Integer Programming by Implicit Enumeration and Balas’ Method

Arthur M. Geoffrion
SIAM Review, Vol. 9, No. 2 (Apr., 1967), 178-190.

Stable URL:
http://links jstor.org/sici?sici=0036-1445%28196704%299%3 A2%3C178%3AIPBIEA%3E2.0.CO%3B2-X

SIAM Review 1is currently published by Society for Industrial and Applied Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/siam.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Tue Aug 24 10:58:07 2004

SIAM REvViEW
Vol. 9, No. 2, April, 1967

INTEGER PROGRAMMING BY IMPLICIT ENUMERATION
AND BALAS’ METHOD*

ARTHUR M. GEOFFRIONt

1. Introduction. In a recent comprehensive survey [2] of integer program-
ming, M. L. Balinski expressed a belief that . . . clever enumerative schemes . . .
are in certain situations, at least, the best known methods of solution.” The
adjective “clever” is undoubtedly meant to imply, of course, that one should do
better than complete enumeration. This can be done by using strategies which
lead, as the enumeration proceeds, to the generation of information that can be
used to exclude large numbers of solutions from further consideration. The ex-
clusion of solutions, which suggests the descriptive term <mplicit enumeration
for such methods, can usually be accomplished in a variety of ways—for example,
by exploiting the availability of a gradually improving bound on the optimal
value of the objective function as better and better feasible solutions are found.
It is unfortunate that the exclusion of solutions can sometimes give rise to very
large information storage requirements in order to record which solutions have
been excluded as well as enumerated, thereby adding another dimension to
the need for “cleverness.” A computationally successful algorithm must combine
a sufficiently high ‘“rate of exclusion” with sufficiently modest storage re-
quirements.

Additional support for the viewpoint quoted above has accrued lately from
the publication of Balas’ “additive algorithm” [1] and some useful extensions
proposed by Glover [5]. This and subsequent work suggests that it may be pos-
sible to achieve, for general bounded integer linear programs, both a high rate
of exclusion and low storage requirements. Among the demonstrable advantages
of “implicit enumeration” in general and Balas’ approach in particular are the
following:

(a) addition is the only arithmetic operation required (no systems of linear

equations need be solved), thus eliminating roundoff problems;

(b) a feasible solution, hopefully a good one, is usually in store if the calcula-
tions are stopped prior to natural termination by exhaustion;

(¢) it is easy to monitor the rate of implicit enumeration as the calculations
proceed, thereby enabling informed stopping rules and opportunistic
implementation;

(d) only minor modifications are necessary to handle a variety of nonlinear
objective functions.

The aim of this paper is to provide, in expository fashion, the rudiments of a

* Received by the editors March 9, 1966, and in revised form October 3, 1966.

t Western Management Science Institute, University of California, Los Angeles, Cali-
fornia. The author carried out this work as a consultant to The RAND Corporation; it was
first published internally to RAND on July 19, 1965, and externally in February, 1966, as
RM-4783-PR.

178

INTEGER PROGRAMMING 179

framework within which the reader can readily assimilate the works of Balas
and his followers.

In the next section we motivate, prove, and discuss from a different point of
view the flexible and economical version of the “back-track” procedure for in-
teger programs given by Glover in [5]. Back-tracking is an old but potentially
effective procedure for exhaustive search in many kinds of combinatorial prob-
lems. One of its earlier uses may well have been as a methodical way to thread a
maze. It is rediscovered from time to time, and is known by different names in
different fields." The back-track idea provides the main foundation of Balas’
algorithm, but his history-remembering scheme seems to use a good deal more
storage capacity than that described by Glover. Using this scheme for implicit
enumeration, in §3 we synthesize what is essentially a reformulation of Balas’
algorithm.? A numerical example is given, and some variants are mentioned.
The final section presents some new material on taking advantage of available
prior information, and on advantages (¢) and (d) above. It is of interest to note
that a nonlinear extension of Balas’ method is presented which applies to prob-
lems of target-assignment, redundancy allocation, and spare parts kit composi-
tion, among others. We conclude this introduction with a precise statement of
the problem and a few preliminary definitions.

Any bounded integer linear programming problem can be written in the form:

(P) Minimize cx subjectto b + Az = 0, z; =0 or 1,

where ¢ is an n-vector, b and 0 are m-vectors, 4 is an m by n matrix, and z is a
binary n-vector to be chosen.’> Any binary 2 will be called a solution. A solution
that satisfies the constraints b + Az = 0 will be called a feasible solution, and a
feasible solution that minimizes cx over all feasible solutions will be called an
optimal feasible solution.

