AN OBJECT-ORIENTED APPROACH TO STRUCTUED MODELING

Jian Ma & Qijia Tian & Duanning Zhou

Information Systems Department, City University of Hong Kong, Kowloon, Hong Kong

Tel: (852)27888514, (852)27889720, (852)27889599 Fax: (852)27888694

Email: {isjian, isjia, iszdn}@is.cityu.edu.hk
Abstract: Structured modeling is one of the most important modeling paradigms in the field of decision support systems. It has high generality and shares features to some extent with object-oriented modeling in software engineering. On the other hand, compared with object-oriented modeling paradigms, structured modeling also has some shortcomings. In this paper, we first examine structured modeling from the point view of object-oriented modeling, and show that structured modeling lacks the expressive power to capture the dynamic aspect of systems. Then we propose a framework for structured modeling which aims to model the dynamic aspect of systems. Among others, one of the advantages of this framework is that the resultant dynamic models have some kind of normal form. And the normal form of models will provide a solid foundation for model integration. Example is given to illustrate our framework, and the potential application of this framework is also discussed.

 Keywords: Decision Support Systems, Model Management, Structured Modeling, Object-Oriented Modeling, Action Theory, Model Integration.

1. INTRODUCTION

 Structured modeling is one of the most important modeling paradigms in the field of decision support systems [11,12,15]. It originated from the practices in areas related to models such decision support systems, management science and operation research, but it provided a far more systematic and comprehensive concept of model than the traditional ones. In structured modeling, not only the mathematical aspect, which is traditionally the major topic of management science and operation research, but also the aspect of model implementation strategy in computers are considered. Structured modeling has received much attention in the areas related to models [2,5,15,18,25].

 Although structured modeling is primarily abstracted from problems encountered in areas related to models, it has high generality and shares many features with other areas. Particularly, to some extent, the essential idea of structured modeling parallels that of recent object-oriented modeling in software engineering. The similarity between structured modeling and object-oriented programming has been noticed and discussed [18,25]. Their findings revealed that “Structured modeling formalizes the notion of a definitional system as a way of describing models. This is precisely what the object-oriented concept of a class and the calss-composition graphs formalize.”[25].

 The existing researches of contrasting structured modeling with its counterpart in object orientation limited at the level of programming. Their approaches focused on to show how structured modeling shares the basic features of object-oriented programming, how to map the concepts of structured modeling into object-oriented programming, and how to represent these concepts in object-oriented programming. For a modeling paradigm, programming is only one of the stages in the modeling process, and other stages include analysis, design, construction and so on [9,11,17,29,30]. From the point view of structured modeling, what it originally aimed to provide is far more than only a tool for programming. Using the terminology from object orientation, it aimed to provide a modeling paradigm for areas related to models from analysis through to implementation, i.e. covering the whole life-cycle associated with the model-based work [11,15]. This idea is also shared and addressed by recent objected-oriented modeling researches [9,29,30].

 This paper will contrast structured modeling with object-oriented modeling from a wider perspective. Our findings indicate there are more similarities than those at the programming level between structured modeling and objected-oriented modeling. On the other hand, our findings also show some shortcomings of structured modeling. For example, structured modeling lacks the capability to capture the dynamic aspect of system which is recognized as one of the three essential aspects of systems in object-oriented modeling.

 Specifying dynamic aspect of systems is crucial when modeling systems. For a system, a static model only reflects a scenario in a given moment, and captures those properties of the system which is independent of time. And a functional model (mathematical model), on the other hand, only reflects the numeric relationships between chosen variables. What a dynamic model describes is how the scenarios changing from one to another with time, and it can capture properties depending on time. Among the three aspects of systems, the dynamic aspect is harder to capture than the other two, and is a common research topic of several fields such as software engineering, artificial intelligence, and control theory [16,24,1].

