
Consumer Search in the U.S. Auto Industry:

The Role of Dealership Visits *

CURRENT VERSION: AUGUST 2020

Dan Yavorsky† Elisabeth Honka‡ Keith Chen§

Abstract

In many markets, consumers visit stores and physically inspect products before making purchase
decisions. We view the inspection of a product at a retail location as a search for product fit.
We quantify the cost and benefit from searching for product fit using a discrete choice model of
demand with optimal sequential search. In these models, the benefit of searching is measured by
the standard deviation of the product fit and has, heretofore, been fixed to one in estimation. We
show that, with an exogenous search cost shifter, both the cost and benefit of searching can be
separately estimated. Our empirical setting is the U.S. automotive market. We assemble a unique
data set containing individual-level smartphone geolocation data that inform us about dealership
visits. We also obtain information on new vehicle purchases from proprietary DMV registration
data. Our exogenous cost shifter is the distance a consumer must travel to visit a dealership.
Our results show that the benefit provided by dealerships to consumers is substantial. Within
our empirical context, failure to estimate the standard deviation of the product fit leads to biased
search cost and consumer surplus estimates and to inaccurate predictions regarding consumers’
number of searches and effects of at-home test drive programs.

Keywords: Consumer Search, Automotive Industry

JEL Classification: D83, L62, M31

*We are extremely grateful to Peter Rossi for his thoughtful feedback and helpful suggestions. We thank Brett Hollen-
beck, Randy Bucklin, Sylvia Hristakeva, Sergei Koulayev, Stephan Seiler, Marco Testoni, Raluca Ursu, and Geoff Zheng
for valuable conversations. We also thank participants of the University of Houston Doctoral Symposium, the Interactive
Online IO (IOˆ2) seminar, and the Stanford University QME Rossi seminar as well as of seminars at UCLA, UC San
Diego, and UC Riverside for their comments. All errors are our own.

†University of California Los Angeles, dan.yavorsky.phd@anderson.ucla.edu.
‡University of California Los Angeles, elisabeth.honka@anderson.ucla.edu.
§University of California Los Angeles, keith.chen@anderson.ucla.edu.



1 Introduction

Prior to the Internet, store visits and the physical inspection of products played a prominent role during

consumers’ purchase process – especially for high-ticket durable goods such as automobiles, furniture

or electronics. Information on prices and product features was difficult to obtain other than via store

visits. During the last two decades, a wealth of online information has become available, giving

consumers an alternative method to easily gather product information including prices. Nowadays,

consumers in the market for a durable good still visit brick-and-mortar stores to obtain information

about product attributes which are difficult to find online. These consumer-specific preferences for

certain product attributes are often called “product fit” or “match value.”1 An open question is how

much consumers benefit from visiting brick-and-mortar stores today.

Across many product categories, consumers in 2019 visit fewer brick-and-mortar stores and buy

more goods online than they did 15 years ago. However, looking at the number of physical store

visits alone is not sufficient to determine the benefit from visiting brick-and-mortar stores. The reason

is that the number of visits is jointly determined by both the cost and the expected benefit of a store

visit. Thus consumers might be visiting fewer brick-and-mortar stores because of higher cost or lower

expected benefit (or a combination of both). To answer our research question, the cost and benefit of

store visits must be separately quantified. In this paper, we show that this can be achieved in a

sequential search model for product fit with access to an exogenous search cost shifter.

Our empirical application is the new car market. Consumers typically visit dealerships before

making a purchase. Prior to the Internet, Ratchford and Srinivasan (1993) find that consumers made,

on average, 4.6 dealership visits in 1986. Ratchford, Talukdar, and Lee (2007) find that number to be

2.2 in 2002. Morton, Silva-Risso, and Zettelmeyer (2011) indicate that consumers, on average, visit

1-2 dealerships. By 2016, this number had decreased to 1.3.2 This empirical pattern in the new car

1Throughout this paper, we use these two terms interchangeably. In our empirical context of new car purchases, the
match value captures, e.g., how spacious and comfortable a car is, how it drives, how courteous and helpful the dealership
staff is, etc. to an individual consumer.

2During a 2016 FTC Workshop on auto distribution in the U.S., Peter Welch, President of the National Auto-
mobile Dealers Association (NADA), reported that “the average number of dealerships that a consumer visits be-
fore they make a purchase, an actual purchase, has gone down from 4.1 dealerships in 2005 to today, it’s 1.3”
(https://www.ftc.gov/system/files/documents/public events/895193/auto distribution transcript.pdf).
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market is consistent with patterns found in many other product markets.

Our unique data on the new car market come from Texas. We observe mobile device geolocation

information that captures each consumer’s home location and dealership visits, i.e., individual-level

offline search behavior unintrusively collected in real time. These unique data stand in contrast to

previous literature on offline search that neither observes the number nor the order of searches – es-

pecially in the car market (e.g., Nurski and Verboven 2016, Murry and Zhou 2020). An exception is

Moraga-Gonzalez, Sandor, and Wildenbeest (2018). However, the authors rely on aggregate moments

of the number of searches from retrospective survey data. Our data describe both the number and or-

der of searches at the individual-level and are unobtrusively gathered in real time while consumers

engage in the actual search behavior. We combine these data with information on new car registra-

tions, i.e., new vehicle purchases, from the Texas Department of Motor Vehicles (Texas DMV). We

supplement these data with consumer and vehicle characteristics, and information on the location of

auto dealerships and the brands they carry.

Importantly, these data allow us to measure the distances between each consumer’s home and each

searchable dealership – distance being our exogenous search cost shifter. We estimate a sequential

search model for product fit à la Weitzman (1979) and parametrize search cost as a function of dis-

tance. Through simulations, we show that exogenous variation in search cost allows us to estimate

the standard deviation of the match value distribution (MVSD). This parameter is a direct measure

of the potential benefit from search. In prior literature, this parameter was commonly fixed to one in

estimations (see also discussions on this issue in Kim, Albuquerque, and Bronnenberg 2010, Dong

et al. 2020).3

Previous sequential search literature – which mostly uses online data – has included search cost

shifters in some instances. For example, Kim, Albuquerque, and Bronnenberg (2010) use the number

of links to the product page, Kim, Albuquerque, and Bronnenberg (2017) include a high-definition

dummy and product age, and Chen and Yao (2017) incorporate the slot position of the product on the

3As we discuss in Section 6.2, even without an exogenous search cost shifter, search cost and MVSD are separately
identified by functional form. However, as discussed by previous literature (Kim, Albuquerque, and Bronnenberg 2010,
Dong et al. 2020) and as shown in one of our simulation studies in Section 6.3, in practice, search cost and MVSD cannot
be separately estimated when only relying on this functional form identification and without an exogenous search cost
shifter.
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webpage when modeling search cost. The difference between these papers and our approach is that

our search cost shifter is exogenous, while theirs were endogenous. In fact, it is hard to imagine an

exogenous search cost shifter in the online context.

We estimate the MVSD to be 8.16. This estimate is large relative to its typical normalization

to one in search models for product fit and to the scale of the utility parameters (which is typically

also normalized to one for identification reasons). The magnitude of the MVSD demonstrates that

dealerships continue to provide substantial value to car shopping consumers today. Further, we also

find that normalizing the MVSD to one has at least three implications. Note that these implications

are specific to our empirical context and model. First, it results in an overestimation of the impact of

distance on search cost. For example, increasing the distance to a dealership for an urban consumer

from 10 to 20 miles increases estimated search cost by 48% when the MVSD is normalized to one.

The same increase in distance yields an estimated search cost increase of only 19% when the MVSD

is estimated.

Second, because normalization leads to incorrect estimates of the cost and benefit of search, the

normalized model yields inaccurate predictions regarding the number of searches consumers engage

in and incorrect estimates of consumer surplus. Normalizing the MVSD to one leads to an overpre-

diction of the proportion of consumers who search once and an underprediction of the proportion of

consumers who make two or more searches, i.e., the long tail of the distribution of the number of

searches. Estimating the MVSD allows the model to more accurately predict the distribution of the

number of searches and especially its long tail.

Furthermore, for the auto industry, we find that normalizing the MVSD to one severely overstates

consumer surplus. This overestimation is primarily driven by the smaller search cost estimates in

a model in which the MVSD is fixed to one. We then examine how consumer surplus varies with

demographics and distance. We find that demographics and distance explain a large proportion of

variation in consumer surplus, namely 40%. More specifically, being older, having more kids, and

a larger distance to dealerships is associated with lower consumer surplus. Living in an urban area

and belonging to a racial minority is associated with higher consumer surplus. We find no association

between consumer surplus and gender, income, education, and unemployment rate.
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And lastly, as a result of the biased parameter estimates, managerial and policy analyses based

these estimates will be incorrect. We demonstrate this by assessing the adoption of at-home test drives.

This counterfactual is inspired by a new marketing technique implemented by Hyundai in its “Hyundai

Drive” program. In this program, consumers can reap the benefits of search without incurring any

distance-based search costs. We find that brands with fewer dealerships benefit more from at-home

test drive programs than brands with more dealerships. This is the case because consumers have to

travel farther to get to those dealerships. Thus at-home test drive programs result in a bigger search

cost reduction for brands with fewer dealerships, making these brands relatively more attractive to

search. In Texas, brands like Ford and Chevrolet have about three to four times as many dealerships

as brands like Honda, Nissan, and Toyota. Thus the three Asian car manufacturers in our data benefit

more from at-home test drive programs than the two U.S. car manufacturers. This “asymmetric” effect

on market shares is not driven by a change in consumer preferences, but by a change in search costs.

Comparing the predictions for at-home test drive programs from a model with MVSD fixed to one to

a model in which MVSD is estimated, we find the predictions to be directionally the same but their

magnitude underestimated by a factor of three to four.

This paper makes two primary contributions to the literature. First, we show that the MVSD can

be separately estimated from search cost with access to an exogenous search cost shifter. Similar

to search models for prices in which the standard deviation of the price distribution is commonly

estimated from data, we demonstrate the importance of doing the same for search models for product

fit. Further, in our empirical context, failure to estimate the MVSD leads to incorrect model parameter

and consumer surplus estimates, incorrect predictions regarding the distribution of the number of

searches, and incorrect conclusions from policy analyses. And second, this study is among the first to

provide a detailed assessment of physical (“offline”) search using individual-level observational data.

Other studies of offline consumer search behavior mostly rely on path tracking information within

a store, aggregate or retrospective survey data. Other studies of consumer search using individual-

level observational data do so in an online context using cookies or other web-tracking technology to

assess browsing behavior. Access to data from new technologies such as mobile device geotracking

gives unintrusive access to consumers and allows researchers to observe them in their daily behavior
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opening doors to new research opportunities.

The outline of this paper follows: we discuss this study in the context of the relevant literature

in Section 2. In Section 3, we present the data. We provide reduced-form results in support of our

modeling framework in the following section. In Section 5, we formally introduce the model before

discussing identification and estimation in Section 6. We present the empirical results in Section 7 and

a counterfactual in Section 8. In Section 9, we discuss limitations and directions for future research.

Finally, we conclude in the last section.

2 Relationship to Existing Literature

This study contributes to the streams of literature on consumer search and on the role of dealerships in

the U.S. auto industry. In the following, we review the relevant literature and delineate the positioning

of our research vis-à-vis the findings from extant research.

Previous literature estimating sequential search models for product fit usually utilizes data on

online browsing behavior. For example, Kim, Albuquerque, and Bronnenberg (2010) and Kim, Albu-

querque, and Bronnenberg (2017) use aggregate view-rank and purchase data for camcorders sold on

Amazon.com. Koulayev (2014), Chen and Yao (2017), De los Santos and Koulayev (2017), and Ursu

(2018) study different aspects of online hotel bookings. Yao, Wang, and Chen (2017) offer an appli-

cation to television viewing, Morozov (2019) studies new product introductions in the computer hard

drive market, and Gardete and Anthill (2020) investigate online browsing for used cars. In contrast to

the previously mentioned papers, we focus on offline consumer search.

Because of limited data availability, studies of offline search behavior are very rare. Two excep-

tions are Jain, Misra, and Rudi (2016) and Seiler and Pinna (2017).4 Jain, Misra, and Rudi (2016)

assess the effects of sales assistance and search on purchase incidence and expenditure using video

recordings of a retail clothing store’s product display area. Seiler and Pinna (2017) measure the re-

4Seiler and Yao (2017) use supermarket path tracking data combined with advertising data to investigate how adver-
tising affects consumers along their conversion funnel. Hui, Bradlow, and Fader (2009) and Hui et al. (2013) also study
offline behavior in a supermarket using path tracking data. However, these two papers investigate vice versus virtue prod-
uct purchases, the effects of other shoppers on shopping paths and purchases, and the effectiveness of mobile promotions
and not consumer search behavior.
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turns to price search by analyzing shopping cart movements in a supermarket. These two papers differ

from ours in two aspects: they focus on the duration of search, i.e., time spent searching, rather than

the number of searches and they study consumer search activity within a store, while we focus on

search activity across stores.

Most closely related to this paper is Moraga-Gonzalez, Sandor, and Wildenbeest (2018) who

incorporate sequential search for product fit directly into the framework of Berry, Levinsohn, and

Pakes (1995). The authors supplement aggregate car sales data from the Netherlands with moments

from a survey on Dutch consumers’ search behavior. Using these data, Moraga-Gonzalez, Sandor,

and Wildenbeest (2018) predict the searched dealership(s) and the search order, whereas we observe

these decisions directly in our data.