2. A back-tracking procedure for implicit enumeration. Since there is a finite
number 2" of solutions, exhaustive enumeration provides a finite procedure for
discovering an optimal feasible solution of (P). As indicated above, not all solu-
tions are to be explicitly enumerated, of course, but rather implicitly enumerated
by considering groups of solutions together. To explain how groups of solutions
will be defined, we require the notion of a partial solution. A partial solution S is
defined as an assignment of binary values to a subset of the n variables. Any

! One modern account in a general setting is given in [7].

* This reformulation is the basis for a computer routine written at The RAND Corpora-
tion that has been used to make a preliminary experimental assessment of computational
efficiency [4].

¢ A bounded problem is one for which an upper bound »; is available for each variable. The
substitution

13
% = Z(; 2%,
where £ is the smallest integer such that »; < 28%1 — 1, 4;; binary, permits a binary repre-

sentation for x; . When this substitution is used, it is possible to take advantage of the
special structure it induces on 4 and c.

180 ARTHUR M. GEOFFRION

variable not assigned a value by S is called free. We adopt the notational con-
vention that the symbol j denotes z; = 1 and the symbol —j denotes z; = 0.
Hence, ifn = 5and S = {3,5, —2},thenz; = 1,25 = 1,2, = 0, and ; and x4 are
free. It will be seen that the order in which the elements of S are written will be
used to represent the order in which the elements are generated. A completion of a
partial solution S is defined as a solution that is determined by S together with a
binary specification of the values of the free variables. In the above example, there
are four possible completions of S:

(O) 0) 1) O) 1)7
(0,0,1,1, 1),
(1,0,1,0,1),
(1,0,1,1, 1).

Thus, a partial solution S with s elements, say, determines a set of 2" ° differ-
ent completions or solutions. When there are no free variables, there is only one
completion of S, the trivial one determined by S itself.

Implicit enumeration involves generating a sequence of partial solutions and
simultaneously considering all completions of each. As the calculations proceed,
feasible solutions are discovered from time to time, and the best one yet found is
kept in store as an incumbent. Now it may happen that for a given partial solution
S we can determine a best feasible completion of S, i.e., a feasible completion that
minimizes cx among all feasible completions of S. If such a best feasible com-
pletion is better than the best known feasible solution (assuming for simplicity
that one is known), then it replaces the latter in store. Or we may be able to deter-
mine that S hasno feasible completion better than the incumbent. In either case,
we shall say that we can fathom S.* All completions of a fathomed S have been
implicitly enumerated in the sense that they can be excluded from further con-
sideration—except, of course, a best feasible completion of S that unseats the
incumbent.

Leaving aside until the next section the important question of how one fathoms
a given S, we now give a flexible procedure for generating a sequence (S”) of
partial solutions that is nonredundant and terminates only after all 2" solutions
have been (implicitly) enumerated. By nonredundant, we mean that no com-
pletion of a partial solution in the sequence ever duplicates a completion of a
previous partial solution that was fathomed.

Start with S° = &, where & indicates the empty set. If S° can be fathomed, we
are finished—either there is no feasible solution, or there is one and the best
feasible solution can be found. If S’ cannot be fathomed, augment it by specifying
abinary value for one additional free variable at a time, each time trying to fathom
the resulting partial solution, until at some trial k; , S** is fathomed. Now to be
sure of having enough information in the future to enable us to know when all 2"
solutions have been accounted for, we store S*'; and to be sure of having a non-

4+ To cover the case where there are no free variables, we shall agree that such an S is
fathomed.

INTEGER PROGRAMMING 181

redundant sequence (S”) from » = k; + 1 on, it is obviously necessary and suffi-
cient to have in all future S” at least one element complementary to one in S*.
We may simultaneously accomplish the storage of S** and heed the condition for
the nonredundancy of S*'*', at least, by taking S***' to be exactly S** with its last
element multiplied by —1 and wunderlined. The underline commemorates the
fathoming of S*' (an example is presented below to make these ideas more
concrete).