 One of the major goals of this paper is to extend structured modeling with the capability of capturing the dynamic aspect of systems. To this end, we propose a component for structured modeling which is specifically designed for modeling the dynamic aspect of systems. The basic idea and theory are borrowed from action theory in artificial intelligence [22,23]. Among others, one of the advantages this framework is that the resultant models have some kind of normal form. And the normal form of models, which have been sought in the research of model management, will provide solid foundation for model integration.

 The rest of this paper is organized as follows. Section 2 reviews literature, especially those of structured modeling and object-oriented modeling, and examines structured modeling by object-oriented modeling technique. In section 3 we propose a framework which strengths structured modeling to describe dynamic concepts. An example is given to illustrate our framework in section 4, and in section 5, we discuss the model integration issues based structured modeling. The last section is summary and conclusion.

2. LITERATURE REVIEW

 The literature review begins with an introduction firstly to the basic idea about structured modeling and object-oriented modeling, and then an analysis to structured modeling and the existing researches of contrasting structured modeling with object orientation paradigm.

2.1 Structured Modeling

 Structured modeling is a kind of conceptual modeling paradigm in areas related to models. It aims to provide a modeling framework covering the whole process of mode-based work. The outcomes of structured modeling are so-called structured models. In a structured model, there are three kinds of concepts of different abstract degrees: elemental structure, generic structure, and modular structure.

 Elements are the basic units of the models and classified into five types: primitive entity, compound entity, attribute, function, and test. The key relation among elements is the "calls" which is a binary one. Every element except the primitive elements associates a calling sequence which consists of all other elements referenced directly in the definition of this element. A set of elements is closed, if, for every element in the set, all elements in the calling sequence of that element are also in the set. A closed set of elements is acyclic if there is no sequence e1 , ...,en such that e1 calls e2,... ,en-1 calls en and en = e1. An elemental structure is a set of elements which is nonempty, finite, closed and acyclic. It is natural to understand elemental structure as a finite, acyclic and direct graph with "calls'' as the binary relation. From the point view of data model theory, elemental structure is one of the classical hierarchic data models.

 To increase the capability of the data model and provide richer and more expressive concepts, it is a common way in modeling to organize the classical data models into so called semantic data models by classification, aggregation, generalization, association, and more recent, object-oriented technology. Generic structure is in fact a kind of semantic data models provided in structured modeling. To get the generic structure, elements in the elemental structure are grouped into genera by generic similarity. A generic structure is defined on an elemental structure as a partition and every part is called a genus. General speaking, all elements of a given genus are supposed to be of the same type and similar to each other in some aspects by some kind of criteria. By definition, then, every genus has a name as the common properties shared by all its elements.

 Modular structure is a tree defined on the generic structure with all of its leaves being genera, and all of its non-terminal nodes being called modules. Modules are higher level conceptual units than genera and must be conceptually meaningful to users. The modular structure of a structured model therefore organizes all considered concepts about the elements into a unified tree-like structure. In modular structure, a strict partial order called monotone-order was also introduced. A structured model is defined as an elemental structure together with a generic structure satisfying similarity and a monotone-ordered modular structure.

 For details of structured modeling, see [11,12,15].

2.2 Object-Oriented Modeling: Three Views of Systems

 Object orientation is the most commonly employed principle in software research and development at present. It covers various stages of the software life cycle, from implementation, through design to system analysis. In object orientation, object-oriented programming, which emphasizes implementation issues rather than the underlying designs and requirements of the system, is well known and well established. However, having recognized that object orientation is more than just a programming paradigm, the emphasis in object-oriented technology has shifted to the earlier stages of the software development process. These stages include system analysis, system design and specification. The goal of these stages is to establish the conceptual models of systems by object-oriented technology, and this kind of modeling paradigm is called object-oriented modeling. Among others, Object Modeling Technique (OMT) [29] and Object-Oriented Analysis (OOA) [30] are well known such examples of object-oriented modeling.

