?) e Region L.
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“(5) (a) Suppose (x, x?) € Region 1. Combining the équations defining y, and
z,. we obtain
e+ (hy = h)F(x + »,) — ¢; + 0G,(y, 1 X)

* aJ O 51X Yaa 1) 2) — C (X y, 1), 2,)) [ (1) de = 0.
: 0

Differentiating implicitly with respect to x,,_,. we have

_NWx):%)

Ly} = i
Y (X) D(y.0) %)
where
Ny, :x) = (h; — hy)f(x + y,) + 0GS (v, x)
+ o Z {Cf11—.il+ ”(Sl(X, ym t)a Zn)
J=1vYwj_y
— OB (X, p,. 1), 2,)) f (1) dt
+ af('x + Yn)(Cs‘ll-! I(Ov zn) - Cslm*—) 1(0* Zn))
and

D(y,:x) = (hy — hy)f(x + y,) + 0G Y (y,: x)

m
+ ) [C (s, (X, ypa 1), 2,)
i=1

- C(rlm—.ll)(sl(x’ Yn» [)7 Z")}f(f) di
+ af('x + yn)(Ci,l.)l(o, Zn) - C(nmjl(o’ :n )
Note that the resulting term involving z{ drops out by the inductive assumption
on (6)(e). By the result of section (4) above, {(s,(x, y,. 1), z,) € Regions I or II for all
t 2 0, so that we may apply the inductive assumptions on (6)(b) and (6)(a)
respectively to obtain
Ny, %) 2 (hy = hy)f(x + ) + 0(1 — @GS V(y,:x) > 0, lsis=m-=2,
D(y,:x) Z (hy = h)) f(x + y,) + 01 — &)GP(y,:x) > 0.
One then shows D(y,:X) = No(y,:X) 2 Ny(r,:%) Z - = N,y (1,5 %) by
applying the inductive assumption on (6)(b). The logic is essentially identical to

the single product case and can be found in [5].
(b) From the equation

x+yn
c; —r+(r+ h)F(x +y,+z,)+ ocf C ((sy(x, ¥y, 1), 2,) f(t) dt
0

+ aJ‘ | C"™ 0. x +y,+z,—)f(tydt =0,
X+yn

differentiating implicitly with respect to x,,_; and applying the inductive assump-
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tion on (6)(c}). it follows that

P o

n

and (5)(b) follows from (5)(a).
(c) The logic here is identical to (5)(a) for I £i < m — 1 and a similar
argument holds for the case i = m.

(6). (7). (8). The proofs of the results of sections (6), (7) and (8) are somewhat
tedious and involve the application of the appropriate inductive assumptions and
Theorem A.1 at each stage. The logic is essentially the same as it is for the single
product model ([4] and [5]). Suppose that (x, x?)e Region L. Then

C(x,x%) = B(X,¥,,2,) — C;x%.
Differentiating with respect to x,,_, for | < i < m — 1, we obtain
COx, x?) = BOx, y,.z,) + B™(x.y,.z,)- ¥ + B""Ux,y,,z,) ¥

= BYx.y,,z,) (by the definitions of y, and z,)

an G, (u:x) du] —-r
0

a
= (hy — h))F(x + y,) + 3 [

+(r+ h)F(x + y, + z,) + af CEE sy (X, y,, 1), 2,) f (1) dt
0
+a Y Cm+ (s (X, y,. 1), z,) f(t) dt

jEm—i+1dw;_

+ rxf CmYO0.x + y, + z, — 1) f(D)dt

x+yn

= {(hx = h)F(x + y,) + 0G(y,:X) — r + (r + hy))F(x + y, + z,)

X+ ¥n )
ta f CL (8,0, Y. 1), 2 f(2) dt

0

+ ozf Cm©,x + y, +z, — 0)f(t) dt}

+¥n

-0 Y G,_x(m — H|y,:X(m — j))

j=

+ 1f {CEIs,(x, ,,0)z,) — CLV ((84(X, y,,, ), 2,)} f(£) dt

0o

m-— 1 W

DY {C " s, Yy 1), 2,)
JEm—=i+ 1 Jw;
- C“)l(sl(x yn![) zn) f(t d‘t
which results from Lemma A.1. The expression in brackets is exactly B™(x. v,,. z,)
= 0. In the case where (x, x?) e Region II one obtains an identical cxpressxon
except that p, is substituted for v, and x? for z,. Using the remaining terms. the
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various sums and differences of the first and second cross partials of C,(x. x?) are
formed. Each of the inequalities is established by using the appropriate inductive
assumptions as given by the following chart.
To prove Use the inductive assumption on
(6)(a) (6)(b) and (6)(c) if i < m ~ 1 and (6)(b) and (7)(a) if i = m — 1
for (x, x?)e Regions I or II; (6)(a) if i < m — 1 and (6)(a) and
(M@ if i = j = m — 1 for (x, x?) e Region I1I.

(6)(b) (6)(b) and (6)(c) if i < m — 1. (6)(a) and (7)(a)ifi = j = m — I.
(6)(c) (6)(c) and (6)(d)if i < m — 1 6)(b) fi=m-—1
(6)(d) (6)(c) and (6)(d).
(7)(a) (M) ifi <m — L.(7)@)and (T)(c)ifi = m — 1.
(7)(b) (7)b)ifi < m — 1. (7)(a) and (7)(b) if i = m — 1.
(7)(c) (7)(c).
(8)(a) (8)(a).
(8)(b) (8)(a) and (8)(b).
(8)(c) (8)(a) and (8)(c)
(8)(d). (8)(d).
(8)(e) (8)(e).
(8)(1) (8)(f).
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