If $**! can be fathomed, then it is easy to see that all completions of S with-
out its last element have been enumerated, and thus we can ‘“forget” the fathom-
ing of §*' and of 8" and “remember” only the fact that S without its last
element has been fathomed. For example, if k; = 3 and 8° = {3, 5, —2} was
fathomed and then S* = {3, 5, 2} was fathomed, then all completions of {3, 5} have
been accounted for, since the completions of {3, 5, —2} and {3, 5, 2} dichotomize
those of {3, 5}. Thus, fathoming S° and S* is equivalent to fathoming {3, 5}.
Opportunities such as this to “telescope’” some history lead to the economical
storage requirements of the procedure we are now motivating. The same motive
that directed our choice of S**** directs us, in this case, to choose S %2 as S* less
its last element with its next to last element multiplied by —1 and underlined.
In our hypothetical example, S° would be taken to be {3, —5}. Note that S° con-
tains an element (—5) complementary to one that appears in both previously
fathomed partial solutions.

If, on the other hand, $***' cannot be fathomed, then one would augment it
by specifying a binary value for one additional free variable at a time, each time
trying to fathom the resulting partial solution, until at some later trial &, , S** is
fathomed. Note that the sequence S*'™, - .- | 8% is nonredundant because each
contains the complement of an element of S*'. When S*? is fathomed, it, in ad-
dition to 8", must be stored; and every succeeding S” must contain not only an
element that is the complement of one in S*', but also one that is the complement
of an element of S*2. Both ends may be accomplished economically by taking
S*2™ as 8% with its last element complemented and underlined. In our example,
if §* could not be fathomed and S° were {3, 5, 2, 1}, say, that could be fathomed
(k2 = 5), then 8° would be taken to be {3, 5,2, —1}.

Continuing along these lines, one is led to the procedure of Fig. 1. In this figure,
the contents of Steps 1 and 2 are deliberately unspecified in order to leave maxi-
mum flexibility in the design of an algorithm by having a general convergence
proof. It is important to note that the mechanism by which Step 1 attempts to
fathom a partial solution can be as weak or as powerful as desired—so long as S
is truly fathomed when it purports to be. However,since the most powerful fathom-
ing mechanism amounts to solving an integer program of the same form (albeit
with fewer variables) as (P) itself, one typically uses simpler mechanisms that
are considerably weaker.

TurorEM. The procedure of Fig. 1 leads to a nonredundant sequence of partial
trial solutions which terminates only when all 2" solutions have been (tmplicitly)
enumerated.

A proof of an essentially equivalent theorem has been given by Glover [5].

182 ARTHUR M. GEOFFRION

His proof proceeds by induction on the number of variables. In the Appendix
we give an independent proof that is illuminating from a different point of view.

If the mechanisms of Steps 1 and 2 are computationally finite (as they are in
Balas’ algorithm and certainly would be in any reasonable algorithm that uses
the procedure of Fig. 1), then the theorem implies that Fig. 1 is computationally
finite and that an optimal feasible solution of (P) is in store at termination if the
collection of feasible solutions is not empty.

Remark. It is not difficult to see from the discussion of this section and the

proof given in the Appendix that:

(a) 8° can be any partial solution without underlines, rather than the empty
one;

(b) S can be augmented at Step 2 by a collection of elements, rather than by a
single element;

(¢) the elements in any consecutive sequence of nonunderlined elements in S
can be permuted arbitrarily at any time;

(d) S can be augmented at Step 2 by a collection of underlined elements
(rather than by a nonunderlined element) when this does not exclude
any feasible completions of S that are better than the incumbent.

Observation (d) can be viewed as the result of anticipating the outcome of the
procedure of Fig. 1 when S is augmented by the complement of each element of such
a collection in turn. Put another way, it amounts to deliberately augmenting S
during one or more consecutive passes through Step 2 in such a way that the
resulting partial solution can be fathomed because it is obvious that no feasible
completion better than the incumbent exists. The explicit incorporation of ob-

No Attempt to fathom S. Yes
| Is the attempt successful ? |

2 Y I

Augment S on the If the best feasible completion of
right by j or -j, S has been found and it is better
where Xj is any free than the incumbent solution, store
variable. it as the new incumbent.

3 \

Locate the rightmost element of S

which is not underlined. If none

exists, terminate; otherwise, replace

the element by its underlined complement
and delete all elements to the right.

Fia. 1. A back-tracking procedure for implicit enumeration

INTEGER PROGRAMMING 183

servation (d) is the only substantive difference between Diagram 1 in [5, p. 884]
and Fig. 1.