 Besides having object as the essential unit, in object-oriented modeling, another two things are also emphasized particularly, i.e., three complementary views of a system (three kinds of conceptual models) and using each model at every life cycle stage. As traditional modeling paradigms, in object-oriented modeling, establishing models of different abstract degrees is the central topic. And here, three kinds of models are usually supported: static data model (object model in OMT, and information model in OOA), dynamic model (state model in OOA) and functional model (in OMT) / process model (in OOA) [17,29,30].

 Static data models aim at identifying the conceptual entities (objects) and static relationships among them. In these models, the focus is on abstracting the entities conceptually into objects and their attributes. The associations that pertain between the entities are formalized in relationships that are based on policies, rules, and physical laws that prevail in the real world. The dynamic model describes the behavior of every object in the system over time. For this reason, concepts describing the dynamic aspect of systems, such as states, events, activities, and actions, are introduced. Dynamic models also describe the changing mechanism of states, when events occurred or actions performed, of those objects which have properties affected by events or actions. Functional/process model gives the details of how actions change the numerical attributes or drive output values from imported values.

 In object-oriented modeling, the basic concepts include not only the static ones such as attributes, objects and the relationships among them, but also the dynamic ones such as states, events and actions. Meanwhile, not only the static relationships among objects (the typical one, inheritance relations, for example) are stressed, the interactions among objects (how an action performing by one object effect the states of other objects) are also completely described.

2.3 Comparison of Structured Modeling with Objected-Oriented Modeling

 Structure modeling, as noticed by several researchers [18,25], has close relations with object-oriented modeling. In these previous researches, comparisons were carried out at the programming level and focused mainly on the later stage of modeling, i.e. how to represent structured models in object-oriented programming languages and how to manage models based on the concept of object. Their findings showed structured models can be cast in terms of object-oriented concepts and models can be managed by way of managing objects. For example, what they were mostly concerned are concepts such as Objects, Classes, Inheritance and Classes Hierarchy, Composite Classes and Class-Composition Hierarchy. These concepts are clearly in the scope of static data models if we examine them by the object-oriented modeling.

 In fact, what these researches have shown is that the structured models play a similar role as the static models do in the object-oriented modeling. As traditional mathematical models in management science and operation research are focus on the numerical relations of chosen variables, as a matter of fact, they play a similar role as the functional models do in the object-oriented modeling. So, if we contrast structured modeling with object-oriented modeling, it is clear, it lacks models corresponding to the dynamic models in the object-oriented modeling. In other words, structured modeling lacks the capability to capture the dynamic aspect of systems. As object-oriented modeling paradigms have been proven to have several advantages and gotten widely acceptances, in order to keep its original generality, structured modeling, which was strongly affected by structured modeling and programming paradigm, has the necessity to be extended with object-oriented features. To extend structured modeling with the capability to capture the dynamic aspect of systems, in the next section, we propose a framework for it which is intended to guide the building of its “dynamic models”.

3. A FRAMEWORK FOR MODELING DYNAMIC ASPECT OF SYSTEMS

 We propose a framework in this section to extend structured modeling with function to model the dynamic aspect of systems. This framework is a kind of action logic originating from artificial intelligence. Normally, as we are extending structured modeling, this framework should be similar in form to the existing style of structured modeling. The reason we keep this extension to be logic in form is as follows. Firstly, a logic, in fact, is a general-purpose language with clear syntax and semantics, and it itself could even be used directly as a language for modeling. But using logic directly as a modeling language will be too general, and usually, a modeling language is often a subset of logic. However, as logic have clear syntax and semantics, languages are usually embedded into logic when approaching their semantics. Then, at this early stage of research, we will have more choices if keeping framework as a kind of logic, and we can tailor our logic into a required modeling language at any time we hope. Secondly, formal methods have been accepting more and more attention in software engineering, and logics are the main form of formal methods. Researches in model management also showed a strong demand for developing formal techniques to manage models [6,15,19,20,21]. As the formal method in model management is still in its preliminary stage, keeping our framework in form of logic and understanding formal method first on the logic level is a rational choice, and the development of formal method in software engineering is also along this way.