This study also fits into the literature on car dealership locations and how they affect consumer

demand and competition. Bucklin, Siddarth, and Silva-Risso (2008) show that, prior to the Internet,

new car buyers were more likely to select cars whose dealer networks had shorter distances to the

closest outlet and more dealers within a given radius from the buyer. Albuquerque and Bronnenberg

(2012) estimate a model of supply and demand that does not incorporate consumer search behavior,

but utilizes the locations of consumers and dealers (and thus the distance between them) and find

that consumers have a strong disutility for travel. Palazzolo and Feinberg (2015) generalize a full

information discrete choice model to incorporate the probability that an observed consideration set is

optimal while flexibly permitting consideration set substitution among available options. The authors

use their model together with survey data to study the impact of vehicle redesigns and recalls on

consideration and purchase. Murry and Zhou (2020) study the agglomeration-competition trade-off

of dealership co-location using a sequential search model and transaction-level data for new vehicles

sold in Columbus, Ohio. While search behavior is modeled, the authors do not have data on the actual

searches performed by consumers. In contrast to the previous literature on car dealerships, in this

paper, we observe individual consumers’ dealership visits and estimate a sequential search model that

uses distance to dealerships as an exogenous search cost shifter.
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3 Data

3.1 Data Sources

We combine data from several sources for the empirical analysis. Mobile device geolocation data

inform us about consumers’ home locations and dealership visits. However, these data do not provide

information on the purchased vehicles. Therefore we combine the dealership visit data with data on

new car registrations from the Texas DMV. By combining these two data sets, we observe both the

search sequence and the purchased vehicle at the individual level. We supplement these data with

consumer and vehicle characteristics, and information on the location of auto dealerships and the

brands they carry.

3.1.1 Search Data

We obtained consumer search data from Safegraph, a company that “provides high-quality location

data products” by aggregating location information from various mobile device applications.5 For the

three-month time period from November 1, 2016 to January 31, 2017, Safegraph provided us with

two types of information for each (anonymized) individual mobile device: home locations and deal-

ership visits. The home locations were generated by Safegraph’s proprietary model that is based on

the (im)mobility of the device, time of day, and assumed work patterns of device owners. The home

locations are stored at the geohash-8 level.6 The dealership visits were generated by Safegraph merg-

ing their mobile device geolocation data with their proprietary data set of U.S. dealership geospacial

locations. A unique record is a mobile device at a dealership (identified by dealership name and street

address) at a specific date and time. Thus, for each mobile device, we observe the visited dealerships

and the order of those visits.

The dealership visit data record all dealership visits – for any reason. As a result, they may capture

behavior other than new car searches. To remove errant observations, we exclude all data for a device

if the device is observed (i) at any dealership more than 25 times, (ii) at the same dealership more

5https://github.com/YalePrivacyLab/tracker-profiles/blob/master/trackers/SafeGraph.md
6A geohash is a public domain geocoding system that encodes location into a short string of letters and numbers. A

geohash-8 is approximately 40 meters wide by 20 meters tall, or 800 square meters.
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than 10 times, or (iii) at any dealership between 12:00am and 6:00am. These criteria are applied to

exclude, for example, the device of someone who works at, delivers vehicles to, or provides janitorial

services for an auto dealership. In addition, we limit the dealership visit data to device owners with

home locations in the state of Texas. The remaining data consist of approximately 154,000 unique

mobile devices making 277,000 dealership visits to one or more of the 1,258 dealerships identified by

Safegraph.

Dealership visits of consumers shopping for a new car can spread over days or even weeks. This

raises the concern that vehicles purchased at the beginning of the three-month time period may have

truncated search sequences. To investigate this concern, we calculate the average number of days

between the first and last search for consumers whose last search occurred in November 2016 versus

during December 2016 and January 2017. We find these values to be 1.1 and 10.2 days, respectively.7

These numbers suggest that many search histories for consumers who made a purchase in November

2016 are truncated. As a result, we limit our analysis to only those consumers who purchased their

vehicles in the latter two months (“sample period”). This reduces the sample size to approximately

127,000 consumers making 243,000 dealership visits.

3.1.2 Purchase Data

Our second data come from the Texas DMV. We observe all first-time titled or registered vehicles in

the state of Texas during (or up to 14 days after) the sample period.8 The data include the Vehicle

Identification Number (VIN), the registrant, the registrant’s address, the date that the title or registra-

tion paperwork was processed by the state of Texas, the gross sales price before any adjustment for

a trade-in vehicle, the VIN for the trade-in vehicle if applicable, and the name, city, and state of the

previous owner. It is important to note that information on the previous owner identifies the dealership

from which a vehicle was purchased (“selling dealership”). While most of this information is avail-

7If we exclude consumers who only made one search, the mean and median number of days between the first and last
search for consumers whose last search occurred during first month are 9.2 and 7, while the mean and median number of
days between the first and last search for consumers whose last search occurred during the latter two months are 29.3 and
25.

8In a conversation with a Texas DMV employee, her experience was that title and registration paperwork is typically
processed between one and fourteen days after submission to the DMV or county tax office, and that submission typically
occurs immediately upon sale of a vehicle by a dealership.
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able to the public through a Freedom of Information Act (FOIA) request, the personally identifying

information is not. It must be obtained through a special request and its use is subject to restrictions.

To focus on new retail vehicle sales for which consumer search data may be available from Safe-

graph, we limit the Texas DMV data to vehicles that belong to the 35 most popular brands from model

years 2015–2018 with an odometer reading of fewer than 2,000 miles, a price exceeding $5,000, and

for which the date of title occurred during the sample period (or less than 14 days after its end). These

criteria are used to omit used vehicles, commercial vehicles such as freight trucks, and alternative

vehicles such as tractors, motor homes, and motorcycles. In addition, we constrain the Texas DMV

data to only vehicles for which the registrant has a non-PO Box home address in the state of Texas;

this is a necessary criterion for combining the search and purchase data. Finally, data are excluded if

more than one vehicle is titled to the same individual during the sample period or if the registrant is

not an individual. Approximately 195,000 vehicles meet these criteria.

Figures 1(a) and 1(b) each provide a map of individuals’ home locations. Figure 1(a) displays

home locations for searchers from the Safegraph data, while Figure 1(b) displays home locations of

buyers from the Texas DMV data. Although the data sources are different, the figures show a similar

geographic distribution of consumers across the state and major urban areas are clearly identifiable.

=========================

Insert Figure 1 about here

=========================

3.1.3 Dealership Data

We manually prepared a third data set consisting of all auto dealerships in the state of Texas and

the brands carried at each dealership. This data collection was necessary for two reasons. First, the

colloquial and legal definition of a dealership vary and we required a definition compatible with the

Safegraph data. We use the term and have organized the data such that a “dealership” represents a

distinct geographic area of new vehicle retailing. For example, although Randall Noe Chrysler Dodge

and Randall Noe Subaru are legally distinct dealerships, their showrooms share the same building,

they have the same street address, and the vehicles in inventory are adjacently located on the same
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lot. We therefore categorize them as one dealership. And second, to make reasonable assumptions

about vehicles that were searched but not purchased, as required for the structural search model to be

introduced later, we require information on the set of brands carried at each dealership.

We identify 1,314 auto dealerships that carry new vehicles in the state of Texas. This number of

dealerships is very similar to the number of dealerships (1,309) listed by the Texas Automotive Deal-

ership Association (TADA) as of February 2018.9 The small difference in the number of dealerships

is due to (i) dealerships that operated during the sample period but closed by the 2018 TADA count

and (ii) TADA and us differing in how to treat two adjacent and related retail locations (TADA may

recognize them as two dealerships while we count them as one or vice versa). Figure 2(a) plots the

locations of all 1,314 auto dealerships. As expected, dealership locations are highly correlated with

the geographic distribution of the population. Figure 2(b) provides a map of the Houston metropoli-

tan area onto which dealership locations are overlaid. It shows that dealerships often occur spatially

clustered and are generally located along major roadways.

=========================

Insert Figure 2 about here

=========================

Consistently identifying dealerships across data sets is essential for combining the search and

purchase data. The manually compiled data on dealerships are matched (i) to the dealership street

addresses in the Safegraph search data and (ii) to the previous owner names in the DMV registrations

data. An overlapping subset of 1,197 dealerships are identified from both data sets. Not all dealerships

could be merged either because the previous owner names in the Texas DMV data were not sufficiently

descriptive to uniquely identify a dealership in the Safegraph data or because the Safegraph data did

not contain visits to that dealership. This latter case could occur if Safegraph did not have a geofence

for that dealership or if no mobile device in the Safegraph data was observed to visit the dealership

between November 2016 and January 2017.

9https://www.tada.org/web/Online/About TADA/Dealer Search.aspx
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3.1.4 Vehicle Characteristics Data

VinAudit.com, Inc., a leading vehicle data and software solutions provider for the U.S. automotive

market, provided data on vehicle characteristics. The data were obtained by “decoding” the registered

and trade-in VINs using the company’s API. Collected vehicle characteristics include model year,

make, model, trim, “base” MSRP, vehicle type (car, SUV, truck, van), body type (e.g., sedan), number

of doors, drive type (e.g., front-wheel drive), engine size, and transmission type.10 We supplement

these data with information on vehicle horsepower collected from Google.

We also collected data on vehicle “types” and rankings within each type from Edmunds.com.

Edmunds classifies all vehicle models into one of 40 types. For example, the Honda Fit is categorized

as an Extra-Small Hatchback, while the Toyota Highlander is categorized as a Midsize 3-Row SUV.

Within a type, Edmunds ranks each vehicle. Their ranking process is proprietary and opaque.11 The

Edmunds data are used to make assumptions about (similar) searched or potentially searched, but not

purchased vehicles (see Appendix A).

3.1.5 Consumer Characteristics Data

We collected consumer demographic data from the U.S. Census Bureau’s 2010 Census and Ameri-

can Community Survey. The data include information at the Census Blockgroup level on age, race,

gender, educational attainment, income, employment status, and number of children.

10The APIs used to gather car characteristics provided “base” MSRP. The definition of “base” is manufacturer-specific
and may be at either the model-level or trim-level. These base prices do not include features that customize the vehicles
beyond the set of included features in the most basic configuration of the manufacturer’s model or trim. For example, if
a sunroof is included as part of a specific 2017 Ford Fiesta SE but the sunroof is not a standard feature on all 2017 Ford
Fiesta SEs, then the added cost of the sunroof is not included in the collected MSRP. This means that, for example, two
vehicles that are largely similar (i.e., same model or same trim) but have different optional features will show the same
MSRP.

11Edmunds describes its ranking process as: “Each vehicle is driven on a standardized road test loop and visits our
test track for instrumented testing in controlled conditions. Our time behind the wheel is used to develop ratings that
describe how a car stacks up against its direct rivals in a particular size and price class.” (https://www.edmunds.com/new-
car-ratings/).
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3.2 Data Cleaning and Construction of Analysis Data Set

To empirically estimate a search model, we must (i) combine the search and purchase data, (ii) define

the searchable set of dealerships, (iii) define the searchable set of vehicles, and (iv) create the final

sample for the empirical analysis. We provide a detailed decription of these four steps in Appendix

A. Note that we limit the analysis sample to the five brands with the largest market shares in Texas

during the sample period. This set of brands has a combined market share of 60%.

3.3 Descriptive Statistics

The final analysis sample contains 6, 511 consumers who make 7, 175 visits to one of 544 dealerships.

91.1% of consumers search once, 7.8% of consumers search twice, and 1.1% of consumers search

three or more times. Figure 3 shows a histogram of the number of searches. The average number of

searches per consumer is 1.1. This average number of searches in our data is consistent with the most

recent reports, albeit slightly smaller (see footnote 2).

=========================

Insert Figure 3 about here

=========================

Descriptive statistics on dealerships and purchased vehicles are displayed in Table 1. Chevrolet

and Ford have many more dealerships than Honda, Nissan, or Toyota. The average vehicle charac-

teristics reported in Table 1 are influenced by pickup truck sales. Chevrolet and Ford sell a higher

percentage of trucks in the Texas market than the other brands and, as a result, tend to have higher

average horsepower and engine sizes, while offering lower gas mileage.

=========================

Insert Table 1 about here

=========================

3.3.1 Distance to Dealerships

The distance a consumer must travel to visit a dealership is our key variable. Consumers live in

close proximity to many dealerships. On average, consumers in the analysis sample live within 10
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miles of 6 dealerships. As we extend the radius to 20 and 30 miles, that number increases 16 and 24

dealerships, respectively. The observation that consumers live in close proximity to many dealerships,

but only search a limited number of them suggests that it is important to take their search behavior

into consideration when modeling demand.

Not only are many dealerships located near consumers, but consumers also tend to purchase from

nearby dealerships. The median distance from a consumer’s home to the selling dealership is 5.2

miles. Figure 4(a) shows the distance distribution from home to the selling dealership: most con-

sumers purchase from dealerships within 30 miles of their home.12 As a point of comparison, in

Figure 4(b), we display the distribution of percentiles for the distance to the selling dealership in each

consumer’s set of searchable dealerships. For example, suppose a consumer bought from the closest

dealership and had five searchable dealerships. Then the consumer purchased from a dealership in

the 0.2 percentile. The distribution in Figure 4(b) shows that consumers tend to purchase from deal-

erships below the 0.5 percentile. The few consumers who purchase from a high percentile dealership

are mostly consumers with small sets of searchable dealerships (fewer than five dealerships).

=========================

Insert Figure 4 about here

=========================

Consumers can purchase a vehicle from the closest dealership carrying the purchased brand or

they can purchase from a more distant dealership carrying the same brand. 72% of consumers in

the analysis sample buy from the closest dealer offering the purchased brand, the remaining 28% do

not. Figure 5 shows the distance (beyond the closest dealership) to the selling dealership for those

consumers who did not purchase from the closest dealership offering the ultimately purchased brand.