3. A particularization of the procedure based on Balas’ algorithm. In §2 we
presented and justified a flexible and economical back-tracking procedure for
finding an optimal feasible solution of (P) by implicit enumeration. Details for
the mechanisms of Steps 1 and 2 based on Balas’ algorithm will now be derived
to illustrate the implementation of the procedure.

At Step 1, the problem is to ‘“fathom” the current partial solution S. Recall
that S may be fathomed by doing either of the following:

(i) finding the best feasible completion of S,
(ii) determining that no feasible completion of S has a lower value of the
objective function than the incumbent.
The general strategy will be to attempt to fathom S by taking each tack in turn
by means of very simple computations.

Associated with S is a best (not necessarily unique or feasible) completion ° of
S. Constructing such a best completion is trivial—just take z; = 0 or 1 for each
free variable according as ¢; = 0 or <0. With the help of a simple change of
variables we may assume without loss of generality that ¢ = 0, so that each free
variable z;° may be taken to be 0. Observe that if z° is feasible, then 2’ is a best
feasible completion of S and S is thereby fathomed. Since the computation of z° is
so easy, we shall test its feasibility as the first substep of Step 1 of Fig. 1. As the
computations proceed, the value of the incumbent feasible solution gives a (hope-
fully good) upper bound z on the optimal value z* of (P) that can be used to good
advantage as indicated below. Until the first feasible solution has been found, we
take Z = o, unless some better upper bound is known.

If the best completion 2 is not feasible, we do nothing further to find the best
feasible completion. Instead, we attempt to determine that no feasible completion
of S is better than the incumbent. If this is actually the case, then it must be im-
possible to complete S so as to eliminate all of the infeasibilities of z° and yet
improve upon Z. To demonstrate this impossibility, it is clearly sufficient to
contemplate nonzero binary values only for the variables in

T°={j free: ¢+ c¢;<Z and a; >0 forsome ¢ suchthat y’ <O},

where y° = A2’ + b; for to give a value of 1 to some free variable not in 7° would
either lead to a higher value than z or would not contribute to diminishing an in-
feasibility of z° (we have made use of our assumption that ¢ = 0). Hence, if T°
is empty, then there could be no feasible completion of S that is better than the
incumbent, and S is fathomed. It is also easy to see that the same conclusion
holds if
yi + ; max {0, a;;} <0
&

for some 7 such that y;° < 0; for then there could be no way to select free variables
0 as to eliminate infeasibility. So much for Step 1.

For the augmentation mechanism of Step 2, one choice is to augment S by jo
from T*—where j, leaves the least amount of total infeasibility in the next 2° in the

184 ARTHUR M. GEOFFRION

sense of making

m

; min {y.” + ai, 0}

an algebraic maximum.
The above details for Steps 1 and 2 are summarized in Fig. 2.

3.1. An example. We have chosen to base our example on a problem taken from
Balas [1] so that the interested reader may compare the present algorithm with
the original one.

Let it be desired to minimize 52; + 7z, + 10x; + 3x4 + 25 over all binary
2y, -+, x5 that satisfy:

— 2+ 2 — 3+ bxs + @y —4as =0,
— 2901 + 6562 - 3.’1!3 — 2x4 + 2%5 g 0,
—"1 —x2+2x3—x4——x520.
7 ¢ best known upper bound
for
s € ¢
Ta ‘ 1d
y* > 0? es If x5 <7z, then
no Z & cx® and ;((_ xS
w Y

Put T = {j free: ox®+¢; <7T
and aj; >0 for some i such

that y§ <o

1c

v + 3 _ Max{0,a;}<o,
i N s)
JeT yes

some i such that y? <0?

2 \ 3 \

Augment S by joeT® which maximizes Locate the rightmost element
of § which is not underlined.

El Mi { $ + a:: } I ieTS If none exists, terminate.
i=1 n 1Yj d.,,o over all je Otherwise, replace the element
by its underlined complement
and drop all elements to the
right.

Fic. 2. A simplified version of Balas’ additive algorithm

INTEGER PROGRAMMING 185

Summarized below are the calculations that arise from applying the procedure
of Fig. 2 to this problem. The subseripts on y and T are suppressed.