3.1 Syntax and semantics

 The logic we adopted here is from artificial intelligence[22,23]. This logic originated from characterizing state change and constraint which appears when considering dynamic concepts. It has been applied in several fields such as artificial intelligence, database management and software engineering. If we trace back to its earlier motivation, it was intended to approach the conceptual modeling of database by logical way [28].

 This logic is a many-sorted first-order one, and it provide us a kind of mechanism to describe the general way of actions effecting the states of objects. We denote by L both for the logic itself and its signature. There are finite number of sorts in L-- sort s for states, sort a for actions and all other sorts for objects (here we assume the only sort for objects is o). L generally consists of a constant S0 of sort s, a binary relation symbol < of type <s, s>, a binary relation symbol Poss of type <a, s>, a binary function symbol Do of type <a, s; s>, and a finite set of other symbols which are classified into: constants, state independent relation symbols, state independent function symbols and fluents. A relation symbol is called to be state independent if all its parameters are of sort o. A function symbol is called to be state independent if all its parameters and its function value are of sort o. A relation symbol is called to be a fluent if there is only one of its parameters is of sort s and all others are of sort o, i.e., it may change when some actions have been performed and reflects how the relationships among objects will change by performing actions. There are only a finite number of state independent relations, state independent functions and fluents in L.

 Terms, atomic formulas and formulas could be defined in the usual way [8]. For a given term st of sort s, we use Lst to denote all first-order formulas in which the only individual of sort s is st. Formally, Lst is the minimal set of first-order formulas satisfied the following conditions: (1) ((Lst if there is not any individual of sort s appearing in (; (2) For every fluent R(x1,…xn,s) (L, R(x1,…xn,st) (Lst ; (3) If (, ((Lst , then do ((((((((((((((((((((x(((x(, where x is of sort o.

 The semantic concepts such as model and the satisfaction relation between a model and a sentence could be defined in the usual way [8].

3.2 Basic Action Theory

 Basic action theory is a set of sentences of our logic which describes how every object of the system would change under every kind of actions. Formally, a basic action theory D is defined as follows

D = ((Dss(Dap(Duna(Ds0
 Where

(1) (is a set of logic formulas saying the domain of sort s is a branching temporal structure, with S0 the root and Do the successive function. Specifically, it contains:

S0 (Do(a,s);
Do(a1,s1)= Do(a2,s2) ((s1=s2 (a1 = a2);

((s<S0);

s < Do (a,s() ((Poss(a,s) (s (s(), where s (s(is defined as (s <s((s =s();

(P[(P(S0) ((a,s((Poss(a,s) (P(s)) (P(Do(a,s)))) ((sP(s)]

(2) Dss is a set of logic sentences expressing the effect after an action is performed. Generally, every element in it has the following form

Poss(a,s) ((F(x(,Do(a,s)) ((F(x(,a,s)), where F is a fluent and (F(x(,a,s) (Ls.

(3) Dap is a set of logic sentences expressing the precondition under which an action could be performed. Every member in it has the following general form:

Poss(A(x(,s)) ((F(x(,s), where A is an action and (A(x(,s) (Ls.

(4) Duna is a set of logic formulas expressing that two actions do not have the same effect on two groups of objects unless the two action symbols and the two groups of objects are same, respectively. Formally, they have form:

A(x(,s) = A((x(,s), or A(x1,…,xn,s1) = A(y1,…,yn,s2) ((x1=y1 (… (xn = yn (s1=s2).

(5) Ds0 is a finite set of logic sentences in Ls0, which describes the initial state of the system.