The mean and median “extra” traveled distance are 7.6 and 5.7 miles, respectively. Buying from a

more distant dealership suggests that that dealership offers an observed (to the consumer) expected

benefit that exceeds the additional time, travel, and mental costs incurred from making the longer trip.
12Albuquerque and Bronnenberg (2012) find the mean and median distance between consumers’ homes and selling

dealerships to be 10 and 7.3 miles, respectively, based on zip code centroids. These distances are also consistent with
not observed, but estimated distance distributions reported by prior literature (e.g., Nurski and Verboven 2016, Moraga-
Gonzalez, Sandor, and Wildenbeest 2018, Murry and Zhou 2020).
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=========================

Insert Figure 5 about here

=========================

When modeling demand for cars, we use distance to dealerships as an exogenous search cost

shifter. In the following, we provide evidence in support of our exogeneity assumption for distance.

In particular, we point to three empirical patterns: first, a primary motivating factor for the choice of

dealership location is accessibility. Dealerships therefore mostly locate along highways. As an exam-

ple, in Figure 2(b), we show highways and dealership locations for the metropolitan area of Houston.

The figure confirms that accessibility is a key driver of dealership locations. Second, previous liter-

ature (e.g., Murry and Zhou 2020) has suggested that dealerships frequently co-locate. We also find

this to be the case in our data as can be seen in Figure 2(b).

And lastly, a potential concern is that dealerships might choose their locations strategically to be

close to their target consumers. For example, a BMW dealer might be more likely to locate in an

affluent neighborhood than a Honda dealer. To investigate whether this is a concern in our data, we

take the following steps: for each consumer in our final analysis sample, we calculate the distance to

the closest dealership for each brand. We then split consumers into four income groups (i.e., quartiles;

based on the median income in the Census Block they live in) and create histograms of the distances

for each brand and income group combination. These histograms are shown in Figure 6. The black

lines in each histogram mark the median distance for that income group and brand combination. The

histograms are of similar shape across income groups and brands and the median distances lie between

3.3 and 6.0 miles with most medians ranging from 4.3 to 6.0 miles. A potential explanation for this

pattern is that the five brands we include in our empirical analysis serve a broad range of consumers.13

=========================

Insert Figure 6 about here

=========================

We conclude that, at the disaggregate level, an individual consumer’s distance to dealerships can

be assumed to be exogenous in our data. Other factors such as accessibility and co-location appear to
13We also investigated the relationship between distance to dealership and education, race, and age and found no

evidence that these demographics are related to distances to dealerships (see Appendix B).
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drive dealership location decisions.

4 Reduced-Form Evidence

In this section, we investigate the set of variables that predict consumer purchase and show that in-

cluding distance to dealerships is important when modeling demand for cars. We do so by estimating

three standard multinomial logit models. Because consumers are assumed to choose a vehicle from

a set of vehicles that are of the same Edmund’s vehicle type, it is not necessary (or possible) to in-

clude vehicle characteristics such as the number of doors or engine type (gas vs electric) as these

characteristics do not vary across vehicles within an Edmund’s type. Instead, we focus on three major

characteristics likely to impact consumer decision-making conditional on type: horsepower, engine

size (i.e., displacement measured in liters), and estimated city mileage (MPG). In addition, because

our data are from Texas, we include interactions with a dummy variable (“large vehicle”) to indicate

if the vehicle is a truck or a large SUV (most of which are built on a truck chassis). And lastly, we

use MSRP as a measure of price.14 While the data include the actual price paid for each purchased

vehicle, the MSRP better reflects consumers’ knowledge of prices prior to visiting a dealership. Fur-

thermore, we observe the MSRP for the (i) purchased, (ii) searched but not purchased, and (iii) not

searched vehicles.15

In Table 2, we show coefficient estimates and implied price elasticities for two full information

models (a) and (b), in which the consumer is assumed to have knowledge of all searchable alterna-

tives, and a limited information model (c), in which the consumer only chooses among the products

she has searched. The two full information models differ in the included covariates with model (b)

additionally including the distance to each dealership.
14The manufacturer suggested retail price (MSRP) does not vary across dealerships (https://www.carsdirect.com/car-

pricing/what-is-the-difference-between-the-sticker-price-and-msrp). It is set by the manufacturer and, as the name says,
suggests for which price a dealer should/could sell the car. Note that sticker price and MSRP are not synonymous. The
sticker price is the price a dealer lists a car for and can be lower, higher or the same as the MSRP. Sticker prices for the
same (new) car can vary across dealers.

15Here, we rely on our assumption that consumers (would) search the most similar car to the one they purchase. In
contrast, we do not observe the sticker prices (which vary across dealerships) for the (i) purchased vehicle, (ii) searched
but not purchased vehicles, and (iii) not searched vehicles. While we observe the actual price paid for the purchased car,
we do so after both bargaining and trade-ins. Obviously, we do not observe the actual price paid for searched, but not
purchased and not searched vehicles.
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Insert Table 2 about here

=========================

Across all three logit models, the coefficient estimates are similar in terms of signs and magni-

tudes. Coefficient significance is also generally consistent with the exception of MPG in the limited

information model (c). Price negatively affects utility. On average, consumers prefer Toyota and

Honda to Nissan, Ford, and Chevrolet for small and medium-sized vehicles. For large vehicles in-

cluding pickup trucks, consumers prefer Ford. Among the vehicle attributes, engine size and city

mileage have the expected positive sign. Horsepower is estimated to have a negative effect on utility.

A potential explanation is that, conditional on vehicle type, engine size, and city mileage, vehicles

configured to provide extra horsepower may require additional maintenance and are therefore not

preferred by consumers.

Recall that model (b) additionally includes distances to dealerships as a covariate. The distance

coefficient is (as expected) negative, large (in absolute terms), and precisely estimated. Moreover,

its addition provides substantial improvements in the log-likelihood and Bayesian Information Cri-

terion (BIC) indicating that distance adds to the explanatory power of the model. In addition, price

elasticities are more elastic when distance is included.

Comparing models (a) and (b) to model (c), price elasticities are smaller than one (in absolute

terms) in the limited information model. The price elasticities are inelastic because of the large

number of consideration sets of size one: consumers with such a consideration set would not select a

different alternative even if prices increase because they only have one alternative available to them.

5 Model

5.1 Utility and Search

We model consumer search and purchase decisions using a sequential search model for match value.

A product is defined as a combination of a specific vehicle and a dealership (e.g., a Honda Civic at the

John Eagle Honda Dealership of Dallas). The match value captures a mix of hard-to-quantify product
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characteristics that provide a unique, idiosynchratic match (or mismatch) with the consumer. The

consumer learns about her match value by visiting a dealership and potentially test driving a car.16

The match value might, for example, include how much a consumer likes the layout of the dashboard,

how well a consumer can see in the car, how much a consumer enjoys driving the car, how courteous

and helpful the dealership staff is, etc. Given that we use MSRP as the measure of price in the utility

function (prior and post search), the match value also includes any deviation from MSRP due to,

e.g., bargaining or a trade-in vehicle. Following previous literature modeling dealership visits (e.g.,

Moraga-Gonzalez, Sandor, and Wildenbeest 2018), we assume that the match value is independently

and identically distributed.17

Furthermore, we make the following set of assumptions: we model consumer search conditional

on choice of car type. Consumers search for the same car type (most similar car) across dealerships.

And lastly, consumers learn about one car when visiting a dealership.

Consumer i = 1, . . . , N derives utility from product j = 1, . . . , Ji with utility uij given by

uij = δij + εij (1)

with

δij = xjβ + ηij,

ηij ∼ N(0, 1), and

εij ∼ N (0, σ) .

We partition what the consumer knows and does not know prior to searching. Prior to search, δij is

known by the consumer. It is composed of a vector of observable vehicle characteristics xj , a vector

of consumer preferences for those characteristics β, and consumer i’s product-specific idiosyncratic

preferences ηij , which are unobserved by the researcher but known by the consumer prior to search.

16Industry reports and prior literature suggest that at least 75% of consumers test drive a car before buying it (e.g.,
Moraga-Gonzalez, Sandor, and Wildenbeest 2018, https://www.prnewswire.com/news-releases/new-research-1-in-6-car-
buyers-skips-test-drive-nearly-half-visit-just-one-or-no-dealership-prior-to-purchase-255302891.html).

17We assume that εij is independent of δij as is common in the search literature (e.g., Kim, Albuquerque, and Bron-
nenberg 2010, Chen and Yao 2017). This assumption allows us to use the three Weitzman (1979) rules. Gardete and
Anthill (2020) relax this assumption allowing for correlation between εij and δij .
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The second component of utility, εij , is the product fit or match value. The consumer knows the

distributions of match values, N (0, σ), but she is uncertain about her specific match value εij and

must search to discover it.

Search is performed sequentially and at a cost. Searching a product completely reveals the con-

sumer’s match value with that product, but does not reveal information about any other product. The

cost of searching a product is parameterized as

cij = exp{γ0 + d′ijγ}. (2)

γ0 is a constant and d is a vector of the distance between the consumer’s home location and the deal-

ership of the searched product, an urban/rural indicator for the geographic location of the consumer,

and an interaction between the latter two variables. γ is a parameter vector for the search cost covari-

ates. Consumers are assumed to have perfect recall and there is no cost for a consumer to revisit an

already-searched product. Our data are conditional on search and purchase and we therefore do not

model the outside option of not searching and/or not making a purchase.

5.2 Optimal Consumer Behavior

A consumer searches a product if the marginal benefit of doing so exceeds her marginal search cost.

Since the match values εij follow N (0, σ), prior to search, the utilities uij follow N (δij, σ). Define

u∗i as the highest utility among the searched products thus far.18 Conditional on u∗i , a consumer’s

expected marginal benefit from searching product j is given by

Bij =
∫ ∞
u∗

i

(uij − u∗i ) fuij
(uij) duij

= Pr [εij > u∗i − δij]× E
[
εij − (u∗i − δij)

∣∣∣εij > u∗i − δij
]
.

(3)

This marginal benefit is the probability that the realized utility for j, uij , exceeds the best realized

utility among the already searched products, u∗i , multiplied by the expected value of uij given uij >

18For the first search, we set u∗
i = −∞ since our data are conditional on search.
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u∗i . As shown in Equation (3), the marginal benefit depends on the MVSD through the integration over

the utility distribution fuij
(uij). Holding everything else constant, a (symmetric) distribution with

larger variance has more mass in the tails of the distribution and thus has both a higher probability

that the next realized utility will exceed the currently best realized utility and a larger conditional

expected value. Therefore quantifying the MVSD informs us about the magnitude of the marginal

benefit from searching.

Weitzman (1979) derived the rules for optimal behavior under sequential search. The rules involve

“reservation utilities” zij , which are the utilities that equate the marginal cost and expected marginal

benefit of search. Kim, Albuquerque, and Bronnenberg (2010) show that there is a closed-form solu-

tion for calculating reservation utilities zij under the assumption of normally distributed match values:

zij = δij + ζij × σ (4)

with ζij coming from the implicit function

cij
σ

= φ(ζij)− ζij × (1− Φ(ζij)) . (5)

Note that ζij = zij−δij

σ
such that σ appears on both the left- and right-hand side of Equation (5). We

follow Kim, Albuquerque, and Bronnenberg (2010)’s approach for calculating reservation utilities.

Next, we formally state Weitzman’s (1979) rules. Because the rank of the reservation utilities is a

one-to-one mapping with the product index j, we cast the model using j as the order of the reservation

utilities such that j = 1 is the product with the highest reservation utility for the consumer and j = Ji

for the product with the lowest reservation utility. Let us denote the number of searches made by a

consumer asKi. For notational simplicity, we drop the consumer-specific subscript iwhile specifying

Weitzman’s (1979) rules.

Three rules govern consumer search and purchase behavior:
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1. Selection Rule: A consumer searches products in a decreasing order of reservation utilities, i.e.,

z1 ≥ z2 ≥ . . . ≥ zK ≥ max
l>K
{zl} . (6)

2. Stopping Rule: A consumer stops searching when the maximum realized utility among the

searched products is larger than the maximum reservation utility among the unsearched prod-

ucts, i.e.,

max
h≤K
{uh} ≥ max

l>K
{ul} . (7)

Equivalently, at each step during the search process, when a consumer decides to continue

searching, the opposite of the stopping rule must hold, i.e.,

max
h<k
{uh} < zk ∀k = 2, . . . , K. (8)

3. Choice Rule: A consumer purchases the alternative with the highest realized utility among the

searched ones, i.e.,

uj∗ = arg max
h≤K
{uh} . (9)

6 Estimation

6.1 Likelihood Function

The probability that a specific sequence of searches and an ultimate purchase are made by a con-

sumer is the probability that each of the Weitzman (1979) rules holds at their respective steps in the

consumer’s search and purchase process, i.e.,

20



Li(β, γ0,γ, σ;x,d)

= Prob
[
Consumer i selects j = 1 on the first search,

Continues to search and selects j = k on the kth search for k = 2, . . . , Ki,

Stops searching after the K th
i search, and purchases j∗i

]
=
∫
1

[
zij ≥ max

h<j
{uh} for j = 2, . . . , Ki

⋂
zij = arg max

k>j
{zik} for j = 1, . . . , Ki

⋂
max
h≤Ki

{uih} ≥ max
k>Ki

{zik}
⋂
uij∗

i
= arg max

h≤Ki

{uih}
]
dF (η,ε).

(10)

The model likelihood is the product of the N individual likelihoods, i.e.,

L (β, γ0,γ, σ;x,d) =
N∏
i=1

Li (β, γ0,γ, σ;x,d) . (11)

Note that we parametrize the MVSD as θ = log (σ) in all estimations. Neither the search nor

purchase probabilities can be expressed in closed form. We approximate the integrals in the likeli-

hood function with averages using logit-smoothed accept-reject simulation. This simulated maximum

likelihood estimation algorithm follows Train (2009). Details are provided in Appendix C.

6.2 Identification

The parameters to be estimated include the preference parameters β, search cost intercept γ0, param-

eters for the search cost covariates γ, and the MVSD σ.