Step

la
1b
lc

2

la
1b
lc

la
1b
lc

1a
1b
lc

zZ = o

§ =g

y =(-20,—1)z20

T = 11,34}

1 =1:—-2472=20

i =8 —-14220

j =1l:—-1—-2—-1= —4

i =3:-3=|-3

j =4:-1-2-2= -5
Hence,

S = {3}

T = {25}

1 =2:520

J 2:10

J =5-—-1—-1= -2

Hence,

St = (3,2}

y = (0,3,0) = 0 (S fathomed)
Cxﬂ=l7<w;2<—17;1‘;<—(0’1’1’0’0)
S = {3, -2}

Yy =(3’ _3:1);0

T = {5}

i = 2:—34 2 < 0 (S fathomed)
8 ={-3

Y =(_270)_1)i0

T ={1,4

1 1:—=2414+1=0

i = 3:—1 < 0 (S* fathomed)

Terminate. An optimum solution is (0, 1, 1,0, 0), and the optimal value
of the objective function is 17.

3.2. Other possible particularizations. Minor variants of the above particulari-
zation of the procedure of Fig. 1 are obtained by changing the infeasibility measure
used in Step 2 (e.g., one could measure infeasibility by the most infeasible con-
straint or by the number of infeasible constraints); or by modifying Step 2 to
give some attention to choosing an augmentation element that has a relatively
small ¢; as well as relatively great ability to reduce infeasibility, in an attempt to
find good feasible solutions.

Other variants of Step 2 are obtained by appealing to Remark (d) of §2—by
looking first for augmentations of S that lead to easily fathomed partial solutions,
and only failing that for augmentations that reduce infeasibility. For example,
atthe Step 2 following the creation of §' = {3} in the numericalillustrationabove,

186 ARTHUR M. GEOFFRION

it is clear by inspection of the second constraint that when z; = 1 one must also
have z, = 1 if that constraint is to be satisfied. Thus if S' were augmented to
{3, —2}, the resulting manifest infeasibility would be discovered at the ensuing
Step lc and the next partial solution would be {3, 2}. This outcome could easily
have been anticipated, once it was discovered that x; = 1 implies z» = 1 for
feasibility, by augmenting S” by 2 instead of by —2. It is not difficult to formalize
tests for discovering such implications. One such test involves the computation of
[y + 2 jcrs max {0, a;;} — | ay;|] for each j € T° and 4 such that yi < 0;if a
bracketed expression is found negative, then z; must be 1 or 0 according as a;; is
positive or negative, and S can be augmented accordingly. Balas used a slightly
weaker version of this test in his additive algorithm; when it is incorporated in
Fig. 2, the resulting algorithm will in general lead to virtually the same sequence of
partial trial solutions as the additive algorithm itself.

See Glover [5] for extensive discussion of various ideas useful in particularizing
Steps 1 and 2, including the deliberate introduction of redundant “surrogate”
constraints.

4. Further remarks. Several further remarks that enhance the usefulness and
efficiency of the present approach are now presented. The content of §§4.2—4.4
appears to be new.

4.1. Finding alternative optimal solutions. The procedure of Fig. 1 finds exactly
one optimal solution of (P) when the constraints are consistent. To find alterna-
tive optimal solutions, the procedure can be restarted (see below)with the follow-
ing changes:

(a) put S° equal to a permutation of the known optimal solution;

(b) in part (ii) of the definition of fathoming (see §3), replace “a lower” by

“at least as low a”’;
(c) in the step immediately after the positive branch of Step 1, replace
“better” by ‘“‘as good as’” and print out each new incumbent.
In terms of Fig. 2, the initial Z should be taken as z*, and (b) is effectively accom-
plished by slightly modifying the definition of 77 as follows:

T° ={j free: ¢+ ¢; <% and a;; >0 forsome ¢ suchthat y.' < 0}.

It'should be noted, however, that not all alternative optima are necessarily found
when some ¢; = 0, for then any corresponding variable that appears with the value
0 in an optimal feasible solution can also be assigned the value 1 without destroy-
ing optimality if the resulting solution is still feasible.

4.2, Using prior information to make a better start. When a feasible solution
is known a priori, 2 can be put equal to its value, and by Remark (a) of §2, S°
c¢ati be initially taken as a permutation of this solution rather than as the empty
set. If the feasible solution is a good one, as it is likely to be if it is produced by
insight into the problem or by the solution to a very similar problem or by a
heuristic method, then convergence should be improved.

Other times, it may seem likely a priori that certain variables take on certain
values at an optimum solution. S° can be taken as a permutation of these values.