 By basic action theory, the dynamic of a system is modeled by objects, states, actions and their interactions. States are characterized by the objects and the relationships among them. Performing actions lead one state transferring to another. The first group of axioms (describes that the evolution of a system could be represented as a tree under binary relation < in which each node is labeled by a state and the root node by S0. The binary relation < is on the states, and s<s(means that there is a finite sequence of actions and the result of performing this sequence at state s will lead to the occurring of state s(. The last axiom of (is a kind of tree-like inductive method which is useful when we want to prove a statement to be valid in any state. The second group of axioms Dss describes how actions changing the relationships among objects, i.e. the fluents. These axioms are the core determining how the system would be after performing actions. The third group of axioms Dap characterizes under which condition an action could be performed. As an action is not always executed in any state, (the manipulation delete could be performed only there is at least one record in the database, for example), these axioms play an important role in automatic planning. The fourth group of axioms Duna is usually used in reasoning and could be created automatically. The last groups of axioms Ds0 describes the initial state of the system, and are chosen by user.

 One of the most important advantages of our logic is that the basic action theory, which are used to characterize the dynamic aspect of systems, has a kind of "Normal Formal''. Specifically, to characterize the dynamic aspect of a system, five groups of axioms should be established, and each group has its own standard in form; and further, the number of axioms of each group is also determined, by the number of constants, actions, fluents, state independent relations and functions. Among these axiomatic groups, the most important are Dss, Dap, Ds0 and (, Duna could be established by software automatically. So, in the rest of this paper, we only present Dss, Dap, Ds0 when giving a basic action theory.

4. AN EXAMPLE OF THE DYNAMIC MODEL

 In this section, we show by examples how the extended structured modeling describe the dynamic aspect of systems.

 By basic action theory, the key of describing the dynamic aspect of a system is how to decompose the considered real world under the concept of action, and the first step is to identify the actions. Meanwhile, we should also choose some constants of some types, predicates (relations) and functions as we do in any other frameworks. As actions are dynamic concepts which will change the states of the system after they have been performed, we should classify predicates into two categories: state independent relations and fluents. As the term suggests, state independent predicates are those which will never change by executing actions, and fluents, to the contrast, are those which may change by performing some actions. Actually, in reality, state independent predicates are those properties of systems which are independent with time, i.e. will not change with time, while fluents are those properties which have something to do with time and may change with time. The core to characterize the dynamic aspect of the systems is to determine how the fluents will change under performing actions. Clearly, if we can capture this kind of mechanism of changing, we then can certainly grasp the dynamic aspect of the system. For example, if we can describe the resultant of every primitive operation of database, it is certain we can predict and then hold the behavior of the whole database. In the well-known transportation model, the most important action is transport. Performing it will affect the number of goods and money owned by plants and customers. As soon as we capture how the action transport changes the goods and money, we characterize the dynamic aspect of the transportation model.

 Next, we present an example to illustrate how to choose actions, constants, state independent predicates, fluents and functions for systems, and how to describe the dynamic aspect of systems by the basic action theory of our logic.

 Example In the following several paragraphs, we analyze the well-known example, the transportation problem, using the concept of actions and basic action theory. The static aspect of this example are just its structured models [5,11], and here we only present how the dynamic aspect should be described. The problem is: there are plants which produce a single product for shipment to customers. Every plant has a maximum supply capacity, and every customer has an exact demand requirement. For every link which existing between a plant and a customer, there is an associated unit transportation cost. The model allow us to evaluate various transportation flows over the links which satisfy product capacities, and demand requirements in terms of the resultant total transportation cost.

 We introduce one action:

Trans(A,B,m): transport total m units product from plant A to customer B.

 There are four fluents:

Dem(A,m,s): in state s, the number of products which customer A demands is m;

Sup(A,m,s): in state s, the number of products which plant A could provide is m ;

Scost(A,n,s): in state s, the amount of money which plant A owned is n;

Dcost(A,n,s): in state s, the amount of money which customer A owned is n.
 There is one state independent predicate:

Ucost(A,B,n): the transportation cost per unit product from plant A to customer B is n.