The preference parameters β are identified by purchase frequency, search order, and search fre-

quency. In much the same way that the purchase decision among a set of products identifies preference

parameters in a traditional discrete choice model, the purchase decision among searched products

identifies preference parameters in a search model. In addition, because consumers search in order of

decreasing reservation utilities zij = δij + ζij × σ, holding everything else constant, products with

higher δij (= xjβ + ηij) have higher reservation utility values and are searched earlier and more

frequently.

With no exogenous search cost shifter (or other covariates), in our model, search cost are fixed,
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i.e., c = γ0. In such a case, the ratio of c
σ

is identified by variation in the number of searches. Holding

everything else constant, consumers search little when c
σ

is large and a lot when c
σ

is small. Variation

in the search order does not contribute to the identification of c
σ

. To see this, recall that consumers

search in decreasing order of reservation utilities which are a function of search cost and the MVSD

σ (see Equation (4)). If there is a common search cost across products and a common MVSD, then

ζij is the same for all products and the search order is entirely driven by δij .

Even without an exogenous search cost shifter, search cost c and MVSD σ are separately identi-

fied by parametric form. This can be seen in the implicit function cij

σ
= φ(ζij) − ζij × (1− Φ(ζij))

(Equation (5)). If σ were only part of the left-hand side of Equation (5), then c and σ would not be

separately identified, i.e., only their ratio would be parametrically identified. However, σ is also part

of the right-hand side of Equation (5) – note that ζij = zij−δij

σ
– ensuring parametric identification.

However, in practice, search cost c and MVSD σ cannot both be estimated as discussed by previous

literature (Kim, Albuquerque, and Bronnenberg 2010, Dong et al. 2020) and as illustrated in a simu-

lation study in the following section. Thus previous empirical research has commonly fixed σ to one

and only estimated c (e.g., Kim, Albuquerque, and Bronnenberg 2010, Chen and Yao 2017, Honka

and Chintagunta 2017, Kim, Albuquerque, and Bronnenberg 2017, Ursu 2018).

However, with an exogenous product-specific search cost shifter, i.e., distance to dealerships in

our empirical application, variation in this exogenous search cost shifter allows to separately estimate

both search cost cij (and its governing parameters γ) and the MVSD σ.19 To be precise, all parameters

in the search cost function but the search cost intercept are separately identified from the MVSD by

variation in data and functional form. Even after the inclusion of an exogenous search cost shifter,

the search cost intercept and MVSD continue to only be separately identified by functional form.

However, we find that the inclusion of a search cost shifter helps greatly with the estimation of the

search cost intercept and MVSD as we show through two simulation studies in the following section.

The reason that the parameters for the search cost covariates γ and the MVSD are separately

identified by variation in data is that both the number of searches and the search order inform cij and

σ which, in turn, influence reservation utilities (see Equation (4)). For example, higher search costs

19The exogenous search cost shifter has to be product-specific to affect the search order.
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yield lower ζij values. Thus a consumer who incurs higher cost to search a product will assign it a

lower reservation utility, rank it lower in the search order, and stop her search earlier (on average) than

an otherwise identical consumer facing an identical searchable set of products but with lower search

cost. Thus the observable differences in search cost due to the exogenous search cost shifter coupled

with the patterns of search order and search length identify the search cost parameters γ.

And lastly, a higher MVSD σ assigns a larger value to the second component of the reservation

utility (see Equation (4)). As a result, the extent to which the search order is driven by ζij × σ rather

than δij identifies the MVSD. In addition, with a larger MVSD (compared to a smaller MVSD) search

terminates later because, holding everything else constant, a larger MVSD results in a higher marginal

benefit from an additional search (see Equation (2)) and thus higher reservation utilities increasing

the probability that consumers continue searching. Thus, across consumers, the average number of

searches increases and the predicted distribution of the number of searches has a longer tail.

6.3 Simulation Studies

In this section, we describe the results from three simulation studies. In the first one, we show that

search cost and the MVSD cannot both be recovered without an exogenous search cost shifter. In the

second one, we demonstrate that our estimation approach recovers preference and cost parameters

as well as the MVSD parameter if an exogenous search cost shifter is included in the estimation. In

the third one, we show that, as MVSD increases, the average number of searches increases and the

distribution of the number of searches has a longer tail.

For the first and second simulation study, we generate 5,000 consumers each searching up to five

brands. The number of searchable dealerships is drawn from a combination of a chi-squared distribu-

tion and an exponential distribution so as to generally mimic the observed searchable set sizes in the

empirical application. These simulated searchable set sizes range from 1 to 40 with a median of 11

and a mean of 12. Observable characteristics include the brand as well as price and city mileage; the

latter two are drawn from uniform distributions on the interval −2 to 2. In the first simulation study,

consumers have fixed search cost of c = exp (0). In the second simulation study, consumer search cost
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are additionally a function of distance to dealerships, i.e., c = exp (0 + 0.3∗distance). Distances to

dealerships are drawn from the absolute value of the sum of a chi-squared distribution with 8 degrees

of freedom and a normal distribution with mean zero and standard deviation 16. Simulated distances

to the searchable alternatives range from 0.01 miles to 102.4 miles with a median of 15.5 and a mean

of 18.2 miles. The distributions of the number of searches in both simulation studies are generally

similar to the distribution of the number of searches in our empirical application. For example, in the

second simulation study, 87.7% of consumers search once, 11.4% of consumers search twice, 0.9%

of consumers searches three times, and 0.02% of consumers search four times.20

For estimation, we use 1,000 draws from the distributions of the consumers’ idiosyncratic pref-

erences and match-value terms and smoothing parameters of (15, 15, 15, 5). We replicate each esti-

mation 50 times and report mean coefficient estimates, their standard deviation, and average standard

errors. The results for the first and second simulation study are shown in Table 3. The top half of

Table 3 displays the results for the first simulation study in which consumers have fixed search cost,

i.e., without an exogenous search cost shifter. While the preference parameters are recovered well,

the average estimates of the search cost intercept and log (σ) are far off from their true values. This

simulation study illustrates that the functional form identification is not enough to separately estimate

search cost and MVSD without an exogenous search cost shifter as discussed in the previous section.

The bottom half of Table 3 shows the results for the second simulation study in which consumer

search cost are additionally a function of distance, i.e., with an exogenous search cost shifter. All

parameters are recovered well. Importantly, the true values of the search cost intercept and MVSD,

which continue to only be separately identified by functional form, can be recovered after the inclu-

sion of an exogenous search cost shifter. Note that some of the average parameter estimates are not

within two standard errors of their true values. This is not uncommon for search models estimated

using SMLE (see, e.g., Honka 2014, Ursu 2018, Ursu, Wang, and Chintagunta 2019).21

20In the first simulation study, 70.1% of consumers search once, 21.3% of consumers search twice, 6.3% of consumers
searches three times, 1.7% of consumers search four times, and 0.5% of consumers search five or six times.

21It is well-known that estimates obtained using a kernel-smoothed frequency estimator are only asymptotically unbi-
ased (McFadden 1989, Train 2009). The bias decreases as the scaling factor in the logit-smoothed function increases (see
Web Appendix C for our definition of the logit-smoothed function), i.e., as the steepness of the logit function increases.
However, increasing the scaling factor has to be balanced with the loglikelihood function retaining its smoothness and
differentiability for estimation (McFadden 1989, Train 2009).
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=========================

Insert Table 3 about here

=========================

For the third simulation study, we generate data sets with the same characteristics as in the second

simulation study but one exception: the MVSD. Recall that the MVSD is parametrized as log (σ).

In this simulation study, we set MVSD to five different values: log (2), 2, 5, 10, and 25, i.e., we

generate five data sets which only vary by the MVSD. For each data set, we simulate the number of

searches consumers make when optimally searching sequentially using the Weitzman (1979) rules.

We replicate this procedure 50 times.

The five distributions of the number of searches are shown in Figure 7. The black lines denote the

average number of searches.22 As expected, they show that, as MVSD increases, the average number

of searches increases and the distribution of the number of searches has a longer tail.

=========================

Insert Figure 7 about here

=========================

6.4 Unobserved Heterogeneity

The models estimated in this paper do not include unobserved heterogeneity (neither in preferences

nor in search costs). However, we allow for observed heterogeneity in search costs through the effects

of distance to dealerships, an urban dummy, and an interaction between distance to dealership and the

urban dummy. To identify unobserved heterogeneity in a continuous mixture model, a researcher must

observe consumers more than once, i.e., the data must have a panel structure. In the case of search

data, the researcher would have to observe multiple search spells per consumer (see, e.g., Dong et al.

2020).

In the following, we discuss several search papers that include unobserved heterogeneity in their

models: Kim, Albuquerque, and Bronnenberg (2010, 2017) include unobserved heterogeneity (in
22The distributions shown in Figure 7 are the average distributions across the 50 replications. The patterns that the

average number of searches increases and that the distribution of searches has a longer tail as MVSD increases hold both
on average as well as for each replication.
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preferences and search costs) in their models and estimate them using aggregate data. While Yao,

Wang, and Chen (2017) utilize both aggregate and individual-level data, in the estimation, the authors

only include aggregate moments calculated using the individual-level data. Thus the interpretation

of unobserved heterogeneity in these papers is the same as in Berry, Levinsohn, and Pakes (1995):

unobserved heterogeneity is not distinguishable from a more flexible error structure. Chen and Yao

(2017) and Honka (2014) both have cross-sectional, individual-level data. Chen and Yao (2017)

include unobserved heterogeneity in both preferences and search costs, while Honka (2014) only

includes unobserved heterogeneity in preferences. Identification of unobserved heterogeneity in these

two papers comes from parametric assumptions.

Our data do not have a panel structure, i.e., we do not observe multiple search spells per consumer.

In fact, given that we study the new car industry and the infrequent purchase occurrences in this

market, it is unlikely that data on multiple search spells per consumer is/will be available. Even if

such data were available, it is debatable whether the assumption of stable preferences would hold

over such long time periods in an evolving market.

Therefore – because our data are cross-sectional, i.e., we observe one search spell per consumer

– we include observed, but no unobserved heterogeneity in search costs in our model. If we were to

include unobserved heterogeneity, identification of such would come from parametric assumptions.

A model with unobserved heterogeneity (especially in search costs; with MVSD fixed to 1) would

also improve predictions in terms of the distribution of the number of searches (see Section 6.3)

compared to a model with no unobserved heterogeneity (with MVSD fixed to 1). But because our

data are cross-sectional, we only include observed heterogeneity in search costs in our model. If we

had access to panel data on search, we could separately identify MVSD from search costs that also

allow for unobserved heterogeneity.

7 Empirical Results

We show the results from three search model specifications in Table 4. In model (i), we fix the MVSD

to one and estimate a fixed cost of search. In model (ii), we continue to fix the MVSD to one, but
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allow search cost to vary with distance, an urban dummy, and an interaction between both variables.

In model (iii), we allow the MVSD σ to enter the model as a parameter to be estimated. In all three

model specifications, we include the same set of covariates as in the reduced-form choice models in

Section 4. Across the three model specifications, the utility parameter estimates are similar, generally

sharing the same sign, similar magnitude, and significance with the exception of the brand intercepts

for Nissan and Toyota. The utility parameter estimates also generally similar to the results from the

reduced-form choice models presented in Table 2.

=========================

Insert Table 4 about here

=========================

Comparing models (i) and (ii) in Table 4, the addition of distance, an urban dummy, and an

interaction between both variables to the search cost function leads to a much larger log-likelihood

value (a change of over 2,400). This improvement is driven by a better ability of the model to fit the

search order during the estimation process because consumers tend to visit dealerships close to their

homes. When distance is not included in the model, two dealerships are equivalent from a modeling

perspective if they offer a vehicle with the same characteristics even if one dealership is located next

to the consumer’s home and the other dealership is located 100 miles away.

In model (iii), our main model, we additionally also estimate the MVSD. The improvement of

over 700 in the log-likelihood is large and shows that model (iii) fits the data better than model (ii).

In addition, the correlation between log (σ) and the search cost intercept γ0 is 0.95. If a correlation

between two parameters equals ±1, then those two parameters are not separately identified. While a

correlation of 0.95 is high, it is not high enough to suggest concern for identification.23 The correla-

tions between all other estimated coefficients lie within ±0.8 with most being smaller than ±0.4.

The MVSD estimate is 8.16. This estimate is large compared to the common practice of setting

σ to 1. This large MVSD estimate indicates that consumers gain substantial benefits when visiting

car dealerships. The MVSD has an estimated standard error of 0.31 and a 95% confidence interval

23An alternative method to evaluate identification is to look at loglikelihood contour plots. These are available from
the authors upon request and confirm the separate identification of log (σ) and γ0.
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(3.88, 17.19).24 Note that the interval does not include 1. The parameter estimates for model (iii)

also indicate that fixing the MVSD to 1 imposes a bias on the other parameters, in particular, on the

cost parameters. More specifically, we find that the cost intercept is smaller, the urban intercept has a

different sign, and the coefficient on distance is estimated to be almost three times as large in model

(ii) as in model (iii). To demonstrate the differences visually, in Figure 8, we plot cij/σ for a rural

consumer over distances ranging from 0 to 100 miles for all three search models. The cij/σ value is

substantially different between model (ii) and (iii) for almost all positive distances. Thus we conclude

that it is important to estimate the MVSD to correctly recover search cost parameters.

It is important to note that the empirical findings related to the normalization of the MVSD to

one, which we discuss in this and in the next section, are specific to our model and our empirical

context. To put it differently, for a different product, the MVSD estimate might be close to one and

thus normalizing it to one would be relatively innocuous. Our model does also not include unob-

served heterogeneity – neither in preferences nor in search cost (see discussion in Section 6.4). It

is an (empirical) open question what the consequences of normalizing the MVSD to one in a model

with unobserved heterogeneity are. We speculate that (empirical) results will be biased, however,

that the magnitude of the bias might be smaller. In that sense, comparisons between our empirical

results based on a model without unobserved heterogeneity and empirical results from previous lit-

erature based on models with unobserved heterogeneity (e.g., Kim, Albuquerque, and Bronnenberg

2010, Kim, Albuquerque, and Bronnenberg 2017, Chen and Yao 2017, Dong et al. 2020) should be

conducted carefully.