INTEGER PROGRAMMING 187

Since the earlier elements of S° will be complemented during the course of the
calculations after the later elements are complemented, by the nature of the basic
enumerative scheme it seems reasonable to choose the permutation that ranks the
vaaribles in decreasing order of certainty as to their values. For example, it may
be deemed “very likely” a priori that z; = 1 at an optimum, and “fairly likely”
that 2, = 0. Then S° should be taken as {7, —2} rather than as { —2, 7}. The same
strategy for choosing a permutation can be applied when S° is a known feasible
solution.

4.3. Measuring the rate of implicit enumeration. The present procedure,
thanks to its essentially enumerative nature and the scorekeeping method used,
has the following useful property: at any iteration it is obvious by inspection of
the current partial solution (including the underlines) exactly how many and
which solutions have been implicitly enumerated so far (see the italicized asser-
tion in the proof in the Appendix). For example, if n = 24 and the calculations are
stopped when 8 = {5, 4, —2, 3, 9}, then all 2*™ completions of {5, 4, 2} have
been accounted for, as have all 2% completions of {5, 4, —2, —3}. Thus, it is
known precisely which 2% + 2% of the 2* solutions have been enumerated, and
the current incumbent is an optimal feasible solution of (P) with the additional
restrictions: [z5 = 1, 4 = 1] and either [z, = 1] or [22 = 0, z; = 0].

The main usefulness of the ability to calculate easily the number of implicitly
enumerated solutions is in determining when to terminate the calculations if an
optimal feasible solution has not been found in a reasonable length of computing
time. It is easy to show that the fraction of all 2" solutions implicitly enumerated
up to the current iteration is Y, (1)”%, where the sum is taken over all underlined
elements of the current partial solution and p;is the position of the 7th underlined
element counting from the left. In the above example, (1)° + (%)* = & of the
2" solutions have been implicitly enumerated. Thus one can keep a running tally
of the progress of the calculations, and by extrapolation obtain an estimate of the
additional time required for termination. Fig. 3 illustrates typical behavior ob-
served in many of the problems run by Freeman [4]. This device also provides a
potent tool for adaptive implementation of the procedure with a repertoire of
possible methods for attempting to fathom or augment partial solutions. By
sampling the rate of implicit enumeration over time intervals with the different
methods, estimates of their current relative efficiencies can be obtained and used
to establish (perhaps time-varying) priorities for their use.

4.4 Nonlinear objective functions. The underlying enumerative scheme of Fig.
1 is not in any way dependent on the linear nature of (P). In the linear case, how-
ever, reasonably efficient details for Steps 1 and 2 appear to be available. It is
natural to seek extensions to integer nonlinear problems. To illustrate how this can
be done we shall indicate how Fig. 2 can be modified to handle a wide class of non-
linear objective functions.

Let it be desired to minimize a nonlinear function f(x) subject to b + Az = 0
and z binary. Assume that for any given partial solution S it is possible to find
easily a best completion 2° of S. That is, we must be able to minimize f(x) over

188 ARTHUR M. GEOFFRION

Cumulative Proportion of all Solutions
Implicitly Enumerated

Number of Iterations (in 100's)

Fic. 3

the free binary variables while the variables in S are held at their assigned values.
It can be shown that the procedure of Fig. 2 remains valid if we make the follow-
ing modifications: (a) 2° defined as above; (b) 7° defined as {j free: f(z*?) < z
and @; > 0 for some ¢ such that y° < 0}, where z*7 is just 2° with the jth free
variable complemented, and d,; is defined to be a;; if ;° = 0 and —a; if ;" = 1;
(¢) di; replaces a;; in Steps lc and 2; and (d) f(2°) replaces ¢z’ in Step 1d.
Similar modifications permit the ideas in §3.2 to be used.

Typical examples of nonlinear objective functions to which this extension
applies are: (a) D i 1L (pix)*, where v, = 0 and 0 < p; =< 1, and
(b) —II; (1 — p,%), where 0 < p, < 1. Binary representation of bounded
integers causes no difficulty. Objective functions of variety (a) arise in target-
assignment problems (see, e.g., [3]), while those of variety (b) occur in optimal
redundancy allocation problems (see, e.g., [6]). Optimum spare parts kit prob-
lems and others also fall within the domain of applicability. The present nonlinear
extension may be a useful alternative for moderate-sized problems to the approxi-
mate methods developed in [3] and [6], and to methods of dynamic programming
or “marginal analysis” genre often proposed for solving nonlinear integer pro-
grams, especially when there are more than a few constraints.