 We introduce the following constants:

P1,P2: names of plants;

C1,C2,C3: names of customers.

 To refine a model, we can certainly introduce more actions, constants, fluents, state independent relations, and functions. The formal description of its dynamic aspect is as follows.

(1) Dss is the following set of sentences:

Poss(a,s) (Dem(A,m,Do(a,s)) ((Dem(A,m,s) (a = Trans(B,C,m1) (C (A)

((D(Dem(A,m+m1,s) (a = Trans(D,A,m1));

Poss(a,s) (Sup(A,m,Do(a,s)) ((Sup(A,m,s) (a = Trans(B,C,m1,s) (B (A)

((D(Sup(A,m+m1,s) (a = Trans(A,D,m1));

Poss(a,s) (Scost(A,n,Do(a,s)) ((Scost(A,n,s) (a = Trans(B,C,m) (A (B)

((D(Sup(A,n-n1,s) (a = Trans(A,D,m1)), where n1=m1Ucost(A,D);

Poss(a,s) (Dcost(A,n,Do(a,s)) ((Dcost(A,n,s) (a = Trans(B,C,m) (A (B)

((D(Dem(A,n+n1,s) (a = Trans(A,D,m1)), where n1=m1Ucost(A,D);
(2) Dap is the following set of sentences:

Poss(Trans(A,B,m),s) ((m1m2(m1(0 (m2 (0 (Sup(A,m+m1,s) (Dem(B,m+m2,s)).

(3) Ds0 is any set of sentences describing the initial state of each plant's capability of supplying, each customer's demand, and the money they owned. Assuming there are three customers C1, C2, C3 and two plants P1, P2, then following is an possible initial state.

Dem(C1,200,S0) (Dem(C2,180,S0) (Dem(C3,210,S0);

Sup(P1,350,S0) (Sup(P2,250,S0);

Dcost(C1,1200,S0) (Dcost(C2,2180,S0) (Dcost(C3,2150,S0);

Scost(P1,3150,S0) (Scost(P2,4250,S0).

Ucost(P1,C1,20) (Ucost(P1,C2,25) (Ucost(P1,C3,15);

Ucost(P2,C1,35) (Ucost(P2,C2,17) (Ucost(P2,C3,15.5);

5. ISSUES OF MODEL INTEGRATION IN STRUCTURED MODELING

 In the past decade, model integration has been identified as one of key research topics in model management and has received much attention[6,7,10,13,14,19]. Providing a strong support to model integration has recognized as a crucial function for a successful model management system and modeling framework. Model integration refers to creating new models by means of integrating the existing ones. In management science, operation research and other areas related to models, many models have been accumulated, and that make creating models by integration be possible and necessary. Building models by integration is also economical and efficient, which in fact parallels “software reuse” in software engineering [14].

 One of the major features of structured modeling is that it distinguished sharply model from solver, and this make the concept of model in structured modeling a little bit different from the traditional ones. And it is this distinction that make it possible to develop more formal and advanced model integration techniques [10,14]. As the different degrees of abstraction, models can be divided into four levels by the degrees: ‘specific models’ within a single model class, ‘model classes’ within a single modeling paradigm, ‘modeling paradigms’ within a single discipline’s modeling tradition, and discipline-specific ‘modeling traditions’. Correspondingly, as the integration can be carried out at different levels, integration can be divided into the following categories: integrating different specific models within one model class, integrating different model class within one modeling paradigm, integrating different modeling paradigms within one modeling tradition, and integrating different modeling traditions [13]. What we are concerned here is that kind of integration which integrate different model classes within one modeling paradigm, and in model management, the term “integration” generally refers to the integration at this level. Integration at this level are also research topics of neighboring fields such as software engineering and database management.