Recall that our data are conditional on purchase. This does not affect the MVSD estimate since

this parameter is identified by consumers’ search behavior, i.e., search order and number of searches.

Thus MVSD is not affected by the inclusion of consumers who search, but do not end up making a

purchase (as long as these consumers come from the same population). Our data are also conditional

on search. For consumers who did not search (and did not buy a new car), searching must not have

been optimal. Searching is optimal when the maximum reservation utility of a product is larger than

the utility of the outside option. Reservation utilities are a function of consumer preferences, search

24We use the Delta method to calculate the standard error for σ.
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cost, and MVSD. In general, consumers are less likely to search if they have lower preferences,

higher search cost, and a smaller MVSD. It is unclear whether and how MVSD would change if non-

searchers were to be included in the data. This is the case because different scenarios are possible:

MVSD might be the same, but non-searchers might have lower preferences or higher search costs.

MVSD might be smaller making search less attractive. MVSD might be larger, but lower preferences

and higher search cost might outweight the effect of a larger MVSD. Thus we conclude that it is

unclear how the MVSD estimate would change if non-searchers were to be included in the data.

=========================

Insert Figure 8 about here

=========================

Zooming in on search cost, we find urban consumers to have smaller search cost than rural con-

sumers for dealerships fewer than 20 miles from their home. For larger distances, rural consumers’

search cost are smaller than urban consumers’ search cost. Following previous literature studying

demand for cars and car search (e.g., Albuquerque and Bronnenberg 2012, Moraga-Gonzalez, San-

dor, and Wildenbeest 2015, Nurski and Verboven 2016, Murry and Zhou 2020), we also calculate

distance-related search costs. For rural and urban consumers, our search cost estimates are $297

and $446 per mile, respectively. Compared to Albuquerque and Bronnenberg (2012) ($64 per mile),

Moraga-Gonzalez, Sandor, and Wildenbeest (2015) ($203 per mile), Nurski and Verboven 2016 ($212

per mile), and Murry and Zhou 2020 ($45 per mile), our estimates are somewhat higher. One potential

explanation for this finding is that our data are more recent than previous literature’s. Over the last

two decades, the number of dealership visits consumers conduct has decreased considerably. This

decline might be partially driven by higher travel cost.

7.1 Model Fit

We evaluate the in-sample predictive performance of the estimated models using several measures.

First, in Table 6, we show the product and brand hit rates for four models: full information multinomial

logit model (model (b) in Table 2) and the three search models (models (i) to (iii) in Table 4). The

“hit rate” is the percent of time that simulated behavior matches observed behavior. For example,
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the product hit rate is the average percent of time that the simulated-to-be-purchased product is the

same as the actually purchased product.25 The results show that all three search models considerably

outperform the multinomial logit model (model (b) in Table 2). Among the three search models,

added flexibility yields better hit rates. The product hit rate improves by about the same amount when

search costs are modeled as a function of distance and the urban dummy (model (ii) in Table 4) and

when additionally the MVSD is estimated (model (iii) in Table 4).

=========================

Insert Table 6 about here

=========================

Additionally, in the bottom half of Table 6, we display the distribution of the number of searches

consumers make (observed in our data) and the distributions of the number of searches that are pre-

dicted by the three search models from Table 4. While allowing search cost to vary with search cost

shifters (model (ii)) enables the model to more precisely predict which products (dealerships) con-

sumers search (see Section 7), model (ii) does not predict the distribution of the number of searches

well: it overpredicts the proportion of consumers who search once and underpredicts the proportion

of consumers who make two or more searches, i.e., the long tail of the distribution of the number of

searches. While the maximum number of searches consumers conduct is 6+ in our data, model (ii)

predicts that the maximum number of searches is three. Model (iii) – in which the MVSD is esti-

mated – provides by far the best fit to the observed distribution of number of searches. In other words,

permitting the MVSD to be freely estimated allows the model to fit the data better – in particular,

the long tail of the distribution of the number of searches. Model (iii) predicts the maximum number

of searches to be 5, while the maximum number of search in our data is 6+. To summarize, our re-

sults show that estimating the MVSD is crucial to correctly predict the distribution of the number of

searches and especially its long tail.

25We calculate the hit rates as follows: for each consumer, we simulate 500 vectors of the random utility errors ηi. For
each simulation, we calculate the consumer’s reservation utilities for each searchable product and allow search and choice
to progress following Weitzman’s rules. For each consumer and each simulation, we record the predicted search length,
the searched product(s), and the chosen product.
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7.2 Price Elasticities

We show the implied own-price elasticities for all three search models in Table 5. Elasticities are

calculated by first simulating search and choice behavior from the fitted model. Then, separately for

each brand, we increase the prices of available alternatives by 10% and re-simulate search and choice

behavior. We repeat this exercise 500 times for each consumer. Elasticities are computed as the

average difference in percent between the simulated outcomes with and without a 1% price increase.

=========================

Insert Table 5 about here

=========================

The own-price elasticity estimates range from -0.6 to -0.8. The elasticity estimates are influenced

by the following two assumptions: first, our model is conditional on consumers having selected the

type of vehicle they want to purchase. At some level of price increase or price decrease, consumers

would choose a different type of vehicle for purchase. Our model (and thus the price elasticities) does

not capture this behavior. And second, at some level of price increase or price decrease, consumers

might want to search a brand that is not among the five brands under study. Our model (and thus

the price elasticities) does not capture such behavior. While these two assumptions were useful in

easing the computational burden of fitting the model, they restrict the interpretability of the elasticity

estimates.

7.3 Consumer Surplus

While the MVSD is a direct measure of the magnitude of potential benefits achievable through search,

we also calculate consumer surplus as an alternative measure of benefits from search. For an individ-

ual consumer, consumer surplus is defined as the utility from the chosen product net of all costs (price

and search costs), i.e.,

E [CSi] =
∫
ε

∫
η

uij∗ −
Ki∑
j=1

cij

 dF (η) dF (ε). (12)
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Note that, because our data are on conditional on search and on purchase and thus we do not

model the no-search and no-purchase decisions, our consumer surplus estimates taking both prices

and search costs into account can be negative (see, e.g., Moraga-Gonzalez, Sandor, and Wildenbeest

2017). To calculate consumer surplus for a consumer, we simulate 500 realizations from a model and

average the resulting consumer surplus estimates for each consumer:

ĈSi = 1
Q

 Q∑
q=1

uqij∗ −
Kq

i∑
j=1

cqij

 . (13)

Figure 9 shows the distributions of consumer surplus from models (ii) and (iii). The mean con-

sumer surplus estimates for models (ii) and (iii) are -0.7 and -8.0, respectively. Thus normalizing the

MVSD to one severely overstates consumer surplus. Consumer surplus estimates from model (iii)

are smaller than those from model (ii) for the following reason: the estimated MVSD in model (iii)

is 8.16 and thus much larger than the value of one to which it is commonly fixed. To match up with

observed search behavior, the search cost estimate in model (iii) is estimated to be much larger than

the search cost estimate in model (ii). The consumer surplus formula shown in Equation (11) takes

all cost into account – both price and search cost. Thus higher cost are subtracted from the utility of

the chosen product and the consumer surplus is smaller.

=========================

Insert Figure 9 about here

=========================

Next, we assess the relationship between consumer surplus, consumer characteristics, and dis-

tance. To do so, we regress consumer surplus from model (iii), model (ii), and the difference in

consumer surplus estimates between the two models on a set of demographics and distance.26 The

results are displayed in Table 7. Overall, demographics and distance explain a very large proportion

of variation in consumer surplus: 40% based on model (iii) and 34% based on model (ii). When it

comes to the difference in consumer surplus between models (iii) and (ii), demographics and distance

explain 58% of the variation in the difference in consumer surplus.
26Distance (for each consumer) is measured as the average distance across all searched dealerships in Table 7. In

Appendix D, we assess the robustness of our results using two alternative measures of distance: average distance to all
searchable dealerships (in Table D-1) and distance to selling dealership (in Table D-2). The results are similar.
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=========================

Insert Table 7 about here

=========================

We find living in an urban area and belonging to a racial minority to be associated with higher

consumer surplus. Being older, having more kids, and a larger distance to dealerships is associated

with lower consumer surplus. We find no significant association between gender, income, education,

and unemployment rate and consumer surplus. Our results are similar to Lee (2019) who finds that

younger adults have higher consumer surplus from the adoption of smartphone devices than older

adults. While our results show no significant association between consumer surplus and household

income, Lee (2019) finds that households with higher incomes have higher consumer surplus. Lastly,

four variables are significant in predicting the difference in consumer surplus between model (iii) and

model (ii): age between 30 - 40 years (-), number of children (-), belonging to a racial minority (+),

and distance (-).

To summarize, in the new car market, normalizing the MVSD to one results in a severe over-

estimation of consumer surplus. Demographics and distance explain a large proportion of variation

in consumer surplus, namely, 40% in this market. And lastly, when it comes to buying a new car,

consumer surplus is significantly higher for consumers belonging to a racial minority and living in an

urban area, while it is significantly lower for older consumers and those with children.

8 Counterfactual

In 2017, Hyundai initiated a company-wide program called “Hyundai Drive” in which a consumer

can schedule a test drive of a Hyundai vehicle at a location that is convenient to her and a dealer will

bring the car to that location.27 This program reduces travel costs to a dealer, but does not eliminate

all search costs as it takes time to take the test drive and the mental costs of considering an alternative

continue to be present. Here, we assess the effects from adopting at-home test drive programs.

27Some dealers selling other-branded cars may also be offering at-home test drives. However, these are dealership-
specific programs. To the best of our knowledge, Hyundai is the only car brand that has a company-wide program to offer
at-home test drives.

33



Our empirical results show that distance-related cost represent, on average, 6% (8%) of total

search costs for rural (urban) consumers. When investigating the effects of a brand’s at-home test drive

programs, we set the distance-related search costs to this brand’s closest dealership to zero. Thus, the

consumer incurs no travel costs to “visit” that dealership. To calculate the impact of adopting at-home

test drives, we first simulate search and choice behavior for each consumer 500 times. Then, for each

brand, we set the distance of the closest dealership for each consumer to zero and re-simulate search

and choice behavior. We then calculate the average difference in search decisions and brand choices

from the base simulation to the counterfactual simulation.

We first study the effects of unilateral at-home test drive program implementations for each of

the five brands. We investigate changes in three outcomes: the probability that a consumer searches

a brand, the probability that a consumer purchases a brand conditional on searching it, and market

shares (unconditional purchase probabilities). The results are presented in the top half of Table 8.

Unilateral implementation of at-home tests drives permits brands to capture an additional 3.9–7.7

percentage points of the analyzed market. Because the five brands under study account for 60.1% of

the Texas auto market, this corresponds to overall market share changes of 2.3–4.6 percentage points

(holding constant the choices made by consumers who purchase other brands). If we decompose the

purchase decisions into search and conditional purchase decisions, we see, not surprisingly, that the

primary effect is on consumer search.28

=========================

Insert Table 8 about here

=========================

Comparing the market share increases in percent across the five car brands, we find that at-home

test drive programs yield the smallest increases for the American car manufacturers Chevrolet and

Ford and the largest increases for the Asian car manufacturers Honda, Nissan, and Toyota. This

“asymmetric” effect is not driven by a change in preferences, but by the dealership structure: Chevro-

let and Ford have about 210 dealerships each in Texas, while Honda, Nissan, and Toyota each have

55 to 80 dealerships (see Table 1). Thus, on average, consumers have to drive farther to get to a
28A decrease in search costs makes consumer search more, i.e., increases the size of consumers’ consideration sets. As

consideration sets increase in size, conditional purchase probabilities decrease because the denominator increases.
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Honda, Nissan, or Toyota dealership than to a Chevrolet or Ford dealership, i.e., distance is a larger

component of search cost for the former than the latter group of dealerships. With the implementation

of at-home test drive programs, search cost to visit Honda, Nissan, and Toyota dealerships decrease

more (in percent) than search cost to visit Chevrolet and Ford dealerships making the former relatively

more attractive to search than the latter. The relatively larger increase in the searches for Honda, Nis-

san, and Toyota than for Chevrolet and Ford carries through to the purchase decisions increasing the

market shares (in percent) of the former more than of the latter.

As a point of comparison, we conduct the same exercises with the estimates from model (ii) in

which the MVSD is fixed to one. We find the results to be roughly one third to one fourth of those

from model (iii) in which the MVSD is estimated. Specifically, estimated increases in market shares

under model (ii) range from 0.8 to 1.6 percentage points. Thus, failing to estimate MVSD yields

underestimated market share increases from the unilateral implementation of at-home test drives.