Appendix. The proof below involves induction on the sequence (S”) of partial
solutions. To clarify the consideration of various cases in the proof, we refer to
Trig. 1A, an expanded but equivalent version of Fig. 1.

Proof. If 8° = & can be fathomed, the theorem is obviously true. Hence, we may
assume that & cannot be fathomed.

To show that (S”) is nonredundant, we shall show that, if ', - -- | S” are non-

INTEGER PROGRAMMING 189

- Put S =¢.

Put S equal to Attempt to fathom S.
jor-j, for any j Nof |5 the attempt successful? JYes

Attempt to fathom S. Yes 1f the best feasible

Is the attempt completion of S has been

successful ? found and it is better than
the incumbent solution,

LLLHIRN Ne store it as the new

2 \ incumbent.

117

| | Augment S on the right by j or
-j, where xj is any free variable.

3 3. |

Replace the rightmost No Rightmost element
' element of S by its of S underlined?

underlined complement.

Yes
34 3c Y
Replace the rightmost non- No All elements of S
underlined element of underlined?
S by its underlined
complement and drop all Yes
elements to its right. V

< Terminate >

redundant, then S’ cannot be redundant; i.e., that S must include the comple-
ment of at least one element from each of the partial solutions fathomed prior to
S"*!. There are three pathways by which S"** can be determined from S”; they
are labeled I, IT, and III in Fig. 1A. If pathway I is taken, the desired conclusion
follows from S" < S"*'. If pathway II is taken, the desired conclusion follows
from the evident fact that S” must have been determined from S* by pathway I
and hence §"' < 8"*'. To establish the desired conclusion for pathway III, we
observe from Fig. 1A that (i) the element complemented in Step 3d was contained
in every partial solution since it was originally introduced (and hence in every
fathomed partial solution since that time), and that (ii) S”*" less its last element is
not redundant with respect to the partial solutions (if any) fathomed up to the
time that the deleted element was introduced simply because S’ less its last
element coincides with the actual partial solution at that time.

It remains to show that (S”) terminates only when all 2" solutions have been

Fie. 1A. An expanded version of Fig. 1

190 ARTHUR M. GEOFFRION

(implicitly) enumerated. Clearly (S”) terminates only if a partial solution con-
sisting of all underlined elements is fathomed. From our earlier remarks concern-
ing the “telescoping of history,” we see that the proof would be at hand if we
could show that every partial solution has the following property: each underlined
element implies that all completions of that portion up to and ncluding the comple-
ment of the underlined element have been enumerated. Now underlined elements
have two possible origins: Steps 3b and 3d. Any underlined element created at
Step 3b obviously has the asserted property. To see that the same is true of under-
lined elements created at Step 3d, consider the first time Step 3d is encountered.
Then all underlined elements of the corresponding partial solution S must have
been created at Step 3b; since S was just fathomed, therefore, by “telescoping”
it follows that all completions of S less its right-most consecutive underlined
elements have been enumerated, i.e., this deleted partial solution has been
fathomed. Thus, the new partial solution generated at the first execution of Step
3d has the desired property. A similar argument holds for each subsequent execu-
tion of 3d. The proof is now complete.

REFERENCES

(1] E. Bavas, An addilive algorithm for solving linear programs with zero-one variables, Opera~
tions Res., 13 (1965), pp. 517-546.

[2] M. L. Bavrinski, Integer programming: methods, uses, computation, Management Sei.,
12 (1965), pp. 253-313.

[3] 8. I. FIRSTMAN, An approximating algorithm for an optimum aim-points problem, Naval
Res. Logist. Quart., 7 (1960), pp. 151-167.

[4] R. J. FREEMAN, Computational experience with the Balas integer programming algorithm,
P-3241, The RAND Corporation, Santa Monica, California, 1965.

[5] F. GLoveR, A mulliphase-dual algorithm for the zero-one inleger programming problem,
Operations Res., 13 (1965), pp. 879-919.

[6] F. ProsuaN anp T. A. Bray, Optimal redundancy under multiple constraints, Ibid., 13
(1965), pp. 800-814.

[7] R. J. WALKER, An enumerative technique for a class of combinatorial problems, Combina-
torial Analysis, Proceedings of Symposia in Applied Mathematics, vol. 10, R.
Bellman and M. Hall, Jr., eds., American Mathematical Society, Providence,
Rhode Island, 1960, pp. 91-94.