 Model integration based on structured modeling have been researched by several people [10,14,15]. By our extended structured modeling, all these researches were about how to integrate static models. In the extended framework, corresponding to the three views of systems and the three models of systems, integration should carry out for all the three kinds of models respectively. This is to say, to integrate two structured models, we should integrate the static models into a new static model, the dynamic models into a new dynamic models, and the functional models into a new functional model. The general idea of carrying out model integration based on our extended structured modeling is as follows. For each of the three kinds of model, we develop a kind of specific integration method, and in order to integrate two structured models, what we need to do is integrating the corresponding models of the same kind respectively. Based on this idea, the methods gotten in previous researches about how integrating static models can be inherited and reused in our framework. But, it is still not validated if this idea is feasible. In the integration by our idea, new problems which never occurred before may appear. For example, even we have developed methods which can integrate each of the three kinds of model separately, the resultant structured model may be not what we expected. This problem refers some kind of local-global principle. To get a satisfactory solution to this problem, we have a long way to go. We will discuss dynamic model integration in our extended structured modeling in an another paper. What we want to point out here is that, as our dynamic model has some what normal form, this will provide the integration a solid foundation.

 In decision support systems, model and model management are usually contrasted with data and data management in database. Models correspond data, model management correspond data management, model integration correspond data manipulation, and as the relational algebra has brought the relational database a very strong data manipulation function, a corresponding theory for model integration has been sought for many years. Just as the case of relational database indicated, “Normal Form” of models plays a crucial role in model integration [6,10,11,3]. From the earliest stage of structured modeling, the designer has noticed the importance to develop normal form for models [11]. The static model has actually some what normal form and this normal form has played an important role in model integration[10]. Our dynamic model also has a very nice normal form which consists of five groups of logic sentences. This normal form has many advantages which include, in every group sentences except Ds0 which is determined by the real time initial state, sentences have their specific format, the number of sentences can be determined by the basic symbols such as constants and fluents, and every sentence has a natural interpretation. These characteristics of the normal form of our dynamic models can be expected to contribute a powerful dynamic integration function.

6. SUMMARY AND CONCLUSION

 Although structured modeling mainly originated from problems in areas related to models and aimed to serve these areas, from the earliest stage much attention has been paid to make it have a high generality which may cross-fertilize subjects such as artificial intelligence, database management, programming language design, and software engineering. As object-oriented modeling techniques have gotten an exceedingly rapid progression, in order to keep its original generality, structured modeling, which was strongly effected by structured modeling and programming paradigm, has the necessity to be extended with object-oriented features.

 The purpose of this paper is to extend structured modeling with the capability to capture the dynamic aspect of systems. Firstly, structured modeling is contrasted with object-oriented modeling technique, and then we propose a logic framework for structured modeling as its component to describe the dynamic aspect of systems. Example is given to illustrate our framework, and model integration issues are also discussed based on our extended structured modeling.

 Except strengthening the modeling power to structured modeling itself, extending structured modeling with object-oriented features also benefit the neighborhood fields. For example, in object-oriented database, as object is a so general concept, objected-oriented database has not a successful theory framework as relational database does [26]. As model is a more concrete and specific concept than object, especially when being represented in structured modeling, a good theory for models can provide an better framework for characterizing some kinds of data in object-oriented database. For another example, in software engineering, software reuse has received much attention, and several methods have been proposed to reuse software[27]. But the general and unified principle for software reuse is not easy to reach, researching reuse techniques based on models may contribute another new method, and this topic has begun to be approached [14].

REFERENCES

[1] S.Balemi, P.Kozak and R. Smedinga. Discrete Event Systems: Modeling and Control. Birkhauser, 1993.

[2] Bharadwaj, J. Choobineh, A. Lo and B. Shetty. Model Management Systems: A Survey. Annals of Operations Research 38(1992) 17-67.

[3] R.W.Blanning. Model Management Systems: An Overview. Decision Support System 9(1993)9-18.