Next, we investigate the effects of three more scenarios: when Toyota and Honda (close substi-

tutes) implement at-home test drive programs, when Toyota and Ford (weak substitutes) implement

at-home test drive programs, and when all five brands implements at-home test drive programs. The

results are shown in Table 9. In the two scenarios in which two brands implement at-home test drive

programs, all brands implementing such a program increase their market shares. While Toyota and

Honda approximately equally benefit from at-home test drive programs, Toyota increases its market

shares about three times more than Ford. This result is consistent with the brands’ number of deal-

erships in Texas. When all five brands implement at-home test drive programs, Honda, Nissan, and

Toyota increase their market shares, while Chevrolet and Ford lose market shares. Not surprisingly,

the more brands implement at-home test drive programs, the smaller are the average market share

changes (in percent). In percentage points (after accounting for the five brands under study having

60.1% of the Texas auto market), Honda, Nissan, and Toyota increase their market shares by 0.66–

0.72 percentage points and Chevrolet and Ford decrease their market shares by 0.72–1.38 percentage

points. Thus at-home test drive programs are a more effective tool for car manufacturers with a thin

dealership network.
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=========================

Insert Table 9 about here

=========================

To summarize, we find that the primary effect of at-home test drive programs is, not surprisingly,

on consumer search. The effect on conditional purchase is minor. Failure to estimate the MVSD

results in an underprediction of market share changes due to at-home test drive programs by a factor

3 to 4. Further, brands with fewer dealerships benefit more from at-home test drive programs than

brands with more dealerships. This is the case because consumers have to travel farther to get to those

dealerships. Thus at-home test drive programs result in a bigger search cost reduction for brands with

fewer dealerships, making these brands much more attractive to search. In Texas, brands like Ford

and Chevrolet have about three to four times more dealerships than brands like Honda, Nissan, and

Toyota. Thus the three Asian car manufacturers in our data benefit more from at-home test drive

programs than the two U.S. car manufacturers. This “asymmetric” effect on market shares is not

driven by a change in consumer preferences, but by a change in search costs.

9 Limitations and Future Research

Our paper is not without limitations and offers opportunities for future research. First, for searched but

not purchased vehicles, we observe that a consumer visited a dealership, but not which specific car the

consumer was interested in. This is a limitation of our data. We therefore make the assumption that

the consumer was searching for similar cars across different dealerships. Second and related to the

first point, we do not observe whether a consumer considered one or multiple vehicles at a dealership.

We therefore make the assumption that the consumer considered one vehicle. This assumption is

supported by industry reports which suggest that consumers have a specific car type in mind when

visiting dealerships.29 Third, we do not model vehicle choice, only brand-dealer choice. It is left for

future research to extend the model to also incorporate vehicle choice.
29See, e.g.:

https://www.edmunds.com/car-buying/10-steps-to-finding-the-right-car-for-you.html;
https://santanderconsumerusa.com/learning-center/i-need-another-car-now-what;
https://growwithcars.com/wp-content/uploads/2014/05/2014.05-Consumer-Journey-Report Final.pdf.
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Fourth, as common in the search literature, we assume that the match value is independent of

the part of utility that is observed by the consumer prior to searching. This assumption allows us to

use the three decision rules developed by Weitzman (1979). At the same time, it is an assumption

that limits the flexibility of our model. In a recent working, Gardete and Anthill (2020) relax this

assumption and allow for correlation between the match value and the part of utility that is observed

by the consumer prior to searching. And lastly, the benefit provided by dealers might be heterogenous

varying with brand, dealership size or vehicle class. We leave it for future research to explore these

types of heterogeneity.

10 Conclusion

Prior to the Internet, store visits and the physical inspection of products played a prominent role

during consumers’ purchase process – especially for high-ticket durable goods such as automobiles.

Information on prices and vehicle features was difficult to obtain except via a dealership visit. During

the last 15 years, a wealth of online information sources have provided a low cost alternative to time

consuming dealership visits. Therefore it is an important empirical question whether dealerships

continue to provide (substantial) value to consumers in the Internet age.

To answer this question, it is necessary to separately quantify both the cost and the benefit of

search. We estimate a sequential search model for product fit and show that – with an exogenous

search cost shifter – both the cost and the benefit of search can be estimated. Our empirical results

show that the benefit provided by dealerships to consumers remains substantial. Consumers value

visiting dealerships and learning about their liking (or dislike) of more experiental product attributes.

This finding points to a continuously important role of physical stores in the Internet age. The actions

of online retailers in other product categories also corroborate this conclusion. Initially online-only

retailers, such as Warby Parker and Bonobos, have recently opened brick and mortar stores to provide

consumers with information that is difficult to communicate electronically.

Using our empirical results, we calculate consumer surplus and relate it to consumer demograph-

ics. We find that a surprisingly large proportion of the variation in consumer surplus in the new car
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market can be explained by demographics. And lastly, we evaluate the effects of at-home test drive

programs which decrease consumers’ search cost. We observe that at-home test drive programs in-

crease market shares of car brands with thin dealership networks and decrease market shares of car

brands with think dealership networks, i.e., have asymmetric effects. How changes in search costs

affect market structure for different products and in different markets warrants further examination

especially due to the recent search cost increases in offline shopping, i.e., store visits, due to Covid-

19.
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Figures and Tables

Figure 1: Home Locations

(a) Searcher Data
(from Safegraph)

(b) Buyer Data
(from Texas DMV)

Figure 2: Dealership Locations

(a) Texas Dealerships (b) Houston Dealerships
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Figure 3: Distribution of Number of Searches
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Figure 4: Consumers’ Distances to Dealerships
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Figure 5: Miles Beyond Closest Same-Brand Dealership to Selling Dealership
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Figure 7: Distributions of Number of Searches
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Figure 8: Comparison of Cost-Sigma Ratio vs Distance Across Fitted Search Models (Rural
Consumers)
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Figure 9: Consumer Surplus Based on Models (ii) and (iii)
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Table 1: Descriptive Statistics

Number of Purchases Number of Dealerships Mean Values of Purchased Vehicles
in Analysis Sample in Texas MSRP HP Engine Size City MPG

Chevrolet 1,222 212 $34,912 241 3.95 19.9
Ford 1,860 213 $36,670 259 3.31 18.7
Honda 981 56 $26,879 192 2.32 26.9
Nissan 652 64 $29,944 208 2.97 23.8
Toyota 1,796 79 $31,277 212 3.19 22.5

46



Table 2: Multinomial Logit Models

Model (a) Model (b) Model (c)
Full Information Full Information Limited Information
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

MSRP (in $10,000) −0.388∗∗ 0.034 −0.415∗∗ 0.037 −0.441∗∗ 0.169
Chevrolet −1.786∗∗ 0.069 −1.662∗∗ 0.071 −2.658∗∗ 0.450
Ford −1.283∗∗ 0.073 −1.104∗∗ 0.075 −2.190∗∗ 0.446
Nissan −0.143 0.073 −0.118 0.076 −0.027 0.378
Toyota 0.069 0.055 0.188∗∗ 0.056 −0.332 0.285
Large Vehicle x Chevrolet 1.349∗∗ 0.115 1.375∗∗ 0.119 2.017∗∗ 0.601
Large Vehicle x Ford 1.824∗∗ 0.110 1.922∗∗ 0.114 2.478∗∗ 0.611
Large Vehicle x Toyota −0.010 0.098 −0.064 0.101 −0.538 0.494
Horsepower (in 100) −1.013∗∗ 0.059 −1.050∗∗ 0.061 −0.989∗∗ 0.303
Engine Size 0.284∗∗ 0.034 0.324∗∗ 0.036 0.388∗∗ 0.186
MPG 0.085∗∗ 0.010 0.095∗∗ 0.011 0.027 0.053
MPG x Large Vehicle 0.016∗∗ 0.006 0.015∗∗ 0.006 0.034 0.031
Distance (in Miles) −0.219∗∗ 0.003
Number of Consumers 6, 511 6, 511 6, 511
Number of Products 175, 840 175, 840 7, 175
Log-Likelihood −18, 157 −13, 071 −381
BIC 36, 455 26, 247 867
Own-Price Elasticities

Chevrolet −1.18 −1.26 −0.88
Ford −1.21 −1.30 −0.92
Honda −1.00 −1.08 −0.54
Nissan −1.40 −1.50 −0.68
Toyota −1.20 −1.29 −0.81

Note: Asterisks indicate statistical significance at the 95% confidence level. The base brand is Honda.
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Table 3: Simulation Study

No Exogenous Cost Shifter

Average Standard Deviation Average Asymptotic
True Values Estimate of Estimates Standard Error

Brand 1 0.2 0.177 0.055 0.027
Brand 2 0.4 0.344 0.057 0.030
Brand 3 0.6 0.522 0.055 0.025
Brand 4 0.8 0.689 0.056 0.027
MSRP -0.5 -0.429 0.016 0.008
MPG 0.5 0.428 0.014 0.008
Cost Intercept 0 -20.900 6.499 10.983
Log Sigma 0.69 -3.976 0.309 0.386

With Exogenous Cost Shifter

Average Standard Deviation Average Asymptotic
True Values Estimate of Estimates Standard Error

Brand 1 0.2 0.178 0.088 0.038
Brand 2 0.4 0.374 0.064 0.045
Brand 3 0.6 0.540 0.066 0.042
Brand 4 0.8 0.714 0.080 0.038
MSRP -0.5 -0.443 0.023 0.012
MPG 0.5 0.445 0.023 0.011
Cost Intercept -2.0 -2.623 0.167 0.078
Distance 0.3 0.347 0.015 0.007
Log Sigma 0.69 0.439 0.059 0.024
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Table 4: Search Model Results

Model (i) Model (ii) Model (iii)
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Preference Parameters
MSRP (in $10,000) −0.182∗∗ 0.018 −0.186∗∗ 0.019 −0.202∗∗ 0.020
Chevrolet −0.807∗∗ 0.035 −0.787∗∗ 0.034 −0.803∗∗ 0.038
Ford −0.602∗∗ 0.037 −0.579∗∗ 0.039 −0.578∗∗ 0.040
Nissan −0.068∗∗ 0.038 −0.063 0.040 −0.073 0.039
Toyota 0.047 0.031 0.072∗∗ 0.030 0.097∗∗ 0.033
Large Vehicle x Chevrolet 0.611∗∗ 0.059 0.611∗∗ 0.060 0.670∗∗ 0.066
Large Vehicle x Ford 0.886∗∗ 0.056 0.823∗∗ 0.060 1.020∗∗ 0.064
Large Vehicle x Toyota 0.028 0.053 0.011 0.054 0.046 0.058
Horsepower (in 100) −0.473∗∗ 0.030 −0.501∗∗ 0.031 −0.518∗∗ 0.034
Engine Size 0.132∗∗ 0.019 0.146∗∗ 0.018 0.151∗∗ 0.021
MPG 0.042∗∗ 0.005 0.042∗∗ 0.006 0.044∗∗ 0.006
MPG x Large Vehicle 0.005 0.003 0.006 0.003 0.004 0.004

Log Search Cost Parameters
Intercept 0.361∗∗ 0.018 0.273∗∗ 0.043 2.250∗∗ 0.040
Urban 0.203∗∗ 0.048 −0.055∗∗ 0.015
Distance (in Miles) 0.017∗∗ 0.001 0.006∗∗ 0.000
Urban x Distance 0.002∗∗ 0.001 0.003∗∗ 0.000

Match-Value Standard Deviation
Sigma 1.00 1.00 8.16∗∗ 0.310

Number of Consumers 6, 511 6, 511 6, 511
Number of Products 175, 840 175, 840 175, 840
Log-Likelihood −20, 765 −18, 362 −17, 652
BIC 41, 645 36, 872 35, 453

Note: Asterisks indicate statistical significance at the 95% confidence level. The base brand is Honda.
Optimization via BFGS with relative tolerance convergence criterion set to 1e-6. Simulated likelihood
using Q=1,000 independent random draws of the random utility error and the match-value distribution.
Search costs are parameterized as cij = exp{γ0 + γ1Urban + γ2Distance + γ3Urban × Distance}.

Table 5: Own-Price Elasticities

Model (i) Model (ii) Model (iii)
Chevrolet −0.79 −0.78 −0.74
Ford −0.70 −0.69 −0.67
Honda −0.60 −0.59 −0.57
Nissan −0.74 −0.74 −0.72
Toyota −0.62 −0.61 −0.59
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Table 6: In-Sample Predictive Performance

Model (b) Model (i) Model (ii) Model (iii)
Hit Rates in % from Table 2 from Table 4 from Table 4 from Table 4
Product Hit Rate 8.4 10.4 14.9 19.4
Brand Hit Rate 30.0 39.4 39.8 39.9

Model (i) Model (ii) Model (iii)
Observed from Table 4 from Table 4 from Table 4

Number of Searches (Data) (Predicted) (Predicted) (Predicted)
1 91.1% 96.2% 98.7% 88.5%
2 7.8% 3.7% 1.3% 10.3%
3 0.9% 0.1% 0.1% 1.1%
4 0.2% - - 0.1%
5 0.1% - - 0.1%
6+ 0.1% - - -
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Table 7: Consumer Surplus and Demographics

Model (iii) Model (ii) Model (iii) - Model (ii)
(1) (2) (3) (4) (5) (6)

Urban Indicator 0.792∗∗ 0.666∗∗ −0.069∗∗ −0.230∗∗ 0.861∗∗ 0.896∗∗

(0.023) (0.029) (0.019) (0.022) (0.011) (0.015)

Median Age 30 - 40 −0.025 −0.076∗∗ 0.035 −0.052∗∗ −0.060∗∗ −0.024∗∗

(0.024) (0.023) (0.020) (0.018) (0.012) (0.012)

Median Age 40 + −0.115∗∗ −0.141∗∗ −0.050∗∗ −1.116∗∗ −0.065∗∗ −0.025
(0.030) (0.030) (0.025) (0.023) (0.015) (0.015)

Percent Male 0.228 0.241 0.184 0.135 0.044 0.106
(0.178) (0.170) (0.149) (0.131) (0.089) (0.088)

log(Number of Kids) −0.062∗∗ −0.072∗∗ −0.040∗∗ −0.056∗∗ −0.022∗∗ −0.015∗∗

(0.010) (0.010) (0.008) (0.007) (0.005) (0.005)

Percent with College Degree 0.215∗∗ −0.001 0.281∗∗ −0.006 −0.066∗∗ 0.005
(0.051) (0.051) (0.043) (0.040) (0.026) (0.027)

log(Income in $1,000) 0.016∗∗ 0.0002 0.020∗∗ 0.002 −0.004 −0.002
(0.007) (0.007) (0.006) (0.006) (0.004) (0.004)

Unemployment Rate 0.238 0.097 0.302 0.115 −0.065 −0.019
(0.207) (0.201) (0.173) (0.156) (0.104) (0.105)

Percent Black 0.675∗∗ 0.346∗∗ 0.789∗∗ 0.317∗∗ −0.114∗∗ 0.029
(0.069) (0.072) (0.058) (0.055) (0.034) (0.037)

Percent Other Race 0.946∗∗ 0.644∗∗ 0.972∗∗ 0.517∗∗ −0.025 0.127∗∗

(0.080) (0.081) (0.067) (0.062) (0.040) (0.042)

Distance −0.010∗∗ −0.010∗∗ −0.002 −0.004∗∗ −0.008∗∗ −0.006∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Intercept −8.921∗∗ −8.178∗∗ −1.058∗∗ −0.039 −7.863∗∗ −8.139∗∗

(0.129) (0.134) (0.108) (0.104) (0.064) (0.070)

Month Fixed Effects No Yes No Yes No Yes
County Fixed Effects No Yes No Yes No Yes

Number of Observations 6,511 6,511 6,511 6,511 6,511 6,511
R2 0.284 0.393 0.080 0.337 0.539 0.578

Note: Standard errors reported in parentheses. Asterisks indicate statistical significance at the 95% confidence
level. Distance is the average (across searches for one consumer) distance in miles to searched dealerships.
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Table 8: Unilateral Adoption of At-Home Test Drives

Brand Adopting No At-Home With At-Home Change in
At-Home Test Drives Test Drives Test Drives Percent

Model (iii)

Market Share
Honda 0.145 0.194 34.2%
Chevrolet 0.200 0.247 23.4%
Ford 0.286 0.338 18.0%
Nissan 0.093 0.132 41.3%
Toyota 0.276 0.353 28.0%

Probability of Search
Honda 0.163 0.221 35.4%
Chevrolet 0.225 0.281 24.4%
Ford 0.323 0.384 18.8%
Nissan 0.106 0.151 42.7%
Toyota 0.311 0.402 29.0%

Probability of Purchase Conditional on Search
Honda 0.904 0.896 -0.9%
Chevrolet 0.903 0.898 -0.6%
Ford 0.911 0.907 -0.5%
Nissan 0.897 0.886 -1.2%
Toyota 0.909 0.903 -0.7%

Model (ii)

Market Share
Honda 0.148 0.164 11.3%
Chevrolet 0.198 0.211 6.4%
Ford 0.283 0.298 5.1%
Nissan 0.096 0.109 13.8%
Toyota 0.275 0.302 9.8%

Probability of Search
Honda 0.149 0.167 11.9%
Chevrolet 0.201 0.214 6.8%
Ford 0.287 0.303 5.5%
Nissan 0.097 0.111 14.4%
Toyota 0.279 0.307 10.3%

Probability of Purchase Conditional on Search
Honda 0.990 0.985 -0.5%
Chevrolet 0.988 0.985 -0.3%
Ford 0.989 0.987 -0.3%
Nissan 0.988 0.982 -0.6%
Toyota 0.990 0.986 -0.4%
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Table 9: Additional Counterfactual Predictions Based on Model (iii)

No At-Home With At-Home Change in
Brand Test Drives Test Drives Percent

Toyota & Honda

Market Share
Honda 0.145 0.172 19.2%
Chevrolet 0.200 0.172 -14.0%
Ford 0.286 0.247 -13.7%
Nissan 0.093 0.081 -13.8%
Toyota 0.276 0.328 19.0%

Probability of Search
Honda 0.163 0.197 20.4%
Chevrolet 0.225 0.194 -14.1%
Ford 0.323 0.279 -13.6%
Nissan 0.106 0.091 -13.7%
Toyota 0.311 0.374 20.0%

Probability of Purchase Conditional on Search
Honda 0.904 0.894 -1.1%
Chevrolet 0.903 0.901 -0.3%
Ford 0.911 0.908 -0.3%
Nissan 0.897 0.895 -0.3%
Toyota 0.909 0.901 -0.9%

Toyota & Ford

Market Share
Honda 0.145 0.121 -16.2%
Chevrolet 0.200 0.163 -18.8%
Ford 0.286 0.305 6.6%
Nissan 0.093 0.079 -16.0%
Toyota 0.276 0.333 20.7%

Probability of Search
Honda 0.163 0.137 -16.1%
Chevrolet 0.225 0.183 -18.7%
Ford 0.323 0.347 7.4%
Nissan 0.106 0.089 -15.9%
Toyota 0.311 0.379 21.7%

Probability of Purchase Conditional on Search
Honda 0.904 0.902 -0.2%
Chevrolet 0.903 0.901 -0.3%
Ford 0.911 0.904 -0.8%
Nissan 0.897 0.894 -0.3%
Toyota 0.909 0.901 -0.8%

All Brands

Market Share
Honda 0.145 0.156 8.1%
Chevrolet 0.200 0.188 -5.9%
Ford 0.286 0.263 -8.1%
Nissan 0.093 0.104 11.5%
Toyota 0.276 0.288 4.6%

Probability of Search
Honda 0.163 0.179 9.3%
Chevrolet 0.225 0.214 -5.1%
Ford 0.323 0.299 -7.3%
Nissan 0.106 0.119 12.8%
Toyota 0.311 0.329 5.6%

Probability of Purchase Conditional on Search
Honda 0.904 0.892 -1.4%
Chevrolet 0.903 0.893 -1.2%
Ford 0.911 0.900 -1.3%
Nissan 0.897 0.883 -1.5%
Toyota 0.909 0.897 -1.3%
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Appendix A: Details on Analysis Data Set Construction

Combining Search and Purchase Data

There is no unique identifier in the Safegraph dealership visit data that corresponds to information

in the Texas DMV registrations data to indicate which search sequence corresponds to which pur-

chased vehicle. Therefore, to merge these two datasets, we employ the following algorithm: first, the

algorithm finds a search sequence that includes a visit to the selling dealership prior to the vehicle

registration date, and second, the algorithm requires that the home location of the searcher and of

the buyer are approximately the same. In the following, we provide more details on the employed

algorithm.

First, recall that the home location of a mobile device user in the search data is estimated by

Safegraph and provided as a geohash-8 while the purchase data from the Texas DMV provides the

registrant’s street address. We geocode both sets of location information as latitude and longitude

coordinates. For the search data, we use the center of the geohash; for the purchase data, we use

coordinates from the GoogleMaps API.

We then require that the two home locations are in close proximity. To do so, we calculate the

distance between each of the 154,000 mobile device home locations in the dealership visits data and

each of the 264,000 unique registrant’s home addresses in the purchase data using the Haversine

great-circle distance measure, which is the shortest distance between two points on a sphere. Due

to computer memory constraints, for each mobile device home location, we retain up to a maximum

of 50 “potential merges” (i.e., registered vehicles) where the distance between the home locations is

one-fifth of a mile or closer. In short, we find up to 50 vehicle sales that could potentially be the result

of each observed search sequence.

Next, we evaluate potential merges in increasing order of distance. For each potential merge, we

assess whether the mobile device had visited the selling dealership and whether that visit occurred

on or before the vehicle registration date. If so, we merge that search sequence with that purchased

vehicle, and we discard all other potential merges involving that search sequence or vehicle. If,

instead, the potential merge involved home locations that were close in proximity but where the mobile
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device had not visited the selling dealership on or before the registration date, we discard that potential

merge. We then evaluate the next (in terms of shortest distance) potential merge. The process proceeds

until all potential merges are evaluated and either accepted or discarded.

With this algorithm, we find the purchased vehicle for 12,065 search sequences. This represents

9.5% of the mobile devices in the Safegraph data and 6.2% of the vehicle registrations in the Texas

DMV data. These figures appear reasonable for the following reasons: first, the search data also

include dealership visits for consumers who were shopping for used vehicles or who were taking a

currently owned vehicle to a dealership’s service department for maintenance – both activities are

likely to occur with greater frequency than new car shopping. Second, the search data also include

dealership visits by consumers who searched, but did not purchase a new vehicle. And third, the

search data purportedly represent 5%–10% of U.S. mobile devices and thus it is expected that these

data capture approximately the same percentage of new car purchases.

The Searchable Set of Dealerships

In much the same way that a multinomial discrete choice model requires information on the chosen

product as well as the products not chosen, our structural search model requires information on the

set of (potentially) searchable products. Across the 35 brands, there are more than 1,100 dealerships

in the state of Texas. To ease the computational burden imposed by such a large set of searchable

products, we take two steps.

First, we limit the analysis to the five brands with the largest market shares in Texas during the

sample period, which are Chevrolet, Ford, Honda, Nissan, and Toyota. This set of brands has a

combined market share of 60%. Focusing the analysis on these brands requires that we also limit

the data to consumers who purchased these brands and whose search histories only include visits to

dealerships that carry these brands. This reduces the sample size to 7,051 consumers.

Second, we limit the searchable set of dealerships to any dealership within a particular radius of

the consumer – twice the 70th percentile of the distance between the home location of a car buyer

and the selling dealership. We do so by county and also differentiating between rural and urban
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consumers. In the following, we provide more details on this data cleaning procedure.

We limit the searchable set of dealerships to any dealership within a particular radius of the con-

sumer. To define the radius for each consumer, we first partition consumers into urban and rural

consumers. Urban consumers are those who live within the city limits of any major city (where major

is defined as a city with a population exceeding 100,000 inhabitants) and rural consumers live out-

side of these major cities. For urban consumers in each major city and for rural consumers in each

county (excluding inhabitants of the major cities in that county), we assign a radius as twice the 70th

percentile of the distance between the home location of a car buyer and the selling dealership. We

calculate these distance distributions from the original data set containing 195,000 Texas DMV new

vehicle registrations.

For example, suppose a consumer lives in the rural part of Dallas County and our data contain

10,000 new vehicle registrations with the Texas DMV from rural residents of Dallas County. We

calculate the 70th percentile of the distance between those 10,000 residents’ home and the selling

dealerships. Suppose this value is 30 miles. Then for each consumer in the analysis sample who

lives in the rural part of Dallas County, we assign a radius of 60 miles. Therefore, the searchable

set of dealerships for rural Dallas County residents includes any dealership within 60 miles of the

consumer’s home location. Note that this set of dealerships may differ across rural residents of Dallas

County if some dealerships are within 60 miles of some consumers’ homes, but others are not.

The average radiuses for urban and rural consumers are 29.6 and 33.5 miles, respectively. We find

that 7.6% of consumers search or purchase a vehicle from a dealership outside of their assigned radius

and exclude these consumers from the analysis sample. This step reduces the sample size to 6,511

consumers making 7,175 dealership visits.

The Searchable Set of Vehicles

Through the process of merging the search and purchase data, we know which vehicle each individual

consumer purchased at which selling dealership. However, for all dealerships she visited but did not

make a purchase, we do not observe which vehicle she searched. Further, for all dealerships the
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consumer decided not to visit, we do not observe which vehicle she would have searched if she had

decided otherwise. To estimate the structural search model, we need both pieces of information. We

make the following set of assumptions about searched and potentially searchable vehicles.

For each consumer and each searchable dealership identified by the process outlined in the pre-

vious section, we assume that there is one most preferred vehicle that could be searched, i.e., if the

consumer were to visit a particular dealership, she would have searched only her most preferred vehi-

cle at that dealership. It is important to note that the most preferred vehicle at a particular dealership

is consumer-specific: if the same dealership is searchable by multiple consumers, each consumer has

her own most preferred vehicle at that dealership. To identify this consumer-specific, most preferred

vehicle at each dealership, we impose two criteria: the potentially searched vehicle must be in that

dealership’s inventory and it must be of the same Edmunds type as the vehicle ultimately purchased

by the consumer. The latter assumption is equivalent to assuming that consumers search for a specific

vehicle conditional on having decided the type of vehicle they would like to buy.

To identify the consumer-specific, most preferred vehicle at each dealership, we impose two cri-

teria: the potentially searched vehicle must be in that dealership’s inventory and it must be of the

same Edmunds type as the vehicle ultimately purchased by the consumer. More specifically, “in-

ventory” is defined as any model sold by that dealership during the 16 months for which the Texas

DMV registration data are available.30 This criteria enforces that consumers can only search for a

model at a particular dealership if that dealership has ever carried and sold that model. In addition to

being in inventory, the searched vehicle must be of the same Edmunds type as the vehicle ultimately

purchased by the consumer. This assumption is equivalent to assuming that consumers search for a

specific vehicle conditional on having decided the type of vehicle they would like to buy.