[4] M. Brodie, J.Mylopoulos and J.W.Schmidt (eds.). On Conceptual Modeling. Springer-Verlag, 1984.

[5] D.R.Dolk. Model Management and Structured Modeling: The Role of an Information Resource Dictionary System. Communication of ACM 31:6(1988).

[6] D.R.Dolk, An introduction to model integration and integrated environments. Decision Support Systems 10 (1993) 249-254.

[7] D.R.Dolk, Model Integration and a Theory of Models. Decision Support Systems 9 (1993) 51-63.

[8] H-D.Ebbinghaus, J. Flum and W. Thomas, Mathematical Logic, 2nd ed., New York, Springer-Verlag, 1994.

[9] D. W. Embley, B. D. Kurtz and S. N. Woodfield. Object-Oriented Systems Analysis, A Model-Driven Approach. YOURDON PRESS, 1992.

[10] M. Gagliardi and C. Spera. Towards a Formal Theory of Model Integration. Annals of Operations Research 58(1995) 405-440.

[11] A.M.Geoffrion, An Introduction to Structured Modeling. Management Science 33:5 (1987) 547-588.

[12] A.M.Geoffrion, The Formal Aspects of Structured Modeling. Operations Research 37:1 (1989) 30-51.

[13] A.M.Geoffrion, Integrated Modeling Systems. Computer Science in Economics and Management 2(1989) 3-15.

[14] A.M.Geoffrion. Reusing Structured Models via Model Integration. In: Current Research in Decision Support technology, ed. R. Blanning and D. King (IEEE Computer Society Press,1990).

[15] A.M.Geoffrion, Structured Modelling: Survey and Future Research Directions. ORSA CSTS Newsletter, 15:1 (1994).

[16] H.Kilov and W. Harvey. Object-Oriented Behavioral Specifications. KLUWER ACADEMIC PUBLISHS, 1996.

[17] K. Lano and H. Haughton (Eds.), Object-Oriented Specification Case Studies. Prentice Hall, 1994.

[18] M.L.Lenard, An Object-Oriented Approach to Model Management. Decision Support Systems 9 (1993) 67-73.

[19] T.P. Liang, Reasoning for Automated Model Integration. Applied Artificial Intelligence 4 (19990) 337-358.

[20] T.P.Liang and B. Konsynski, Modelling By Analogy: Use of Analogical Reasoning in Model Management Systems. Decision Support Systems 9 (1993) 113-125.

[21] T.P.Liang, Analogical Reasoning and Case-based Learning in Model Management. Decision Support Systems 10 (1993) 137-160.

[22] F. Lin and Ray Reiter, How to Progress a Database (and Why) I: Logical Foundations. in: Proceedings of the Fourth International Conference on Principles of Knowledge Representation and Reasoning, pp. 425-436, 1994.

[23] F. Lin and Ray Reiter, How to Progress a Database. Artificial Intelligence. to appear.

[24] Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of Artificial Intelligence. MORGAN KAUFMANN PUBLISHERS, INS., 1987.

[25] W.A.Muhanna, An Object-Oriented Framework for Model Management and DSS Development. Decision Support Systems 9 (1993) 217-229.

[26] G. Peter. Object-oriented databases : a semantic data model approach. Prentice Hall, 1992.

[27] R.Rada. Software Reuse. Oxford, England – Intellect, 1995.

[28] R.Reiter, Towards a Logical Reconstruction of Relational Database Theory. In M.L.Brodie et.al (Eds.), On Conceptual Modelling, , Spring-Verlag, 1984.

[29] J.Rumbaugh, M.Blaha, W.Premerlani, F. Eddy and W.Lorensen, Object-Oriented Modeling and Design, Prentice Hall, 1991.

[30] S. Shlaer and S. Mellor, Object Lifecycles: Modeling the World in States. YOURDON Press, 1992.

1
1