To continue the example, suppose the rural Dallas County consumer is observed to purchase a

2017 Nissan Versa Note and that her searchable set of dealerships includes XYZ Chevrolet. Accord-

ing to Edmunds, two Chevrolet vehicles are of the same type (type: “Extra-Small Hatchback”) as the

Nissan Versa Note: the Chevrolet Spark and the Chevrolet Sonic. Suppose that the Texas DMV reg-

30A model is a particular combination of model year, make, and model. For example, one model is a 2017 Toyota
Corolla.
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istrations data show that the XYZ Chevrolet dealership sold zero 2017 Chevrolet Sparks and nineteen

2017 Chevrolet Sonics. Then the searchable vehicle for our example consumer at XYZ Chevrolet is

assumed to be the 2017 Chevrolet Sonic because (i) it has the same model year and the same Edmunds

type as the purchased vehicle and because (ii) it was in inventory at the searched dealership.31

Finally, we must also infer the set of vehicle characteristics for each searchable vehicle. Follow-

ing previous literature (e.g., Albuquerque and Bronnenberg 2012, Moreno and Terwiesch 2017), we

impute these characteristics. To do so, we compute the median values (for numeric characteristics)

and modal values (for categorical characteristics) by model and dealership. Thus if the rural Dallas

County consumer could search a 2017 Chevrolet Sonic at two different Chevrolet dealers (say ABC

Chevrolet and XYZ Chevrolet), the city mileage of the 2017 Sonic at ABC Chevrolet depends on

the city mileage of the other 2017 Sonics sold by ABC Chevrolet and differs from the city mileage

calculated for the 2017 Sonic at XYZ Chevrolet.
31In the event that multiple vehicles meet these criteria, the vehicle that is ranked highest according to Edmunds.com

is selected as the most-preferred vehicle.
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Appendix B: Distance to Dealerships by Education, Race, and Age

Figure B-1: Distance Histograms by Brand and Education
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Figure B-2: Distance Histograms by Brand and Race
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Figure B-3: Distance Histograms by Brand and Age
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Appendix C: Kernel-Smoothed Frequency Simulator

Neither the search nor purchase probabilities can be expressed in closed form. We approximate the

integrals in the likelihood function with averages using logit-smoothed accept-reject simulation. This

simulated maximum likelihood estimation algorithm follows Train (2009) and is outlined in the fol-

lowing steps:

1. Do steps 2–4 for each consumer i = 1, . . . , N

2. Draw Q values from the density fε(ε) for each of the Ki searches for a total of Q · Ki draws

and draw Q values from the density fη(η) for a total of Q · Ji draws

3. For each set of random draws:

(a) Compute ν1,j = zij −maxh≤j {uih} for j = 2, . . . , Ki

(b) Compute ν2,j = zij −maxk>j {zik} for j = 1, . . . , Ki

(c) Compute ν3 = maxh≤Ki
{uih} −maxk>j {zik}

(d) Compute ν4 = uij∗
i
−maxh≤Ki

{uih} for the chosen j∗i

(e) Compute the simulated individual likelihood given one set of draws:

L̃qi =
1 +

Ki∑
j=2

e−λ1ν1,j +
Ki∑
j=1

e−λ2ν2,j + e−λ3ν3 + e−λ4ν4

−1

4. Average the draw-specific simulated individual likelihoods over the draws:

L̃i = 1
Q

Q∑
q=1

L̃qi

5. Take logs and aggregate the individual-specific likelihoods over individuals to form the total

simulated log-likelihood function:

log
(
L̃
)

=
N∑
i=1

log
(
L̃i
)
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Computing time when fitting the sequential search model is directly proportional to the number

of draws used to approximate the integrals in the likelihood function. However, a large number of

draws is necessary to achieve a good approximation. When calculating each individual likelihood, we

therefore use 1, 000 draws for ηij and 1, 000 draws for εij . By comparison, Kim, Albuquerque, and

Bronnenberg (2017) use 40 draws when testing the kernel-smoothed AR estimation approach; Honka

(2014) and Ursu (2018) use 50 draws to estimate their search models with the same approach.
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Appendix D: Consumer Surplus Regressions

Table D-1: Consumer Surplus and Demographics: Distance to Searchable Dealerships

Model (iii) Model (ii) Model (iii) - Model (ii)
(1) (2) (3) (4) (5) (6)

Urban Indicator 0.791∗∗ 0.664∗∗ −0.071∗∗ −0.232∗∗ 0.861∗∗ 0.896∗∗

(0.023) (0.029) (0.019) (0.022) (0.011) (0.015)

Median Age 30 - 40 −0.023 −0.075∗∗ 0.035 −0.052∗∗ −0.059∗∗ −0.024
(0.024) (0.023) (0.020) (0.018) (0.012) (0.015)

Median Age 40 + −0.113∗∗ −0.139∗∗ −0.049∗∗ −0.115∗∗ −0.063∗∗ −0.024
(0.030) (0.030) (0.025) (0.023) (0.015) (0.015)

Percent Male 0.229 0.243 0.185 0.136 0.044 0.106
(0.178) (0.170) (0.149) (0.131) (0.089) (0.088)

log(Number of Kids) −0.062∗∗ −0.072∗∗ −0.040∗∗ −0.056∗∗ −0.022∗∗ −0.015∗∗

(0.010) (0.010) (0.008) (0.007) (0.005) (0.005)

Percent with College Degree 0.216∗∗ 0.001 0.281∗∗ −0.006 −0.065∗∗ 0.006
(0.051) (0.051) (0.043) (0.040) (0.026) (0.027)

log(Income in $1,000) 0.016∗∗ −0.001 0.020∗∗ 0.002 −0.004 −0.002
(0.007) (0.007) (0.006) (0.006) (0.004) (0.004)

Unemployment Rate 0.238 0.098 0.302 0.115 −0.064 −0.017
(0.207) (0.201) (0.173) (0.155) (0.104) (0.105)

Percent Black 0.674∗∗ 0.344∗∗ 0.788∗∗ 0.317∗∗ −0.114∗∗ 0.027
(0.069) (0.072) (0.058) (0.055) (0.034) (0.037)

Percent Other Race 0.946∗∗ 0.644∗∗ 0.971∗∗ 0.516∗∗ −0.025 0.128∗∗

(0.080) (0.081) (0.067) (0.062) (0.040) (0.042)

Distance −0.010∗∗ −0.011∗∗ −0.002 −0.004∗∗ −0.008∗∗ −0.006∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Intercept −8.921∗∗ −8.176∗∗ −1.057∗∗ −0.037 −7.864∗∗ −8.139∗∗

(0.129) (0.134) (0.108) (0.104) (0.064) (0.579)

Month Fixed Effects No Yes No Yes No Yes
County Fixed Effects No Yes No Yes No Yes

Number of Observations 6,511 6,511 6,511 6,511 6,511 6,511
R2 0.285 0.394 0.081 0.337 0.540 0.584

Note: Standard errors reported in parentheses. Asterisks indicate statistical significance at the
95% confidence level. Distance is the average distance in miles to searchable dealerships.
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Table D-2: Consumer Surplus and Demographics: Distance to Selling Dealership

Model (iii) Model (ii) Model (iii) - Model (ii)
(1) (2) (3) (4) (5) (6)

Urban Indicator 0.792∗∗ 0.666∗∗ −0.069∗∗ −0.230∗∗ 0.861∗∗ 0.896∗∗

(0.023) (0.029) (0.019) (0.022) (0.011) (0.015)

Median Age 30 - 40 −0.025 −0.076∗∗ 0.035 −0.052∗∗ −0.060∗∗ −0.024∗∗

(0.024) (0.023) (0.020) (0.018) (0.012) (0.012)

Median Age 40 + −0.115∗∗ −0.141∗∗ −0.050∗∗ −1.116∗∗ −0.065∗∗ −0.025
(0.030) (0.030) (0.025) (0.023) (0.015) (0.015)

Percent Male 0.228 0.241 0.184 0.135 0.044 0.106
(0.178) (0.170) (0.149) (0.131) (0.089) (0.088)

log(Number of Kids) −0.062∗∗ −0.072∗∗ −0.040∗∗ −0.056∗∗ −0.022∗∗ −0.015∗∗

(0.010) (0.010) (0.008) (0.007) (0.005) (0.005)

Percent with College Degree 0.215∗∗ −0.001 0.281∗∗ −0.006 −0.066∗∗ 0.005
(0.051) (0.051) (0.043) (0.040) (0.026) (0.027)

log(Income in $1,000) 0.016∗∗ 0.0002 0.020∗∗ 0.002 −0.004 −0.002
(0.007) (0.007) (0.006) (0.006) (0.004) (0.004)

Unemployment Rate 0.238 0.097 0.302 0.115 −0.065 −0.019
(0.207) (0.201) (0.173) (0.156) (0.104) (0.105)

Percent Black 0.675∗∗ 0.346∗∗ 0.789∗∗ 0.317∗∗ −0.114∗∗ 0.029
(0.069) (0.072) (0.058) (0.055) (0.034) (0.037)

Percent Other Race 0.946∗∗ 0.644∗∗ 0.972∗∗ 0.517∗∗ −0.025 0.127∗∗

(0.080) (0.081) (0.067) (0.062) (0.040) (0.042)

Distance −0.010∗∗ −0.010∗∗ −0.002 −0.004∗∗ −0.008∗∗ −0.006∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Intercept −8.921∗∗ −8.178∗∗ −1.058∗∗ −0.039 −7.863∗∗ −8.139∗∗

(0.129) (0.134) (0.108) (0.104) (0.064) (0.070)

Month Fixed Effects No Yes No Yes No Yes
County Fixed Effects No Yes No Yes No Yes

Number of Observations 6,511 6,511 6,511 6,511 6,511 6,511
R2 0.284 0.393 0.080 0.337 0.539 0.578

Note: Standard errors reported in parentheses. Asterisks indicate statistical significance
at the 95% confidence level. Distance is the distance in miles to the selling dealership.
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Appendix E: Complete Counterfactual Predictions

Table E-1: Toyota and Honda Adopt At-Home Test Drives

No At-Home With At-Home Change in
Brand Test Drives Test Drives Percent

Model (iii)

Market Share
Honda 0.145 0.172 19.2%
Chevrolet 0.200 0.172 -14.0%
Ford 0.286 0.247 -13.7%
Nissan 0.093 0.081 -13.8%
Toyota 0.276 0.328 19.0%

Probability of Search
Honda 0.163 0.197 20.4%
Chevrolet 0.225 0.194 -14.1%
Ford 0.323 0.279 -13.6%
Nissan 0.106 0.091 -13.7%
Toyota 0.311 0.374 20.0%

Probability of Purchase Conditional on Search
Honda 0.904 0.894 -1.1%
Chevrolet 0.903 0.901 -0.3%
Ford 0.911 0.908 -0.3%
Nissan 0.897 0.895 -0.3%
Toyota 0.909 0.901 -0.9%

Model (ii)

Market Share
Honda 0.148 0.157 6.6%
Chevrolet 0.198 0.188 -5.2%
Ford 0.283 0.269 -5.0%
Nissan 0.096 0.092 -4.5%
Toyota 0.275 0.294 6.9%

Probability of Search
Honda 0.149 0.160 7.2%
Chevrolet 0.201 0.190 -5.2%
Ford 0.287 0.273 -5.0%
Nissan 0.097 0.093 -4.5%
Toyota 0.279 0.299 7.4%

Probability of Purchase Conditional on Search
Honda 0.990 0.985 -0.5%
Chevrolet 0.998 0.988 0.0%
Ford 0.990 0.989 0.0%
Nissan 0.988 0.988 0.0%
Toyota 0.990 0.986 -0.4%
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Table E-2: Toyota and Ford Adopt At-Home Test Drives

No At-Home With At-Home Change in
Brand Test Drives Test Drives Percent

Model (iii)

Market Share
Honda 0.145 0.121 -16.2%
Chevrolet 0.200 0.163 -18.8%
Ford 0.286 0.305 6.6%
Nissan 0.093 0.079 -16.0%
Toyota 0.276 0.333 20.7%

Probability of Search
Honda 0.163 0.137 -16.1%
Chevrolet 0.225 0.183 -18.7%
Ford 0.323 0.347 7.4%
Nissan 0.106 0.089 -15.9%
Toyota 0.311 0.379 21.7%

Probability of Purchase Conditional on Search
Honda 0.904 0.902 -0.2%
Chevrolet 0.903 0.901 -0.3%
Ford 0.911 0.904 -0.8%
Nissan 0.897 0.894 -0.3%
Toyota 0.909 0.901 -0.8%

Model (ii)

Market Share
Honda 0.148 0.140 -5.3%
Chevrolet 0.198 0.185 -6.5%
Ford 0.283 0.287 1.2%
Nissan 0.096 0.091 -4.9%
Toyota 0.275 0.297 8.0%

Probability of Search
Honda 0.149 0.141 -5.3%
Chevrolet 0.201 0.188 -6.5%
Ford 0.287 0.292 1.6%
Nissan 0.097 0.092 -4.9%
Toyota 0.279 0.302 8.4%

Probability of Purchase Conditional on Search
Honda 0.990 0.990 0.0%
Chevrolet 0.998 0.988 0.0%
Ford 0.990 0.987 -0.3%
Nissan 0.988 0.988 0.0%
Toyota 0.990 0.986 -0.4%
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Table E-3: All Brands Simultaneously Adopt At-Home Test Drives

No At-Home With At-Home Change in
Brand Test Drives Test Drives Percent

Model (iii)

Market Share
Honda 0.145 0.156 8.1%
Chevrolet 0.200 0.188 -5.9%
Ford 0.286 0.263 -8.1%
Nissan 0.093 0.104 11.5%
Toyota 0.276 0.288 4.6%

Probability of Search
Honda 0.163 0.179 9.3%
Chevrolet 0.225 0.214 -5.1%
Ford 0.323 0.299 -7.3%
Nissan 0.106 0.119 12.8%
Toyota 0.311 0.329 5.6%

Probability of Purchase Conditional on Search
Honda 0.904 0.892 -1.4%
Chevrolet 0.903 0.893 -1.1%
Ford 0.911 0.900 -1.2%
Nissan 0.897 0.883 -1.4%
Toyota 0.909 0.897 -1.1%

Model (ii)

Market Share
Honda 0.148 0.153 3.4%
Chevrolet 0.198 0.191 -3.3%
Ford 0.283 0.272 -3.9%
Nissan 0.096 0.101 5.3%
Toyota 0.275 0.283 2.7%

Probability of Search
Honda 0.149 0.155 3.9%
Chevrolet 0.201 0.195 -2.9%
Ford 0.287 0.277 -3.5%
Nissan 0.097 0.103 5.9%
Toyota 0.279 0.288 3.2%

Probability of Purchase Conditional on Search
Honda 0.990 0.985 0.5%
Chevrolet 0.988 0.984 0.4%
Ford 0.990 0.986 0.3%
Nissan 0.988 0.981 0.6%
Toyota 0.990 0.985 0.5%
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